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Abstract 

Hypoxia inducible factor-1(HIF-1), a heterodimeric transcription factor, is composed of two subunits 
(HIF-1α  and HIF-1β ) .  It is considered as an important transcription factor for regulating oxygen 
changes in hypoxic environment, which can regulate the expression of various hypoxia-related target 
genes and play a role in acute and chronic hypoxia pulmonary vascular reactions.  In this paper,  the 
function and mechanism of HIF-1a expression and regulation in hypoxic pulmonary hypertension 
( HPH) were reviewed, and current candidate schemes for treating pulmonary hypertension by using 
HIF-1a as the target were introduced, so as to provide reference for studying the pathogenesis of HPH 
and screening effective treatment methods. 

Keywords: Hypoxia-inducible factor-1a; Hypoxia induced pulmonary hypertension; Pulmonary vascular remodeling; Right 
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1. Introduction 
The acute reduction of oxygen in the lung can 

lead to hypoxic pulmonary vasoconstriction (HPV). 
However, chronic hypoxic stimulation can cause to 
continuous contraction of pulmonary vessels, hypoxic 
pulmonary vascular remodeling (HPVR), and an 
increase of pulmonary circulatory resistance, resulting 
in the development of pulmonary hypertension 
(PAH). This change is largely irreversible1. The data of 
human subjects and animal models show that 
hypoxia-inducible factor-1 (HIF-1) plays a role in 
acute and chronic hypoxic pulmonary vascular 
reactions2. Combined with hypoxia response elements 
(HRE) in promoter region of target gene, the 
expression and regulation of HIF-1a enable organisms 
to cope with reduced partial pressure of oxygen in 
environment. However, prolonged activation of 
HIF-1a can give rise to changes in the structure of 

pulmonary blood vessels, thereby leading to the 
occurrence of PAH. PAH is characterized by an 
increase in pulmonary hypertension associated with 
pulmonary artery remodeling, accompanied by a 
reduction in the area of vascular lumen, and right 
heart hypertrophy; Eventually, the patient dies of 
right heart failure3. The apoptosis and proliferation 
imbalance of pulmonary artery smooth muscle cells 
(PASMCs) are considered to be the main link of 
hypoxic pulmonary hypertension (HPH), while 
HIF-1a plays an important role in the expression of 
various angiogenin and growth factors induced by 
hypoxia4. Semenza et al. found an oxygen-dependent 
nuclear transcription factor HIF-1 during the hypoxia 
treatment of hepatocellular carcinoma Hep3B in 
19925. It is a DNA-binding protein that can regulate 
the transcription of erythropoietin (EPO) gene. 
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Previous researches on HIF-1a mainly focus on 
tumors. At present, the correlation among hypoxia, 
HIF-1a and chronic respiratory diseases is one of the 
current research hotspots6. It is critical to identify new 
candidate schemes for treating HPH with HIF-1a as 
the target by understanding the function and 
mechanism of HIF-1a expression and regulation in 
HPH. 

2. Structure and function of HIF-1a 
HIF-1 including subunits HIF- 1α and HIF- 1β is 

a seterodimer transcription factor7, of which HIF- 1α 
is a functional one. As a regulatory and active subunit, 
it is only expressed in the nucleus under hypoxia8.O2 
mostly regulates the activity of HIF-1 by this subunit. 
As aryl hydrocarbon receptor nuclear transporter 
(ARNT), HIF-1β is also a subunit of aromatic 
hydrocarbon receptor compound, which can be 
expressed under normoxia and hypoxia, and interact 
with HIF- 1α to form a dimer. However, which 
aspects HIF-1β plays its role in is not clear. Currently, 
it may be related to the active conformational 
transformation caused by the dimerization of HIF-1 
and its stability9. 

Under normoxia, HIF-1α hydroxylated by 
proline hydroxylase-domain protein (PHD) is quickly 
recognized by ubiquitin-E3 ligase compound, so that 
HIF-1α is rapidly degraded by ubiquitin 
proteasome10. However, under hypoxia, the effect of 
PHD is inhibited, so that HIF-1α can easily enter the 
nucleus to form a stable heterodimer structure with 
HIF-1β, and bind to the HRE of the gene. Among 
them, CBP/P300 protein is used as a bridge to connect 

RNA polymerase to induce the expression of the 
target gene. Activated HIF-1a can induce the 
expression of endothelin (ET), erythropoietin (EPO), 
vascular endothelial growth factor (VEGF) and 
inducible nitric oxide symthase (iNOS), and 
participate in the regulation of cell proliferation, 
angiogenesis, cell metabolism and inflammatory 
reaction (Fig. 1). 

3. HIF-1a and HPH 
HPH is a complex heart and lung disease caused 

by long-term hypoxia, which often occurs in chronic 
obstructive pulmonary diseases, interstitial 
pulmonary diseases and sleep apnea. Main clinical 
manifestations are exertional dyspnea, asthenia 
syncope, and sometimes angina pectoris, and 
clinicopathologic features are right heart overload, 
right ventricular hypertrophy, etc. Severe patients 
may have right heart failure, even die. Pathological 
mechanism of HPH is complex, which is mainly 
pulmonary vascular continuous contraction and 
irreversible remodeling under hypoxia11. 

Under hypoxic condition, the synthesis of 
vasodilator and vasoconstrictor substances in the 
body decreases and increases respectively, resulting 
in a vasoconstrictive response; HIF-1a binds to the 
specific site of ET gene, which promotes the synthesis 
and secretion of ET by PAEC. ET-1 is a highly 
effective vasoconstrictor factor, and the imbalance of 
ET and NO expressions under hypoxia exposure is 
closely related to the occurrence of HPH. The changes 
of intracellular concentration of K+ and Ca2+ play an 
important role in regulating the contraction of 

 

 
Figure 1. Regulation of HIF-1α expression, transcriptional activation pathways, and downstream target gene expression.  
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PASMC. ET binds to ET-A on vascular smooth muscle 
cells and causes the contraction of PASMC through 
calcium dependent regulation and membrane 
depolarization 12 . Meanwhile, under long-term 
hypoxia exposure, ET can inhibit the binding of 
HIF-1a to the specific site of inducible nitric oxide 
synthase (iNOS) target genes, and the expression of 
iNOS mRNA, which causes a decrease in NO released 
from endothelial cells, and an imbalance between ET 
and NO production3. In addition, under hypoxia, the 
production of mitochondrial ROS also increases. ROS 
acts as a signaling molecule to activate HIF-1α and 
voltage gated calcium channel, and inhibit the 
expression of voltage gated potassium channel, which 
leads to an increase in intracellular concentration of 
Ca2+, and the contraction of smooth muscle cells13. 
Moreover, under continuous hypoxia, Rho kinase can 
be activated, and pulmonary vasoconstriction and 
HIF-1α expression can be enhanced 14 . However, 
under hypoxic stimulation, HIF-1a promotes an 
increase in the concentration of Ca2+ in PASMC. 
However, the specific mechanism of phenotypic 
changes remains to be explored. 

The cellular structures and pathological proces-
ses involved in pulmonary vascular remodeling 
include the proliferation, migration, and dedifferen-
tiation of pulmonary arterial smooth muscle cells 
(PASMCs); excessive proliferation and anti-apoptosis 
of pulmonary vascular endothelial cells (PAEC); 
proliferation and migration of fibroblasts; and 
macrophage aggregation. Further, the musculariz-
ation of non-muscular arteries, extracellular matrix 
deposition, and chronic inflammation are also 
observed, among other processes15, 16, 17, 18. In addition 
to pulmonary vascular remodeling, there is also 
obvious right ventricular remodeling (RVR). The 
following primarily introduces the impact of HIF-1α 
expression regulation on the above mechanisms. 

3.1 HIF-1a and PASMCs 
The proliferation and migration of PASMCs are 

closely related to pulmonary vascular remodeling. 
However, the regulation of HIF-1α under hypoxia is 
the key to affect angiogenesis and structural 
remodeling. Previous studies show that factors, such 
as vascular endothelial growth factor (VEGF), have a 
significant influence on the proliferation of vascular 
smooth muscle cells and the germination of new 
blood vessels19. It is found in the latest studies that a 
variety of cytokines, microRNA, non-coding RNA 
(ncRNA), glucose metabolism, oxidative stress, etc. 
can regulate the expression of HIF-1a20. 

HIF-1α and heme oxygenase-1(HO-1) are 
important transcriptional regulatory factors in 
hypoxic cells and in maintaining cellular homeostasis. 

ZHANG et al. 21  investigated the distribution of 
HIF-1α and HO-1 in the lungs of yaks. 
Immunohistochemistry and immunofluorescence 
results showed that HIF-1α and HO-1 are mainly 
concentrated in the middle layer of small pulmonary 
arteries and are significantly upregulated in hypoxic 
PASMCs. CD146 is significantly up-regulated in 
PASMCs, which is proportional to the severity of 
HPH. Destroying the interaction between CD146 and 
HIF-1α by gene ablation can weaken pulmonary 
vascular remodeling in chronic hypoxia model mice22. 
Another study indicates that HIF-1α mediates 
excessive proliferation, anti-apoptosis and calcifica-
tion of PASMCs in pulmonary hypertension through 
the activation of Runt-related transcription factor 2 
(RUNX2)23. Wang et al.24 found that the production of 
reactive oxygen species (ROS) increased and the 
expression of HIF- 1α was regulated under hypoxia, 
thus affecting the proliferation of PASMCs. Among 
them,2-methoxyestradiol can significantly improve 
the damage of mitochondria under hypoxia, and 
weaken the level of ROS in serum. It can also decrease 
HIF-1α in pulmonary tissue and vessels, inhibit 
pulmonary vascular remodeling and reduce 
pulmonary hypertension. Under hypoxia, the 
expression of KLF5 in PASMCs increases and both the 
expression of HIF-1α and the proliferation of PASMCs 
are promoted; silencing the expression of HIF-1α by 
small interfering RNA (siRNA) has no effect on the 
expression of KLF5, but weakens the proliferation 
ability of PASMCs 25 . The increased of SENP-1 
expression can significantly up-regulate the HIF-1α 
expression and promote the proliferation of PASMCs 
under hypoxia26. 

Various cytokines, microRNA and ncRNA 
participate in the regulation of HIF-1a expression 
under hypoxia. MiR-204 is primarily expressed in 
PASMCs, and its expression levels are downregulated 
in the chronic hypoxia and MCT-induced PH rat 
models 27 .Reduced miR-204 expression can activate 
HIF-1α, leading to PASMC proliferation and 
resistance to apoptosis 28 ,while restoring miR-204 
expression significantly reduces the severity of PH29. 
ET-1 and HIF-1α levels in serum of HPH patients are 
positively correlated with pulmonary artery systolic 
pressure (PASP) 30 . A study shows that HIF-1 
regulates the expression of ET-1 by microRNA-543, 
and the reaction of pulmonary vessels to hypoxia31. 
Wang et al. 32 proved that mRNA levels of ET-1, 
HIF-1α and adrenomedullin (ADM) in neonatal rats 
during early hypoxia increased continuously, and 
mean pulmonary artery pressure and pulmonary 
vascular remodeling also rose. It is suggested that 
HIF-1α may regulate levels of ET-1 and ADM, thereby 
participating in the formation of neonatal HPH. Tang 
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et al. 33 found that MicroRNA-143-5p regulated the 
function of PASMCs in HPH by targeting HIF-1α, and 
the over-expression of MicroRNA-143-5p significantly 
lowered the level of specific contraction marker 
protein and cell apoptosis of vascular smooth muscle, 
and improved the cell migration of PASMCs under 
hypoxia. Chen et al. observed34 that microRNA- 150 
was down-regulated in hypoxic PASMCs and 
over-expressed HIF-1α weakened the inhibitory effect 
of miR-150 on the proliferation and migration of 
PASMCs. It can be concluded that miR-150 may 
inhibits the proliferation and migration of PASMCs 
by down-regulating HIF-1α. In addition, microRNA- 
195-5p secreted by apoptosis-resistant pulmonary 
microvascular endothelial cells (pecs/AR) has also 
been proved to promote the proliferation and 
migration of PASMCs in patients with PAH. 
Experiments have confirmed that MiRNA-195-5p, as a 
paracrine factor of the interaction between pecs/AR 
and PASMC, may play a role through HIF-1a/ 
miR-195-5p/Smad7 pathway35. Under hypoxia, the 
down-regulation of lncRNA Rps41 expression in 
PASMCs leads to the increase of ILF3 and HIF-1α 
levels, and promotes the proliferation, migration and 
cell cycle process of PASMCs36. 

Recent research reveals that hypoxia elevates a 
novel circular RNA, circ-myh8, which acts as a 
modular scaffold, recruiting histone acetyltransferase 
KAT7 to the promoter of the HIF-1α gene and 
subsequently inducing PASMC proliferation and cell 
cycle progression. The study posits that circ-myh8 
and its associated pathways may serve as pivotal 
targets for the diagnosis and treatment of HPH37. 

In HPH, PASMC transforms from normal 
oxidative phosphorylation of glucose to glycolytic 
reprogramming of glucose metabolism, which is 
extremely relevant to the abnormal activation of 
HIF-1α38. In the HPH animal model, it is found that 
the increase in the glycolysis and FDG uptake and 
expression level of glycolytic enzymes (GLUT1, 
PKM2, PFKFB3, HK1, etc.) in the lung and right 
ventricle is all connected to the increased expression 
of HIF-1α, indicating that HIF-1α is the key to 
promoting the glycolysis of PASMC under hypoxia39. 
Under hypoxia, the expression of glucose-6- 
phosphate dehydrogenase (G6PD) in PASMCs 
increases, which promotes expression of HIF-1a in 
PASMCs and lung tissues, and proliferation of 
PASMCs cells and remodeling of pulmonary vascular 
structure 40 , suggesting that the change in glucose 
metabolism may participate in the pathogenesis of 
HPH. 

Xiao et al.41found that platelet-derived growth 
factor (PDGF) regulated HIF-1α expression through 
PI3K signal pathway, and promoted PASMCs 

proliferation. Ahmed et al.42revealed that oxidative 
stress might up-regulate transcription and translation 
of HIF-1α, which promoted PASMCs proliferation 
and participated in HPH formation. Moreover, Chen 
et al. 43 investigated that HIF-1α regulated 
mitochondrion division by directly up-regulating the 
expression of dynamic-related protein 1(Drp1), thus 
promoting the proliferation of PASMC and inhibiting 
its apoptosis under hypoxia. In lung sections or 
normal PASMCs, CoCl2 stabilizes HIF-1α, leading to 
DRP1-mediated mitochondrial fission 44 .These 
findings substantiate that the activation of HIF-1α 
mediates mitochondrial fission, thereby promoting 
PASMC proliferation45. 

3.2 HIF-1a and PAECs 
Endothelial cells, an indispensable barrier, can 

protect the vascular wall from damage caused by 
exogenous pathogens, etc.46 Recent studies show that 
endothelial dysfunction is an important sign of 
vascular remodeling47. As the earliest cell to perceive 
the change of oxygen content, PAEC is stimulated by 
hypoxia to stimulate its secretion function and 
regulate the proliferation process of itself and adjacent 
cells. In the pathogenesis of PH, PAECs may initially 
undergo apoptosis, but subsequently switch to an 
anti-apoptotic hyperproliferative state, which is 
related to the formation of plexiform lesions in the 
lungs of PAH patients and the pathological vascular 
remodeling in PH48,49. 

Estradiol (17 β-Estradiol, E2) alleviates HPH 
through dependent effects of estrogen receptor (ER), 
including inhibiting the proliferation ofhypoxia 
induced endothelial cell. Andrea et al. 50 further 
confirmed that the protective effect of E2 in HPH was 
mediated by HIF-1α dependently increasing the 
expression of ERβ.In hypoxic PAEC, the stability of 
HIF-1α increases the ERβ of PAEC, while the 
down-regulation of HIF-1α decreases the abundance 
of ERβ;in addition, the down-regulation of ERβ also 
reduces the expression of proline hydroxylase domain 
2(PHD2),a HIF inhibitor, while the activation of ERβ 
increases PHD2, and decreases HIF-1α and HIF-2α.It 
is indicated that the ERβ adjusts the shaft of 
PHD2/HIF-1α/HIF-2α under hypoxia. Wang Le et 
al.found that improving the expression of Hsp70 in 
PAEC of HPH newborn rats by adenovirus 
transfection promoted the degradation of HIF-1α, and 
down-regulated the expression of its downstream 
target genes ET-1 and iNOS, so as to reduce 
pulmonary artery pressure and alleviate pulmonary 
vascular remodeling. 

In vivo, endothelial cells show different 
phenotypes according to local conditions. The 
interaction between endothelial cells and smooth 
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muscle cells (SMCs) is the key mechanism of PH 
development 51 . Mesenchymal cells and SMCs are 
included in the reconstructed pulmonary vascular 
lumen, while cell markers of endothelial cells are not 
prominent. This phenomenon is called endothelial-to- 
mesenchymal transition (EndMT). Through EndMT, 
endothelial cells obtain the phenotype of 
mesenchymal cells and SMCs, but lose the phenotype 
of endothelial cells. Endothelial mesenchymal 
transforming cells can participate in vascular 
remodeling in PAH by directly transforming into 
SMCs with high proliferation and migration ability, 
and affecting the proliferation of vascular intima and 
media through paracrine 52 , 53 . At the same time, 
EndMT can enhance the migration ability of PAEC 
and transform the slowly proliferating PAEC into a 
highly proliferating cell type, thereby resulting in the 
formation and development of occlusive endometrial 
lesions54. Studies have shown that55the co-localization 
of CD31 and its smooth muscle actin (α-SMA)of 
mesenchymal markers in the intimal layer α- of 
pulmonary arterioles in rats with chronic hypoxia is 
significantly down-regulated, and the expression of 
CD31 in cultured pulmonary microvascular 
endothelial cells (PMVECs) under hypoxia is 
significantly reduced; meanwhile, the expression of 
α-SMA and collagens Col1A1 and Col3A1 of other 
two mesenchymal markers is significantly increased; 
and inhibiting HIF-1α can effectively suppress the 
hypoxic induction of α-SMA, Col1A1 and 
transcription factor Twist1, and save the hypoxic 
inhibition of CD31 as well, indicating that in 
pulmonary artery remodeling, HIF-1α/Twist1 
pathway significantly mediates the role of hypoxia 
induced EndMT for which HIF-1α is essential. 

In recent years, it has been found that endothelial 
cell-specific molecule-1 (ESM-1) released by 
endothelial cells is a new regulatory factor related to 

vascular remodeling. ESM-1 is the downstream factor 
of VEGF. HIF-1α/VEGF can activate ESM-1, promote 
the adhesion between monocytes and endothelial 
cells, induce endothelial cell dysfunction and vascular 
remodeling, and may be involved in airway 
remodeling 56 . Moreover, IL-33, as a key inducing 
cytokine, is helpful for many pulmonary diseases. Liu 
et al.57found that the increase of IL-33 induced the 
proliferation, adhesion and angiogenesis of PAECs 
through the combination of its receptor ST2 and the 
activation HIF-1α/VEGF signaling pathway, and 
promoted vascular remodeling under hypoxia (Fig. 
2). 

3.3 HIF-1a and lung fibroblasts 
Pulmonary vascular remodeling is mainly 

manifested by pulmonary vascular intimal 
hyperplasia, medial hypertrophy, adventitial fibrosis 
and inflammatory cell infiltration 58 . Studies have 
shown that the adventitia of pulmonary artery is the 
first structure to respond to vascular stress and injury 
with pathological changes 59 . Under the action of 
hypoxia, vasodilation and other factors, the 
pulmonary artery adventitia fibroblasts (PAAFs) are 
first activated, which is mainly manifested by 
significantly enhancing the proliferation and 
migration ability of the cells, and transforming into 
myofibroblasts, producing more extracellular 
matrix(ECM),growth factors, chemokines and 
inflammatory cytokines, regulating the growth of 
vascular wall cells, and participating in the process of 
pulmonary vascular remodeling60. In a study of PAH 
rats and COPD patients, it is found that inhibition of 
pyruvate dehydrogenase kinase (PDK), which is 
highly expressed in right ventricular fibroblasts, can 
accelerate degradation of HIF-1α, inhibit right 
ventricular fibrosis and hypertrophy, and improve 
right ventricular functions61. 

 

 
Figure 2. Mechanism of HIF-1α in pathological process of hypoxia pulmonary hypertension.  
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Figure 3. HIf-1a tends to M1 or typically activated cells, this polarization leads to changes in the production and metabolism of inflammatory cytokines. In addition, metabolites 
and metabolic enzymes, including succinate, PDK1 and PKM2, can also play a role in the polarization of HIf-1a-dependent M1. 

 
In terms of genes, HIF-1α can also express HRE 

on α-SMA gene by combining myofibroblasts, induce 
airway fibroblasts to differentiate into myofibroblasts, 
and participate in hypoxic pulmonary vascular 
remodeling induced by COPD62. A study shows63 that 
hypoxia induced PAAF is accompanied by a sharp 
decline in miR-29a-3p; after HIF-1α is knocked out, 
the increase in miR-29a-3p of adventitial cells of 
posterior vessels promotes the proliferation and 
migration of PAAF and the expression of α-SMA and 
extracellular matrix protein, significantly reduces 
pulmonary artery pressure, right ventricular hyper-
trophy index, and improves pulmonary vascular 
remodeling. It is indicated that HIF-1α plays an 
important role in regulating the proliferation of 
PAAF, but its mechanism is still unclear. In addition, 
by adopting RNA interference technique to inhibit 
HIF-1 specifically, it is found that the migration 
reaction of PAAF is related to HIF-1α64. Interestingly, 
a recent study has discovered that even under 
normoxic conditions, human PAAF demonstrates a 
reduction in HIF-1α hydroxylation and an 
augmentation in the expression of HIF target genes. 
The study suggests that merely inhibiting HIF is 
insufficient to reverse the “persistently activated” 
phenotype observed in both human and bovine 
PAAF65. 

In summary, hypoxia-induced fibroblast 
differentiation into myofibroblasts, mediated by the 
HIF-1α signaling pathway, is a component of 

hypoxia-induced PAAF proliferation. HIF-1α can 
serve as a therapeutic target to reduce the formation 
of these activated fibroblasts, thus reducing the 
formation of new intima and vascular remodeling 
during the HPH process. The specific mechanism of 
this process still requires further investigation. 

3.4 HIF-1a and pulmonary macrophages 
The role of immune inflammatory reaction in 

PAH vascular remodeling has attracted more and 
more attention. Macrophages with high heterogeneity 
and plasticity derived from monocytes are an 
important member of the reaction, and important 
inflammatory cells that cause pulmonary vascular 
remodeling. Under various conditions, they 
differentiate into multiple subtypes, and mediate a 
variety of biological effects, that is, the macrophage 
polarization66. 

Different microenvironments, such as hypoxia, 
inflammation and toxicant, can polarize macrophages 
into type M1 or M2, thus affecting the process of 
PAH 67 . Kojima et al. 68  used targeted therapy 
technique to selectively knock out the gene HIF-1a of 
myeloid cells of mouse C57BL/6, extracted the 
peripheral blood macrophages of the gene-knockout 
and wild mice, and adopted cobalt chloride to induce 
the expression of HIF-1a. From the levels of mRNA 
and protein, it is confirmed that the HIF-1a expression 
of peripheral blood macrophages of the gene- 
knockout one is significantly lower than that of the 
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wild one, and the protein expression is basically 
missing. Cramer et al. 69 revealed the relationship 
among the hypoxia signal pathway, metabolism and 
polarization state of macrophages. Various HIF 
subtypes may regulate the polarization state of 
macrophages (and vice versa), thus affecting the 
inflammatory results (Fig. 3). 

Tannahill et al. 70 regarded succinate as 
HIF-1a-dependent inflammatory signal: the succinate 
produced by macrophages was necessary for the 
stability of HIF-1a to generate cytokine IL-1b. In 
recent years, Palson-McDermott et al.71found that as 
an additional HIF-dependent regulator, PKM2 was 
transferred to the nucleus in the form of 
non-enzymatic activity, and interacted with HIF-1a to 
up-regulate IL-1b. In addition, such as glycolytic 
regulator pyruvate dehydrogenase kinase 1(PDK1), it 
is also conducive to HIF-1a-induced glycolysis of 
macrophages72. To conclude, HIF-1a subtype related 
to macrophage metabolism significantly regulates 
macrophage. 

3.5 HIF-1a and chronic inflammation 
In chronic respiratory diseases, inflammatory 

cells and factors are important factors to induce 
airway remodeling. Under hypoxia, HIF-1α can 
promote inflammation with more inflammatory 
factors produced, such as interleukin (IL-1, IL-9, 
IL-13), tumor necrosis factor-alpha (TNF- α), which 
promotes excess secretion of mucus and induce 
airway remodeling in COPD. The addition of HIF-1α 
also helps release IL-1β, IL-8, monocyte chemoat-
tractant protein-1 and other inflammatory factors. 
Knocking out HIF-1α or inhibiting phosphatidyl-
inositol 3-kinase (PI3K)/protein serine-threonine 
kinase (Akt)/HIF-1α can reduce the production of 
inflammatory factors induced by hypoxia73. On the 
contrary, inflammatory cells and factors can also 
stimulate the expression of HIF-1. Neutrophils 
express HIF-1 to maintain the survival of neutrophils, 
and macrophages also express it. What is the 
difference is that subtypes of HIF-1 can induce 
different polarization states of macrophages 74 . 
Inflammatory factors, such as interferon (IFN-γ), 
mainly activate transcription of HIF-1α through 
nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB). After IL-1β activates NF-κB 
signal to induce the expression of HIF-1α, HIF-1α can 
combine with the promoter of gene Muc5ac, promote 
mucus production and participate in airway 
remodeling75. Research shows that HIF-1α under the 
conditions of hypoxia and inflammation can activate 
NF-κB, and promotes immune inflammatory reaction, 
leading to the occurrence and development of HPH. 
Therefore, HIF-1α significantly promote the 

inflammatory reaction of HPH76. 
To sum up, hypoxic pathway is closely related to 

chronic inflammatory process. Hypoxia can activate 
inflammatory pathway to induce inflammation and 
airway remodeling, and inflammatory microenviron-
ment can also up-regulate HIF-1a to exacerbate 
hypoxia. The specific mechanism remains to be 
explored. 

3.6 HIF-1a and right ventricular remodeling 
HPH is a complex cardiopulmonary disease, 

beyond instigating pulmonary vascular remodeling, it 
further precipitates right ventricular remodeling. 
Clinically, right ventricular (RV) function emerges as 
a pivotal determinant of patients' long-term survival, 
with chronic hypoxia-induced right ventricular 
remodeling (RVR) characteristically correlating with a 
deteriorated prognosis in HPH. The RVR process is 
generally bifurcated into 'compensatory' and 
'decompensatory' phenotypes. The former is chiefly 
characterized by right ventricular hypertrophy (RVH) 
and is accompanied by minimal RV dilation and 
fibrosis, indicative of RV functional compensation. In 
contrast, the latter phenotype, 'decompensatory' RVR, 
is typified by cardiomyocyte apoptosis, fibrosis, 
progressive dilation, and a decrease in RV capillary 
density, collectively contributing to diminished 
exercise capacity and cardiac output77. HIF-1α exerts a 
pivotal regulatory influence on the pathogenic 
mechanisms underpinning the progression of 
pulmonary arterial hypertension and ventricular 
remodeling in congenital heart disease78, however, the 
mechanisms facilitating RVR occurrence within a 
chronic hypoxic environment remains unclear. 

Recent clinical and experimental research has 
identified several key structural and molecular 
determinants associated with "compensatory" or 
"decompensatory" RVR. These factors encompass 
capillary rarefaction, metabolic transition from 
oxidative metabolism to glycolysis, excessive sympa-
thetic nervous system activity, and upregulation of 
fibrotic pathways79. 

Reduced microvascular density is considered a 
requisite factor in "decompensatory" RVR, and 
previous studies have observed a relative decrease in 
capillary density in RV samples from PH patients and 
animal models of PH. Holscher et al. demons-
trates 80 that cardiac-specific HIF-1 overexpression 
exacerbates pressure overload-induced myocardial 
remodeling and heart failure. They found increased 
expression of HIF-1α in the hearts of late-stage heart 
failure patients, suggesting that prolonged chronic 
upregulation of HIF-1α has a deteriorating effect on 
the heart. However, Wei et al.'s study81indicate that 
HIF-1 gene knockout exacerbates pressure overload- 
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induced myocardial fibrosis, cardiomyocyte hyper-
trophy, reduced myocardial capillary density, and 
cardiomyocyte apoptosis, promoting the occurrence 
of heart failure, suggesting a protective role of HIF-1 
in the hearts of pressure-overloaded mice. Smith et 
al. 82 explored the impact of intracellular HIF-1α 
expression on HPH and observed that chronic 
hypoxia reduced stroke volume and cardiac output in 
wild-type mouse hearts, but not in HIF-1α-deficient 
mouse hearts. Simultaneously, the absence of HIF-1α 
in smooth muscle cells attenuated the rise in RV 
systolic pressure induced by chronic hypoxia, without 
improving right ventricular hypertrophy. Conversely, 
HIF-1α deficiency in cardiomyocytes exacerbated 
right ventricular remodeling, underscoring the 
protective role of HIF-1α in chronic hypoxia-induced 
RVR. 

The results of the aforementioned studies 
indicate that HIF-1α plays a protective role in 
pressure overload-induced RVR. However, as 
pressure overload-induced RVR progresses to heart 
failure, increased HIF-1α expression exacerbates the 
condition. Therefore, there is a discrepancy in the role 
of HIF-1α in myocardial cells at different stages of 
HPH. Further elucidating the cellular and molecular 
mechanisms of HIF-1α in the pathogenesis of HPH 
will provide new evidence for the prevention and 
treatment of right ventricular remodeling and heart 
failure induced by pressure overload. 

Additionally, research has suggested a potential 
linkage between mitochondrial metabolism, ischemia, 
and "decompensatory" RVR. Bekeredjian et al.'s 
study83, utilizing mice with cardiac-specific HIF-1α 
overexpression, provides evidence that elevated 
HIF-1α levels can result in reduced myocardial 
contractile function. During chronic hypoxia, the 
production of reactive oxygen species (ROS) can 
enhance the stability and increased expression of 
HIF-1α, further indicating that prolonged stable 
activation of HIF-1 has a worsening effect in chronic 
heart failure. 

4. HIF-1a as a target for the treatment of 
HPH 

In recent years, more and more drugs directly 
inhibiting the HIF-1a pathway have been found to 
improve HPH. However, these drugs have not been 
clinically approved yet 84 . HIF-1a regulates the 
occurrence of HPH under hypoxia. Since its 
regulatory mechanism was discovered, drug research 
and development for target HIF-1a has not stopped so 
far. 

4.1 Treatment of HPH by using natural drugs 
to regulate HIF-1a 

Due to their diverse components, natural drugs 
have multiple therapeutic effects on various diseases. 
According to the differences of active components 
and chemical structures, they are divided into 
flavonoids, saponins, anthraquinones, alkaloids, 
astragalus, saponins, etc. The content of HIF-1a in the 
body is also affected by regulating its synthesis, 
degradation, etc. (Table 1), thus effectively treating 
cancer, inflammation, etc.85 

Resveratrol, a stilbene polyphenol with 
antioxidant, neuroprotective, cardioprotective, anti- 
inflammatory and anticancer effects, has been proven 
to inhibit HPH by down-regulating the expression of 
HIF-1 through MAPK/ERK1 and PI3K/AKT signal-
ing pathways86 . Tagitinin C inhibits the metabolic 
disorder caused by the increase of HIF-1 under 
chronic hypoxia and the Warburg effect of PASMC by 
reducing the content of the key enzyme PDK1 that 
increases the Warburg effect87. Gong Xiaonan's team 
has proved through experiments that Astragaloside 
IV may pass signal pathway of Calpain-1/HIF-1α to 
improve MCT-induced oxidative stress in PAH rats88. 

Chrysin (CH) is a flavonoid compound with a 
large number of pharmacological activities. A study 
shows that CH significantly improves hemodynamic 
parameters of HPH rat model, such as right 
ventricular hypertrophy index. Its mechanism may be 
related to the down-regulation of HIF-1α, BMP4, 
TRPC1 and TRPC expressions in PASMCs, thus 
regulating Ca2+ to play a role of HPH protection89. 

Tetramethylpyrazine (TMP), an effective 
component of traditional Chinese medicine 
Chuanxiong, has many biological activities, including 
improving microcirculation, protecting coronary 
artery, clearing free radicals, and anti-tumor90, 91. Li 
Youwei's team found92 that after TMP intervention, 
the level of rat HIF-1α, VEGF was significantly lower 
than that of the model group, indicating that TMP 
inhibited the increase of HIF-1α and VEGF levels 
induced by hypobaric hypoxia, thus reducing the 
proliferation of PASMC, and alleviating the 
occurrence and development of vascular remodeling 
and pulmonary hypertension. 

Lycium barbarum polysaccharides (LBP) is an 
effective component extracted from Lycium 
barbarum93, which has the functions of controlling 
blood sugar, aging, oxidation and hypoxia 
resistances94. Zhu Y anni's team confirmed that levels 
of mRNA and protein of silent mating type 
information regulation 2 homolog 1 (SIRT1) of 
PASMCs treated with LBP under hypoxia decreased, 
and the levels of matrix metalloproteinase 9 (MMP-9), 
mRNA and protein of HIF-1α increased. It is 
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suggested that LBP can stimulate the expression of 
gene SIRT1, resist the decrease of SIRT1 level after 
hypoxic treatment, and inhibit the increase of HIF-1α 

and MMP-9 under hypoxia, which may play a role in 
alleviating pulmonary vascular remodeling and 
pulmonary hypertension95. 

 

Table 1. Natural drugs that can inhibit HIF-1α in HPH. 

Compounds Original Plants Chemical Structure Experimental 
Models 

Targets & 
Mechanisms 

Reference 

Resveratrol Veratrum grandiflorum O, 
skins of grape (50- 100 
μg/mL), peanuts, 
bilberries, blueberries and 
cranberries, et al 

 

Male 
Sprague-Dawley 
rats, weighing 
260 ± 9.6 g 

Down-regulate the 
expression of HIF-1a 
through 
MAPK/ERK1 and 
PI3K/AKT signaling 
pathways 

[86] 

Tagitinin C Tithonia diversifolia, 
Helianthus annuus 

  

 

PASMC Reduce the content of 
the key enzyme PDK1 
that increases the 
Warburg effect and 
HIF-1 

[87] 

Astragaloside IV Astragalus 
propinquus 
Schischkin 

 

Male 
Sprague-Dawley 
rats, 
weighing200 ± 
10g 

Pass signal pathway 
of Calpain-1/HIF-1α 
to improve oxidative 
stress 

[88] 

Chrysin citrus fruits, honey,  
propolis 

 

PASMC Down-regulation of 
HIF-1α, BMP4, TRPC1 
and TRPC 
expressions in 
PASMCs 

[89] 

Tetramethylpyrazine Ligusticum chuanxiong 
Hort 

 

Male 
Sprague-Dawley 
rats, weighing 
250 ± 20g 

Inhibit the increase of 
HIF-1α and VEGF 
levels 

[91] 

Lycium Burbarum 
polysaccharides 

Lycium barbarum L None PASMC Resist the decrease of 
SIRT1 level after 
hypoxic treatment, 
inhibit the increase of 
HIF -1α and MMP-9 
under hypoxia 

[93] 

Salidroside Rhodiola 
rosea L. 

 

Male/Femal 
Wistar rats,  
weighing 
150±10g 

Indirectly inhibit 
HIF-1α and up- 
regulate the role of 
VEGF of downstream 
target gene 

[96] 

Genistein, Daidzein soybean  

 

Human alveolar 
epithelial cells 

Affect the expression 
of annexin A1, a 
formyl peptide 
receptor agonist in 
hypoxic alveolar 
epithelial cells 
through pathways of 
HIF -1α and NF- κB 

[95] 
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Compounds Original Plants Chemical Structure Experimental 
Models 

Targets & 
Mechanisms 

Reference 

Baicalin Scutellaria radix (Huang 
Qin) 

 

PASMC Inhibit the expression 
of HIF- 1α and 
aromatic hydrocarbon 
receptor, reduce the 
proliferation and 
phenotype 
transformation of 
PASMC 

[96] 

Echinacoside Cistanche tubulosa 

 

PASMC Inhibit the 
proliferation of 
PASMC induced in 
hypoxia by reducing 
the expression of HIF 
-1a 

[103] 

Caffeic acid 
phenethyl ester 
promotes 

propolis 

 

PASMC Inhibit the hypoxia 
and the expression of 
PDGF -BB- induced 
HIF -1α by reducing 
the activation of 
AKT/ERK pathway 

[105] 

Icariin Epimedii 

 

Male C57 mice, 
weighing 20-25g 

Inhibit the signal 
pathway of 
HIF-1α/TNF -α/NF-κB 

[107] 

Magnesium 
lithospermate B 

Salviae miltiorrhizae 

 

Male Sprague- 
Dawley (SD) 
rats, weighing 
120-160 g 

Down-regulate the 
expression of HIF- 1, 
NF-κB, monocyte 
chemotactic protein-1, 
(CDK4) of the HPH rat 
model 

[108] 

 
 
Salidroside, a traditional Chinese medicine, is 

the active ingredient of rhodiola which has an 
anti-hypoxia effect and can be used for the treatment 
of high-altitude reaction96. Zhou Zhengguang's team 
confirmed that salidroside down-regulated the 
expression of HIF-1α in HPH rat model, indirectly 
inhibiting HIF-1α and up-regulating the role of VEGF 
of downstream target gene; it also reduced the 
damage of hypoxia to endothelial cells, improved the 
dynamic imbalance of pulmonary artery vasocons-
triction and relaxation factors, and weakened the 
proliferation of pulmonary vascular smooth muscle; it 
also effectively inhibited the pulmonary vascular 
remodeling, and the development of HPH97. 

Phytoestrogen, genistein (Gen) and daidzein 
(DD) are the main active components of soybean 
abnormal flavonoids, which have antioxidant and 

anti-inflammatory effects98, 99. Previous studies show 
that phytoestrogens can significantly lower the 
thickening of pulmonary vascular wall caused by 
hypoxia, and reduce HPH 100 . Yang Juan et al. 
found 101 that phytoestrogens might affect the 
expression of annexin A1 (AnxA1), a formyl peptide 
receptor agonist in hypoxic alveolar epithelial cells 
through pathways of HIF-1α and NF-κB; and 
phytoestrogens inhibited the expression of AnxA1 in 
hypoxic alveolar epithelial cells, thereby regulating 
the infiltration of inflammatory cells around the 
pulmonary vessels, and improving HPH. 

Baicalin is a natural flavone with anti-throm-
botic, anti-hyperlipidemic and anti-inflammatory 
effects. Huang S102 found that baicalin inhibited the 
expression of HIF-1α and aromatic hydrocarbon 
receptor (AhR), and reduced the proliferation and 
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phenotype transformation of PASMC. Therefore, 
baicalin is expected to become a new drug for the 
treatment of PAH. 

Echinaceoside (ECH) is a natural derivative 
compound with a structure of polyhydroxyphenol, 
which exists in many plants, such as cistanche 
deserticola, and has the functions of anti-oxidation, 
anti-inflammation, neuroprotection, liver protection 
and scavenging activity of nitric oxide free radical103. 
Gai XY et al.104 confirmed that ECH partially inhibited 
the proliferation of PASMC induced by hypoxia by 
reducing the expression of HIF-1a. 

Caffeic acid phenylethyl ester (CAPE) is the 
main active ingredient in propolis, because it inhibits 
the activity of NF-κB; its anti-inflammatory effect has 
been widely known105. CAPE inhibits the hypoxia and 
the expression of PDGF-BB-induced HIF-1α by 
reducing the activation of AKT/ERK pathway, thus 
inhibiting the proliferation of PASMCs. In addition to 
NF-κB, HIF-1α is considered as an alternative target of 
CAPE. Thus, CAPE may be a promising therapeutic 
agent for PAH106. 

Icariin (Ica) has pharmacological effects, 
including regulating immunity, anti-oxidation and 
anti-inflammation. It can inhibit the signal pathway of 
HIF-1α/TNF-a/NF-κB, alleviate pulmonary vascular 
remodeling and improve pulmonary artery and right 
ventricular hemodynamic abnormalities107. 

Magnesium lhospermate B (MLB) is the main 
component of water extract of Salvia przewalskii 
Maxim, which has therapeutic effects on angina, 
cardiovascular injury, anti-inflammation, anti-oxida-
tion, anti-apoptosis, etc. Wang et al.108 found that the 
expression of HIF-1α, proliferating cell nuclear 
antigen (PCNA), NF-κB, monocyte chemotactic 
protein-1 (MCP-1) and cyclin dependent kinase 4 
(CDK4) of the HPH rat model after MLB treatment 
decreased, which ultimately inhibited the remodeling 
of pulmonary microvascular, and reduced mPAP and 
right ventricular hypertrophy index in HPH rat. 

4.2 Chemotherapy scheme using HIF-1a as a 
target 

At present,  drug research and development 
using HIF-1a as a target are mainly aimed at the 
treatment of malignant tumors. However, inhibiting 
angiogenesis in the tumor microenvironment under 
hypoxia for HPH treatment has been drawn less 
attention. 

Bortezomib can reduce the expression of HIF-1α 
under hypoxia. A further study shows that it can 
inhibit the proliferation of PASMC under hypoxia109. 
Etakalin hydrochloride can reduce the expression of 
HIF-1 in PASMC and pulmonary vessels under 
hypoxia,  inhibit the proliferation of PASMC and 

promote apoptosis,  thereby decreasing pulmonary 
artery pressure110. Braga CL et al. confirmed that the 
combined treatment of niclosamide and sildenafil/ 
niclosamide reduced the expression of downstream 
target genes of signal transduction and transcription 
activating factor- 3  ( STAT3) in PEAC and PAAF. 
STAT3 is one of the main intracellular transcription 
factors involved in HPH vascular remodeling. This 
process is related to the fact that the combined 
treatment of niclosamide and sildenafil/niclosamide 
reduces the expression of STAT3 downstream targets 
of HIF-1, etc. in lung tissue111. 

Celastramycin as a benzoyl pyrrole compound is 
originally found in bacterial extracts. It can reduce 
HIF-1α and NF-κB in PASMCs levels, thereby 
lowering the secretion of inflammatory factors and 
inhibiting the proliferation of PAH-PASMCs in a 
dose-dependent manner112. 

Topotecan (TPT) can significantly inhibit 
hypoxic-induced PASMCs in normal rats. The 
up-regulation of HIF-1α and TRPC1/4/6 of 
rat’pulmonary artery in PAH model can effectively 
reduce the remodeling of its pulmonary artery in 
hypoxic-induced PAH model, improve its hemody-
namics, and reduce right ventricular hypertrophy and 
ventricular wall thickening113. 

The latest research has discovered that novel 
derivatives of bosentan, namely 17d, 16j, and 16h, 
endothelin receptor antagonists, can dose-depen-
dently decrease HIF-1α levels in PAH rats114. A novel 
lysosomal autophagy inhibitor (ROC-325) can 
downregulate HIF-1αprotein expression in PASMCs, 
activate the eNOS-NO signaling pathway, and inhibit 
autophagy, thus suppressing pulmonary vascular 
remodeling, inducing pulmonary vasodilation, and 
alleviating the occurrence and progression of 
pulmonary arterial hypertension115. 

5. Conclusion and prospects 
HPH is resulted from the interaction of PASMCs, 

vascular endothelial cells, fibroblasts and macro-
phages under hypoxia,  and the joint participation of 
various factors.HIF-1a as an important transcription 
and regulation factor that regulates angiogenesis, 
glucose metabolism and hematopoiesis, plays a key 
regulatory role in the occurrence of HPH.Although a 
large number of studies have proved that HIF-1a 
promotes the development of airway remodeling in 
chronic respiratory diseases, the relevant mechanism 
is not clear. Therefore, inhibiting pulmonary vascular 
remodeling by regulating HIF-1a is an effective target 
for the treatment of HPH. 

It is shown that many natural drugs can affect 
the content of HIF-1a, and reduce the side effects of 
other drugs when used in combination with other 
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marketed drugs as well. The pharmacological effects 
of these natural drugs are primarily achieved by 
inhibiting the proliferation of PASMCs, promoting 
PASMC apoptosis, regulating vasoconstrictive 
factors, suppressing oxidative stress, alleviating 
inflammatory responses, and modulating autophagy. 
These natural medicines mainly exert their thera-
peutic actions by curbing PASMC proliferation, 
facilitating PASMC apoptosis, adjusting vasocons-
trictor agents, counteracting oxidative stress, 
mitigating inflammation, and regulating autophagy. 
At present, well-known monomer components 
affecting HIF-1a mainly include flavonoids, terpenes 
and glycosides. Therefore, still more active monomers 
exist in natural drugs and traditional Chinese 
medicine. 

The evidence collected so far shows that 
chemical drugs and natural drugs can treat various 
diseases (especially tumors) by regulating HIF-1a85. 
However, most experimental results only come from 
animal or in vitro cell experiments. Limited and single 
HPH animal models may not be able to verify the 
efficacy of natural drugs. Nowadays, most studies only 
focus on the inhibitory effect of natural drugs 
compound on HIF-1a. However, few studies deeply 
explore their effects on the specific process of HIF-1a 
synthesis. In addition, how natural compounds 
regulate key genes, proteins, and even microRNA and 
lncRNA still need to be highly concerned. Extensive 
pharmacological experiments show that microRNAs 
also regulate proliferation, migration, and apoptosis- 
related signaling pathways by activating specific 
targets. Therefore, in the future research, it is suggested 
to pay more attention to the promotion of natural 
drugs on HIF-1a, and further explore its mechanism, 
pharmacokinetics and safety evaluation by combining 
in vivo and in vitro research methods. It is believed 
that with the in-depth study of HIF-1a regulation 
mechanism, this review can provide new ideas for 
HPH intervention. 
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