#### SUPPLEMENTARY MATERIALS

# Aortic calcification accelerates cardiac dysfunction via inducing apoptosis of cardiomyocytes

Nannan Hao<sup>1, \*</sup>, Hui Yong<sup>1, \*</sup>, Feifei Zhang<sup>1, \*</sup>, Chang Liu<sup>2</sup>, Yulu Qiu<sup>2</sup>, Yumeng Shi<sup>2</sup>,

Chunjian Li<sup>1, ‡</sup>, Fang Wang<sup>1, ‡</sup>

<sup>1</sup>Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, China

<sup>2</sup>Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, China

\*These authors contributed equally to this work.

<sup>†</sup>Correspondence to: Dr. Fang Wang, E-mail: <u>wangfangheart@njmu.edu.cn</u>, or Chunjian Li, <u>lijay@njmu.edu.cn</u>, Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.

#### Supplementary methods

#### **Patient blood samples**

Blood samples were collected from peripheral veins and centrifuged to obtain plasma from 3 CAD patients (aged  $67 \pm 2.65$  years, 2 males and 1 female), 3 CKD patients (aged  $54 \pm 4.51$  years, 2 males and 1 female) and 3 healthy controls (aged 36  $\pm$  3.71 years, 2 males and 1 female). All patients underwent coronary computed tomography angiogram (CTA) with coronary artery calcification (Agatston score > 400). This study was approved by the ethics committee of the First Affiliated Hospital of Nanjing Medical University.

#### Plasma from patients treated H9C2 cells

To study effect of peripheral blood from patients with vascular calcification (VC) on cardiomyocytes function, we cultured H9C2 cells with plasma collected from both CAD and CKD patients with coronary artery calcification as well as healthy controls at different dilutions with FBS. After 48 h, H9C2 cells were collected for RT-qPCR analysis (ANP, BNP and TGF- $\beta$ ) and TUNEL staining, respectively.

#### Von Kossa staining

Von Kossa staining was used for calcification determination. The paraffin-embedded heart and kidney from mice were stained with a von Kossa staining kit according to the manufacturer's protocol. Briefly, after rinsing in ddH2O, sections were incubated with 1% silver nitrate solution under a 60 watt light bulb for 1 hour. After washing, 5% sodium thiosulfate was added to the slides for 5 min to remove un-reacted silver.

Calcified areas are shown as black or brown black deposits.

### Supplementary figures



Supplementary Figure 1. The kidney changes of VD<sub>3</sub>-induced VC mice. (A) C57BL/6 mice were intraperitoneally injected with VD<sub>3</sub> (350,000 IU/kg/day) for 14 days. At day 42, kidney samples were collected and the ratio of kidney to body weight was determined. Values are shown as mean  $\pm$  SEM (NC = 5, VD = 8). \*\*P < 0.01. (B) Representative images of H&E, Von kossa and ARS staining for mice kidney, respectively. VC: vascular calcification; ARS: Alizarin Red S.



Supplementary Figure 2. Plasma from CAD or CKD patients induces apoptosis of rat cardiomyocytes. (A) RT-qPCR analysis of the expression of cardiac dysfunction related genes (ANP, BNP and TGF- $\beta$ ) in H9C2 cells under different plasma from patients with CAD, CKD and healthy controls (HC) for 48 h. (B-C) Representative images and quantification of TUNEL staining for H9C2 cells apoptosis with different plasma from CAD patients and healthy controls (HC) (B) as well as CKD patients (C) for 48 h. Data from one representative experiment carried out in triplicate and shown as mean  $\pm$  SEM. \*P < 0.05, \*\*P < 0.05, \*\*P < 0.001. CAD: coronary artery disease; CKD: chronic kidney disease; CAC: coronary artery calcification.

## Supplementary tables

| Gene symbol   | Forward (5'-3')        | Reverse (5'-3')           |
|---------------|------------------------|---------------------------|
| mouse ANP     | AGGCAGTCGATTCTGCTT     | CGTGATAGATGAAGGCAGGAAG    |
| mouse BNP     | TAGCCAGTCTCCAGAGCAATTC | TTGGTCCTTCAAGAGCTGTCTC    |
| mouse MMP2    | CAAGTTCCCCGGCGATGTC    | TTCTGGTCAAGGTCACCTGTC     |
| mouse MMP9    | GACGACATAGACGGCATCC    | TGGTTCAGTTGTGGTGGTG       |
| mouse TGF-β   | CTCCCGTGGCTTCTAGTGC    | GCCTTAGTTTGGACAGGATCTG    |
| mouse β-actin | CCTCACTGTCCACCTTCC     | GGGTGTAAAACGCAGCTC        |
| rat ANP       | GCCGGTAGAAGATGAGGTCA   | GGGCTCCAATCCTGTCAATC      |
| rat BNP       | ATCTGTCGCCGCTGGGAGGT   | TGGATCCGGAAGGCGCTGTC      |
| rat TNFα      | CAGCCAGGAGGGAGAAC      | GTATGAGAGGGACGGAACC       |
| rat IL-6      | CCGTTTCTACCTGGAGTTTGT  | GTTTGCCGAGTAGACCTCATAG    |
| rat MMP2      | TTGACCAGAACACCATCG     | CTTGCGGGGAAAGAAGT         |
| rat MMP9      | CGCTGGGCTTAGATCATT     | TGCTGGATGCCTTTTATGT       |
| rat TGF-β     | CCTACATTTGGAGCCTGGA    | CCGGGTTGTGTTGGTTG         |
| rat Colla1    | GAGCGGAGAGTACTGGATCGA  | CTGACCTGTCTCCATGTTGCA     |
| rat Col3a1    | TGCCATTGCTGGAGTTGGA    | GAAGACATGATCTCCTCAGTGTTGA |
| rat β-actin   | CCCGCGAGTACAACCTTCT    | CGTCATCCATGGCGAACT        |

## Table 1 Primers used for quantitative real time PCR

| Indicators        | NC group (n = 5) | VD group (n = 8)    |  |
|-------------------|------------------|---------------------|--|
| Body weight (g)   | $25.03\pm0.55$   | $15.21 \pm 0.43 **$ |  |
| Heart weight (g)  | $0.12\pm0.002$   | $0.08 \pm 0.002$ ** |  |
| Liver weight (g)  | $1.24\pm0.069$   | $0.78 \pm 0.06$ **  |  |
| kidney weight (g) | $0.36\pm0.009$   | $0.39\pm0.07$       |  |

Table 2 Body and organ weights of normal and VD<sub>3</sub>-induced VC mice

Data are presented as mean  $\pm$  SEM. NC: normal control; VD: VD<sub>3</sub>-treated mice. \*\*P <

0.01.

Table 3 Echocardiographic data of left ventricle in normal and VD<sub>3</sub>-induced VC

| Indicators              | NC (n = 5)          | VD (n = 10)        | P value     |
|-------------------------|---------------------|--------------------|-------------|
| FS (%)                  | $45.830 \pm 1.711$  | $41.380 \pm 1.035$ | 0.035*      |
| LVEF (%)                | 77.620± 1.614       | $72.950 \pm 1.064$ | 0.044*      |
| LVMI (g/m2)             | $15.710 \pm 0.483$  | $14.850 \pm 0.403$ | 0.218       |
| Heart rate              | $595.00 \pm 19.65$  | $445.30\pm19.24$   | 0.0003***   |
| LV Mass Cor             | $100.400 \pm 3.327$ | $71.90\pm5.24$     | 0.003*      |
| Volume; d (µl)          | $50.720 \pm 2.371$  | $44.130\pm1.908$   | 0.059       |
| Diameter; d (mm)        | $3.491\pm0.067$     | $3.292\pm0.059$    | 0.063       |
| Diameter; s (mm)        | $1.895 \pm 0.092$   | $1.930\pm0.051$    | 0.723       |
| LVAWT; s (mm)           | $1.639\pm0.037$     | $1.381 \pm 0.049$  | 0.005**     |
| LVAWT; d (mm)           | $1.040\pm0.033$     | $0.909\pm0.028$    | 0.014*      |
| LVPWT; d (mm)           | $0.916\pm0.010$     | $0.817\pm0.018$    | 0.003**     |
| LVPWT; s (mm)           | $1.411 \pm 0.016$   | $1.245 \pm 0.023$  | 0.0004***   |
| Stroke Volume (µl)      | 39.390± 1.183       | 32.340± 1.377      | 0.006**     |
| Cardiac Output (mL/min) | $23.420 \pm 0.895$  | $14.310 \pm 0.643$ | < 0.0001*** |
| PWTF (%)                | $58.030 \pm 3.832$  | 51.800± 2.227      | 0.156       |
| CI                      | $2949.0 \pm 181.2$  | $2166.0 \pm 119.0$ | 0.003**     |

mice

Data are presented as mean  $\pm$  SEM. \*P < 0.05, \*\*P < 0.01, \*\*\*P < 0.001. FS: fractional shortening; LVEF: left ventricular ejection fraction; LVMI: left ventricular mass index; d: diastolic diameter; s: systolic diameter; LVAWT: left ventricular anterolateral wall thickness; LVPWT: left ventricular posterior wall thickness; PWTF: posterior wall thickness; CI: cardiac index.