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Abstract 

Repeated low-level red-light (RLRL), characterized by increased energy supply and cellular metabolism, 
thus enhancing metabolic repair processes, has gained persistent worldwide attention in recent years as 
a new novel scientific approach for therapeutic application in myopia. This therapeutic revolution led by 
RLRL therapy is due to significant advances in bioenergetics and photobiology, for instance, enormous 
progresses in photobiomodulation regulated by cytochrome c oxidase, the primary photoreceptor of the 
light in the red to near infrared regions of the electromagnetic spectrum, as the primary mechanism of 
action in RLRL therapy. This oxidase is also a key mitochondrial enzyme for cellular bioenergetics, 
especially for the nerve cells in the retina and brain. In addition, dopamine (DA)-enhanced release of nitric 
oxide may also be involved in controlling myopia by activation of nitric oxide synthase, enhancing cGMP 
signaling. Recent evidence has also suggested that RLRL may inhibit myopia progression by inhibiting 
spherical equivalent refraction (SER) progression and axial elongation without adverse effects.  
In this review, we provide scientific evidence for RLRL therapy as a unique paradigm to control myopia 
and support the theory that targeting neuronal energy metabolism may constitute a major target for the 
neurotherapeutics of myopia, with emphasis on its molecular, cellular, and nervous tissue levels, and the 
potential benefits of RLRL therapy for myopia. 

 

Introduction 
Myopia is caused by the parallel light 

penetrating via the eye refractive system and focusing 
the front retina as the eye is relaxed, which causes 
blurred images [1]. Myopia includes axial myopia due 
to the axial overgrowth and refractive myopia 
because of excessive curvature in the cornea and lens 
[2]. As the worldwide accepted, myopia is defined as 
spherical equivalent (SE) ≤ − 0.5 diopters (D), high 
myopia is defined as SE  ≤ − 5.0 D (or − 6.0 D) or axial 
length (AL) greater than 26 mm [3-5].  

Myopia has increasingly become a major public 
health problem, causing visual damage worldwide 

[6]. In Asia, for example, myopia is pandemic in 
China, due to constant increased prevalence in recent 
decades. In China, approximately 80% school age 
children suffer myopia when they complete 
schooling, of whom about 10-20% endure high 
myopia [7], which may cause serious myopic 
maculopathy, glaucomatous optic neuropathy and 
irreversible blindness [8]. A meta-analysis indicates 
that the prevalence of myopia and high myopia in 
2010 was 23% and 3% respectively in the world [8]. 
Unfortunately, the prevalence of myopia may increase 
to ~50% by 2050, thus 4.8 billion people worldwide 
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may suffer from this disease [8]. Therefore, to prevent 
onset, to slow down progression of myopia have 
become the important strategies for myopia control in 
this world.  

Myopia is linked closely with many compli-
cations, for instance, cataracts, macular degeneration 
and vision loss [9-12]. The causes related to myopia 
progression include but not limit to high educational 
pressure [13], little time outdoors [14] and more 
near-work activity [15] (for detailed reviews, see [1, 
16]). Children born after 2010 are surrounded with a 
world through TV, smart phones, computers, which 
are now classified as causative factors [17, 18].  

Previously, various interventions, including 
atropine, orthokeratology, spectacle and soft contact 
lenses, defocus incorporated multiple segment 
(DIMS) lenses and their combinations have been 
applied to slow down myopia progression with 
limited success [19-23]. For instance, Lam et al have 
demonstrated clear vision along with constant myopic 
defocus may reduce myopia progression by inhibiting 
axial elongation and myopia progression in myopic 
children [24]. Unfortunately, the efficiency for 
controlling myopia is between 30% to 60% with 
certain side effects using those methods [25]. Other 
measures to retard progression of myopia with 
similar efficacy include decrease of near work time 
[26], increase of time spent outdoors [27, 28] and 
improvement of scleral hypoxia [29]. Recently, more 
attention has been devoted to myopia prevention and 
control by red-light exposure, due to its high 
effectiveness for retardation of myopia with no side 
effects (reviewed in [30]).  

Light and Red-Light 
Light is defined as a form of electromagnetic 

radiation manifested by particles and wave proper-
ties. The waves of electromagnetic radiation possess 
unidirectional vectors, specified by wavelengths (λ, 
successive peak distance), frequencies (oscillations 
per second), and amplitudes (difference of trough and 
peak). The energy particles within electromagnetic 
radiation include photons, which travel at 3×108 m 
per second. Thus, mixture of various waves would 
elicit photons moving at different amplitudes and 
frequencies that are scattered and absorbed, reflected 
by various objects, for instance, biological materials.  

By contrast, red-light is monochromatic, allow-
ing high specificity as to molecular biomodulation. 
Red-light can be generated by lasers or light-emitting 
diodes (LEDs), appliable to photobiomodulation 
(PBM) in eyes. Lasers may generate coherent light 
energy efficiently to allow penetration to various 
tissues. The beam width of the lasers can be 
strengthened by coupling with fiber optic to permit 

energy distribution to larger areas. LEDs may 
generate efficient light without coherence in 
wavelengths of 4–10 nm. However, LEDs generate 
negligible heat, without any thermal injuries [31]. 
LEDs may also be coupled to the arrays with various 
functions, to deliver energy effectively to large areas, 
for instance, to the brain. Therefore, LEDs have been 
used in many human trials, and the use of LEDs has 
been approved by FDA [32]. Far red (FR) and near 
infrared (NIR) light generated by LEDs or a laser may 
promote cerebral blood flow (CBF) [33, 34], stimulate 
brain energy metabolism [35, 36] and increase the 
antioxidant capacity [37], mediate cell growth [38] and 
improve reparative ability in cells [32]. NIR and FR 
may also protect optical nerves, enhance their 
functional recoveries [39, 40].  

Association of Light Wavelengths with 
Myopia 

More recently, effects of different light 
wavelengths rather than those of different intensities 
on myopia onset and progression have drawn 
increasing attraction. Light waves are electromagnetic 
with different frequencies, including infrared rays, 
ultraviolet rays, radio waves, visible light (reviewed 
in [30]). Low frequency of electromagnetic fields 
(LF-EMFs) with a long wavelength may reduce 
expression of type I collagen in human fibroblasts and 
inhibit scleral remodeling, which may inhibit myopia 
onset and progression [41]. Interestingly, differences 
have been noted in the wavelength of light by 
different people and therefore visible light 
wavelengths are not consistent for retardation of 
myopia for different people [42]. 

Interestingly, chickens under blue-light may 
possess hyperopia, while those under red-light may 
possess myopia [43]. An experimental chick model 
has shown that blue light may retard myopia 
progression while red-light may enhance myopia 
progression [44]. Violet light at 360-400 nm may 
inhibit axial elongation in chicks and humans, by 
decreasing early growth response 1 (EGR1) gene 
expression known to inhibit myopia [45]. Violet light 
neuropsin (OPN5) in retina may also play a critical 
role to reduce myopia progression and mediate 
choroidal thickness in a mouse model [46]. Red-light 
may promote a hyperopic shift while blue light may 
not influence emmetropization in a mouse model [47]. 
Short wavelength light at 400 nm may delay eye 
growth, induce hyperopic shift, and prohibit myopia 
induced by lens [48]. In guinea pigs, blue light 
promotes hyperopic effects and inhibit axial growth 
while green light promotes myopia progression [49]. 
Positive lens promotes light to focus on the anterior 
part of retina, enhancing defocus-induced hyperopia 
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while negative lens results in DIM Guinea pigs 
(reviewed in [30]). It is reported that blue light may 
inhibit axial myopia by negative lens and delay axial 
growth while red-light and positive lens do not 
induce hyperopia in a guinea pig model [50]. 
However, there is an inconsistency. For instance, 
researchers did not find that red-light promotes 
development of myopia but stimulates hyperopia 
instead [51]. Red-light may inhibit while blinking blue 
light may promote myopia progression in a tree 
shrew model [52]. Those results indicate that 
difference of wavelengths from different lights may 
cause different refractive and axial changes, which 
may be present independently of light intensity. The 
results from various species have added complexity in 
the association between light exposure and myopia 
[53-59].  

Association of Light Color and 
Luminance with Myopia 

Human color vision requires three types of color 
vision, short, middle and long wavelength sensitive 
cones, corresponding to their color perception 
channels. Precise information on color, light, dark and 
saturation is essential for two or more contrasts of 
cone and color vision channels [60]. Those signals 
may be affected by different pathways, such as 
brightness and 2 color vision alignment pathways 
[61-63].  

Time-related changes from color contrast are 
defined as hyperopic defocus while time-related 
changes from luminance contrast are regarded as 
myopic defocus in absence of color changes [30]. The 
effect of the modulated ambient light on 
emmetropization have been studied extensively 
[64-75]. Nevertheless, due to species and experimental 
variabilities, the results reported are quite different. 
For instance, exposure to 0.5 and 5 Hz modulated 
illumination chronically has been reported to promote 
myopia progression in a guinea pig model [72]. 
Steady or flickering red-light may promote hyperopia, 
flickering blue light may promote myopia while 
steady blue light may not have any effects [52]. 
Gawne et al have also demonstrated that longitudinal 
chromatic aberration (LCA) is a critical visual cue of 
postnatal refractive development, and that 
short-wavelength temporal flickers are important for 
assessing and signaling defocus [76]. The visual 
system may use reactivity of longer-wavelength cones 
to blue light to adjust focus. As a result, blue light may 
promote emmetropization, and the amount of flicker 
detected by SWS channel may be more than that by 
long wavelength sensitive (LWS) channel [52]. Spatial 
contrast may also be an important factor for 
promoting myopia. In fact, eye may use a single 

retinal image for comparison of contrast from two 
different cone types to define state of hyperopia and 
myopia, without contrasting images in 2 different 
planes [61, 64]. In contrast of a single retinal image, 
eye may obtain information from comparing changes 
in color and luminance contrast along with changes 
from defocus of eye [77]. Those results suggest that 
LCA may reduce cone contrast from L- and M-cones, 
resembling when eye is in hyperopic or myopia 
defocus status.  

In addition, an association between light 
luminance and myopia is present. An example is 
form-deprived myopia (FDM), referring to that 
induced myopia may be achieved by deprivation of 
form vision from eyes in a status of susceptibility, for 
example, lid-suture [78]. Low color temperature 
artificial lighting may retard form-deprived myopia 
progression in a juvenile monkey model, suggesting 
that low correlated color temperature (2700 K – 3000K) 
may delay ocular axial growth, when compared to high 
color temperature artificial lighting (4000 – 5000 K) [79]. 
One study has suggested that recovery from myopia in 
a chick model relies on the correlated color 
temperature of the light spectrum [80]. Another 
example is defocus-induced myopia (DIM) or 
lens-induced myopia (LIM), referring to myopia 
induced by concave or negative lenses, for instance, in 
chickens with lenses in front of eyes [81]. Light 
illuminance from outdoor is usually 10 to 1000 times 
higher than that from indoor [82, 83]. A DIM model 
has shown that chicks under high intensity light 
(15,000 lx) retarded development of myopia and 
slowed progression of myopia than those under low 
intensity light (500 lx) [84]. Similarly, an FDM model 
has demonstrated that chicks under high intensity 
light may delay myopia development [85-87]. 
Association of high light exposure and myopia 
control was later verified in FDM model using 
monkeys and mice [88, 89]. The association among 
near work, outdoor activity and myopia in school 
children was explored by Rose et al., the results of 
which have indicated that outdoor activity may 
decrease myopia even under high near-vision activity 
[27]. Zadnik et al have shown that outdoor activities 
may protect children against myopia [90], suggesting 
that intense light in outdoor environment may play a 
critical role in regulating onset and progression of 
myopia. Several studies have shown that the rate of 
myopia onset and progression are reduced in children 
with significant more time outdoors [91-93]. 
Unfortunately, the mechanism remains unclear.  

Red-Light Targets and Possible 
Mechanism 

Red light may promote biological processes at a 
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low dose but inhibit biological process at a high dose, 
in a U-shape response. Hormetic curves are better to 
predict biological responses within pharmacological 
threshold than linear curves [94]. It is very important 
since stimulatory responses from low-level red-light 
are mild, ~ 30% to 60% above controls. The hormetic 
dose-response is well known in various low-level 
red-light applications because photo--stimulatory or 
photo-inhibitory effects are shown in low 
(0.001 J/cm2) or high (0.10 J/cm2) energy densities 
respectively [95]. Positive responses may be obtained 
in that dose range for needed therapeutic effects [32, 
96, 97]. Examples of low-level red-light effects and 
applications are listed for our understanding of 
usefulness of low-level red-light for potential medical 
applications. For example, wound healing may 
emerge in the rat skin under a low energy ruby laser 
[98] and under Gallium laser with 685 or 830 nm light 
[99]. Spinal cord injuries may be ameliorated by 
810-nm light in a rat model [100]. Low-level red-light 
was beneficial for treating gingival incisions [101], 
oral mucositis [102], ulcers of skin [103], and wound 
healing [104], nerve repair [105-107], carpal tunnel 
syndrome [108, 109] and soft tissue injuries [110]. 
Inflammation could appear in light-stressed retina 
[111-113]. Microglial inhibitor naloxone may inhibit 
photoreceptor degeneration within retina [114, 115]. 
Pretreatment with LEDs can prevent neurons from 
apoptosis induced by cyanide due to inhibition of 
reactive oxygen synthesis and promotion of energy 
metabolism [116]. 670 nm red light has potential for 
medical applications reported by many researchers. 
For example, 670 nm light could protect neuronal cells 
under treatment of cyanide [32], protect 
photoreceptors in rat and promote wound healing in 
primate retina [117], increase of mitochondrial 
metabolism, decrease of retinal inflammation, and 
reduction of oxidative cell stress may be achieved 
probably by changes of respiratory chain complex I, II 
and IV to affect cytochrome c oxidase (CCO), 
resulting in better energy metabolism within 
mitochondria [118]. As reported, 670 nm red light 
may be used as an effective neuroprotectant against 
other light caused damage [119] and certain toxins 
[120]. Treatment with 670 nm red light decreases 
retinal inflammation by increasing mitochondria 
membrane potential [121], improves retinal healing 
[31], such as reducing raised intracellular pressure in 
rat retina [122], retards aging retinal functions [123]. 
670 nm LED may regulate inflammation and 
immunity in the retina of a mouse with macular 
degeneration [124], likely through promoting CCO 
expression, along with reduced inflammation [125]. 
Respiration in aged retinal mitochondria may be 
enhanced by 670 nm light, showing better mitochon-

drial functions and inflammation reduction through 
activation of CCO. In fact, aged retina may possess a 
progressive oxidation increase by 670 nm light in 5 
minutes [126]. 670 nm light can improve 
oxygen-mediated degeneration within retina in 
mouse, showing decreased oxidative stress marker 
expression and reduction in hyperoxia [127]. 670 nm 
light treatment may significantly retard lipid 
peroxidation, complement propagation in retina 
degeneration [128]. Low levels of 670 nm light may 
prevent retinopathy by oxygen induction and lung 
damage by excessive oxygen [129] and modulate 
expression of genes involved with inflammation, 
oxidative metabolism and apoptosis [130]. Evidence 
has indicated that CCO is the primary photo receptor 
[131], promoting oxidative metabolism [132] and 
increase ATP production [133], and is probably linked 
to increased CCO and reduced acrolein expression 
[134] through the reparative and/or the protective 
mechanism. In fact, abundant research results 
supports its potential benefits in retinal diseases [97], 
stroke [135, 136], neurodegeneration [137], 
neuromuscular disorders [138], hair regrowth [139], 
memory [140] and mood disorders [141]. 

Although many photoreceptors have been 
discovered, the mechanism of low-level red-light 
remains unclear since many molecules have 
photoreceptor capabilities. For instance, reactions 
from a molecular target induced by a wavelength can 
be complex. For example, NADH-dehydrogenase and 
flavoprotein have various photoreceptors from the 
violet to blue or from red to near-infrared spectral 
areas [133]. In addition, both terminal oxidase and 
superoxide dismutase have absorption peaks at high 
wavelengths of 670–680 nm, overlapping in the 
absorption spectrum of different photoreceptors [133, 
142]. Those lights may enhance mitochondrial 
membrane potential, stimulate ATP exchange and 
production, promote synthesis of RNA, proteins, and 
usage of oxygen [143]. The effects from low-level 
red-light on mitochondria are wavelength-specific, 
and molecules absorbing low-level red-light in living 
cells are likely respiratory components [144]. For 
instance, RNA synthesis from HeLa cells may be 
enhanced by some wavelengths. The other example is 
cytochrome oxidase, especially cytochrome c oxidase, 
a primary light photoreceptor in the red and the 
near-infrared electromagnetic spectrum [145, 146], 
also a critical oxidase in cell bioenergetics in nerve 
cells from retina and brain [147]. Cytochrome oxidase 
exerts pump function by redox-coupled protons to 
stimulate transmembrane electrochemical gradient, 
synthesizing energy-generating ATP [148]. 
Cytochrome oxidase participates in free radical 
metabolism, glutamatergic regulation and apoptosis 
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[149, 150]. Cytochrome oxidase is also involved in 
intraneuronal metabolic activity and neuronal 
functions [150]. In fact, cytochrome oxidase can be the 
only primary photoreceptor by sequential irradiation 
[151, 152]. Interestingly, absorption spectra from 
cytochrome oxidase is strongly linked to biological 
responses induced by low level red light [151]. 

Among the possible hypotheses for relationship 
of myopia and light intensity, the most possible 
hypothesis is that the light promotes synthesis and 
release of dopamine (DA) by retina [153]. DA is a 
critical neurotransmitter in retina, regulating multiple 
functions, such as refractive development, β receptor 
activation, visual signal transduction and myopia 
development, probably by activation of its receptor 
[154] (also reviewed in [30]). In fact, DA receptors are 
G-protein-coupled receptors present in retina, 
including D1, D2, D4, and D5 sub-receptors [155]. 
Among the sub-receptors, D2 receptors are more 
critical in mediation of myopia progression than D1 
receptors in chicks (reviewed in [30]. Activation of D2 
receptors may result in myopia, while activation of D1 
receptors may cause hyperopia [155]. Light may 
promote DA release in a linear relationship with 4 log 
units of intensity [153]. DA release from retina may 
promote choroidal thickening with ocular growth 
retardation, probably by release of nitric oxide (NO) 
from retina and choroid to slow down myopia 
development [156-158]. Red, blue and UV light may 
also promote DA release from retina, with 
wavelength dependence [159]. For instance, blue and 
UV light may promote less deprivation myopia than 
red light (reviewed in [30]). Circadian rhythms could 
be another mechanism for light exposure to control 
myopia, overlapping with that of eye growth, in 
which DA is a critical mediator for the rhythms [160, 
161]. Melatonin may also be critical in the association 
of the light and circadian functions [162]. AL and 
choroidal thickness of eyes may be opposite for the 
changes with circadian rhythms, which may be 
interfered by DIM modes, suggesting that optical 
defocus may play a critical role in regulation of AL 
and choroidal thickness [163-165]. In all, light 
intensity is negatively linked to onset and 
development of myopia. 

DA may enhance synthesis and release of NO 
(nitric oxide) to mediate eye growth via activation of 
NOS (nitric oxide synthase). NO may decrease form 
deprived myopia dose dependently while NOS 
inhibitors may block myopia inhibition regulated by 
atropine [166, 167]. Activation of NOS may promote 
cGMP production to inhibit myopia in guinea pigs 
[168]. PBM may be caused by intracellular NO release 
[169, 170]. NO may inhibit oxidative agents, promote 
oxygen transport, and hemoglobin production. If 

combined with oxygen, NO may promote release of 
oxygen via NO competition [171]. Hypoxia and 
reoxygenation injury of cardiomyocytes may be 
relieved by 670 nm light, depending on NOS 
dependent or independent NO [172]. PBM may 
promote NO production via reduction of nitrite to NO 
mediated by CCO, a critical cytochrome oxidase, and 
myoglobin (Mb)/Hb [173]. CCO is a terminal complex 
for eukaryotic oxidative phosphorylation within 
mitochondria, which couples reduction of electron 
carriers in metabolism to reduction of molecular 
oxygen into water and proton translocation from 
internal mitochondrial matrix to inter-membrane 
[174]. A study has indicated that under 628 nm light 
for 3 days, the expression of the respiratory and 
antioxidant genes was promoted, as the expression of 
apoptotic genes is inhibited in human fibroblasts 
through CCO activation [175]. Photoreceptors of 
mammalian hemoglobin may be activated by certain 
light, manifesting that light absorption may be a 
differential sue to the redox state, allowing its 
quantification of oxygenation in clinical uses. CCO 
may be activated by light in FR to NIR range, causing 
cellular responses [32, 133]. Catalase, cryptochromes, 
cytochrome b, cytochrome c, guanylate cyclase, nitric 
oxide synthase and superoxide dismutase also 
possess photoreceptors [31].  

Red light may induce oxidation in cytochrome c 
via activating CCO to increase use of oxygen, to 
elevate mitochondrial membrane sensitivity and pore 
permeability [133, 142]. The effects are mediated by 
the increase of electron flow in mitochondrial electron 
transportation chain. Red light may promote 
production of free radicals, via singlet oxygen due to 
photodynamic activation and generate superoxide ion 
through electron auto-oxidation. Red light can 
generate transient heat from chromophore due to 
electric or light oscillations [133], which can alter 
various molecules from the targets. RLRL may also 
promote energy transfer. Secondary effects from 
low-level red-light may appear as results of primary 
effects, for instance, biochemical and biological 
reactions which affects cellular homeostasis [176-178].  

With treatment of monochromatic light, the 
symmetric myopic sign-dependency is manifested, 
resulting in the spherical defocus on the ocular acuity. 
The observed results suggest that the human visual 
system may integrate the chromatic differences in 
refraction to discern the signs of defocus [179]. Red 
light can activate signaling transduction from mito-
chondria to nucleus via activation of photoreceptors 
and translocation of signaling molecules to the 
nucleus, to alter gene expression. That is, red light 
may enhance beneficial NAD/NADH ratio changes in 
mitochondria to promote nitric oxide release via 



Int. J. Med. Sci. 2023, Vol. 20 

 
https://www.medsci.org 

1368 

activation of cytochrome oxidase, and thus regulating 
ATP level. ATP may then activate ATP P2 receptors to 
cause inward calcium currents through calcium 
release from intracellular storages of calcium [180]. As 
a result of such ATP changes, which then mediate 
level of cAMP, inducing activation of several kinases 
to mediate gene expression, which can reduce 
inflammation and improve wound healing. 

PBM may also activate TGFβ/Smad signaling in 
wound healing to mediate myopia progression [181, 
182]. 670 nm light may promote production of 
collagen I and vascular endothelial growth factor 
(VEGF) in wound healing [183]. Decrease of collagen I 
alpha1 (COL1A1) and increase of α-SMA may be 
linked to sclera hypoxia [29]. Therefore, we deduce 
that FR and NIR treatment may promote choroid 
thickening and improve blood flow through release of 
NO acting as a vasodilator. NO may also have 
anti-hypoxia effect, inducing amelioration of scleral 
hypoxia. Activation of the TGFβ/Smad pathway may 
promote scleral remodeling via overproduction of 
COL1A1. Along with NO, trans-differentiation of 
sclera fibroblasts may be reversed, without any 
specific mechanism so far. 

PBM and PBMT 
PBM or low-level light therapy, via photon 

irradiation, has decades of clinical applications to soft 
tissue injuries due to promoting wound healing. 
Low-level red-light can penetrate tissues such as the 
brain, heart and spinal cord [184, 185], accelerate 
healing from ischemic heart injury [184], inhibit 
degeneration in injured optic nerve and retina [184, 
186], and promote recovery in stroke [185, 187, 188]. 
These effects by low-level red-light are clearly 
associated with the absorption spectrum of cyto-
chrome oxidase [31], by overexpression of cytoprotec-
tive factors [32, 116, 185, 186, 189-192], accumulation 
of antioxidants [120]. For example, gene profile 
analysis shows that low-level red-light promotes 
noncoding RNAs (ncRNA) to mediate certain gene 
expression [130]. During PBM, cytochrome oxidase, a 
primary photoreceptor of low-level red-light, plays a 
critical role in recoveries of injured eye and brain 
tissues because the enzyme in mitochondria is critical 
for oxidation. Low-level red-light has significant 
neuroprotective effects in regeneration of damaged 
retina via promoting mitochondrial function, 
improving blood flow to the damaged neurons, 
promoting expression and release of survival factors 
from cells [193]. 

PBMT (photobiomodulation therapy) has 
increasingly become popular in human medical 
therapies recently. Recent reports have suggested that 
laser therapy can be used for treatment of 

inflammation and promotion of wound healing [194]. 
Best of all, energy from PBMT is low without any side 
effect concern for tissue destruction due to 
overheating, however, good enough for medical 
purposes. For instance, PBMT may be applied as 
photodynamic therapy for skin diseases [195] and as 
thermal therapy of neuronal diseases [196].  

Red-Light Therapy for Myopia Prevailing 
Myopia pandemic affects a large number of 

population in the world [197-203] (reviewed in [204]). 
Higher Myopia may cause serious consequences such 
as cataract, choroidal degeneration, glaucoma, retinal 
tears and detachment [205-209]. The RLRL clinical 
trials are mainly conducted in China due to their 
recent invention of the new RLRL therapy machine. 
Xiong et al have shown that RLRL therapy may 
induce sustained choroidal thickening over the entire 
course of treatment [210]. Liu et al have shown that 
the choroid’s thickening is not sufficient to explain the 
reasons for AL shortening, which may be linked to 
changes from the posterior segment [211]. Higher 
aberrations mean optical problems of eyes that alter 
quality of retinal image, causing visual progressive 
deterioration. Therefore, various myopia control 
methods have been developed such as use of 
orthokeratology, soft contact lenses (dual-focus or 
multi-focus) and near addition spectacle lenses, which 
have enormous effects for the world population [212]. 
Yam et al have also shown that 0.05%, 0.025%, and 
0.01% atropine may delay myopia progression by 
concentration-dependent response, and of 3 
concentrations used, 0.05% atropine was the best to 
controlling AL elongation and myopia progression in 
a 1-year trial [22]. Yam et al have later reported that 
the efficacy of 0.05% atropine is twice as good as that 
with 0.01% atropine in retarding myopia progression 
[213]. We recently have reported that 1% and 0.05% 
atropine respectively may delay moderate myopia 
progression in Chinese school children by a mega 
clinical investigation [214, 215] and long-term wear of 
orthokeratology lenses also retard myopia progres-
sion [216]. However, as our generation is aging, the 
prevalence of myopia is increasing continually [217] 
due to their limited effectiveness and obvious side 
effects. Therefore, we need to find more effective 
ways to control the development and progression of 
myopia.  

Recently, several reports have indicated that 
RLRL may inhibit myopia progression by inhibiting 
SER progression and AL elongation [20, 218-220]. 
Hung et al have suggested that narrow-band with 
long-wavelength light may inhibit axial elongation 
typically produced by form deprivation and 
hyperopic defocus, due to eliciting direction signals 
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related to myopic defocus [212]. However, not all the 
reports are comprehensive and many undiscovered 
characteristics remain to be explored, for instance, 
whether RLRL treatment may prevent myopia 
occurrence from preclinical status, whether such 
treatment is better than other conventional treatments 
for myopia, such as atropine, DIMS, multifocal 
contact lenses and outdoor exercises [91, 213, 221-226]. 
Wang et al have indicated that approximately a 
quarter school children have had inhibition of AL 
elongation by RLRL therapy, and the mean AL 
change is -0.142 mm per year [227]. Recently, there are 
new efficacy reports for inhibiting SER progression  
by a change of SER of 0.06 D by RLRL treatment in a 
6-mouth trial reported by Dong et al [218], a change 
by 0.70 D in a 9-month trial from another report by 
Zhou et al [219] and a change by -0.59 D in a 12-month 
trial reported by Jiang et al [20]. In addition, time 
spent outdoors at school (40 more minutes a day for 3 
years) can bring a change of SER 0.17 D presented by 
He et al [91], DIMS may bring a change of SER (-0.44 
D) in a 2-year study reported by Lam et al [24], high 
add power contact lenses may bring a change of SER 
(0.46 D) in a 3-year study presented by Walline et al 
[228], spectacle lenses with aspherical lenselets may 
bring a change of SER (0.53 D) in a 1-year study 
reported by Bao et al [229], 0.01% atropine treatment 
for 1 year may bring a change of SER (0.26 D) 
presented by Wei et al [230] and 0.025% atropine for 
2-year treatment can bring a change of SER change 
(-0.85 D) in LAMP (phase II) investigation reported by 
Yam et al [213]. Furthermore, the efficacy for 
inhibiting AL elongation may bring a change of axial 
growth by 0.11 mm in a 6-mouth RLRL trial by Dong 
et al [218], by 0.20 mm in a 9-mouth trial from another 
RLRL therapy by Zhou et al [219]. RLRL may also 
reduce AL elongation by 0.26 mm in a 12-mouth 
RLRL trial by Jiang et al [20]. Interestingly, time spent 
outdoors at school (40 more minutes a day for 3 years) 
may bring a change of axial growth by -0.03 mm 
presented by He et al [91], 0.01% atropine treatment 
for 1 year may bring axial growth change by 0.09 mm 

[230], and 0.025% atropine treatment for 1 year may 
lead to AL change by 0.29 mm in LAMP study by Yam 
et al [22] and 0.025% atropine treatment for 2-year 
may bring axial growth change by 0.50 mm (average 
0.25 mm per year) in LAMP (phase II) study by Yam 
et al [213] and DIMS may bring a change of axial 
growth by 0.34 mm in a 2-year study (average 0.17 
mm per year) by Lam et al [24] and high add power 
contact lenses may bring a change of axial growth by 
0.42 mm in a 3-year study (average 0.14 mm per year) 
by Walline [228] and spectacle lenses with aspherical 
lenselets may bring a change of AL by 0.23 D in a 
1-year study by Bao et al [229]. All evidence is clear 
that RLRL treatment may effectively retard myopia 
progression reported by Jiang et al, Zhang et al, Dong 
et al, Zhou et al and Xiong et al [20, 30, 218-220], 
without severe adverse events observed by Jiang et al 
[20]. As expected, compared to 0.01% atropine eye 
drops for myopia control, RLRL is more effective to 
retard AL elongation and myopia progression for 12 
months observed by Chen et al [231]. Xiong et al have 
evaluated the long-term efficacy as well as safety of 
RLRL therapy over myopia control for 2 years and 
potential rebound effect after withdrawal of treatment 
and discovered that RLRL therapy has encouraging 
efficacy and safety for retardation of myopia 
progression without serious side effects over 2 years 
reported by Xiong et al [220]. Therefore, RLRL is an 
effective method to prevent and control myopia, 
probably with a slight myopic rebound after its 
withdrawal presented by Chen et al [232]. Dong et al 
have noted that the efficacy and safety of RLRL 
therapy for retarding myopia progression requires 
100% original power to significantly reduce myopia 
progression over 6 months, compared to that from 
only 10% original power. Jiang et al have reported 
that RLRL therapy is a promising treatment for 
myopia control in children [20]. Further validation in 
long term randomized controlled trials are required 
for validation of the short-term trial results shown by 
Zhou et al [219]. The results for recent clinical trials of 
RLRL therapy to myopia are listed in Table 1. 

Table 1. Summary of Recent Clinical Trials for RLRL Therapy to Myopia. 

Authors Year Type of 
Studies 

Study 
Duration 
(Months) 

Sample Size Efficacy and Study Results Limitations 

Zhou et 
al [219] 

2022 Retrospectiv
e case series 

9 105 At 9 months, the mean SER in RLRL group was −2.87 ± 1.89 D, 
significantly greater than that of the control (−3.57 ± 1.49 D). AL 
changes were −0.06 ± 0.19 mm and 0.26 ±0.15 mm in RLRL group 
and the control group. The subfoveal choroidal thickness 
changed by 45.32 ± 30.88 µm in RLRL group at the 9-month 
examination. Specifically, a substantial hyperopic shift (0.31 ± 
0.24 D and 0.20 ± 0.14 D) was found in 8–14 years old, compared 
with 4–7 years old children. The decrease in AL in subjects with 
baseline AL >24 mm was −0.08 ± 0.19 mm, significantly greater 
than those with a baseline AL ≤24 mm (−0.04 ± 0.18 mm). The 
authors have concluded that repetitive exposure to RLRL therapy 
was associated with slower myopia progression and reduced 
axial growth after short durations of treatment. 

Firstly, selection bias might be present 
because not all participants adhered strictly to 
treatment. Secondly, the sample size was 
small and the duration was short (9 months). 
The sample size of the control group and 
experimental groups was not the same or 
similar. Thirdly, the wavelength and power 
intensity used in this study was different 
from others, making it difficult to compare 
the results with previous studies.  
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Authors Year Type of 
Studies 

Study 
Duration 
(Months) 

Sample Size Efficacy and Study Results Limitations 

Jiang et 
al [20] 

2022 Randomized 
controlled 
trial 

12 264 Adjusted 12-month axial elongation and SER progression were 
0.13 mm (0.09-0.17mm) and -0.20 D (-0.29 to -0.11D) for RLRL 
treatment and 0.38 mm (0.34-0.42 mm) and -0.79 D (-0.88 to -0.69 
D) for SVS treatment. The differences in axial elongation and SER 
progression were 0.26 mm (0.20-0.31 mm) and -0.59D (-0.72 to 
-0.46 D) between the RLRL and SVS groups. No severe adverse 
events (sudden vision loss ≥2 lines or scotoma), functional visual 
loss indicated by BCVA, or structural damage seen on OCT scans 
were observed. The authors have concluded that RLRL therapy is 
a promising alternative treatment for myopia control in children 
with good user acceptability and no documented functional or 
structural damage. 

Firstly, because of pragmatic feasibility, the 
authors did not implement masking. 
Secondly, the level of compliance was not 
assigned randomly. Thirdly, because of 
coronavirus disease outbreak in 2019, 
approximately 50% of children were lost to 
follow-up at 6 months. Fourthly, the observed 
treatment efficacy in controlling myopic 
progression was generalizable only to the 
device used in the present study, not 
approved by studies using other 
wavelengths, power intensities, exposure 
durations, or frequencies of treatments. 
Fifthly, the duration of the trial was 1 year, 
which was not long enough. 
 

Chen et 
al [231] 

2022 Randomized 
controlled 
trial 

12 62 The mean 1- year change in AL was 0.08 mm in RLRL group and 
0.33 mm in low dose atropine (LDA) group, with a mean 
difference (MD) of −0.24mm. The 1-year change in SER was−0.03 
D in the RLRL group and −0.60 D in LDA group. The progression 
of AL < 0.1 mm was 53.2% and 9.7% in the RLRL and LDA 
groups, respectively. For AL ≥ 0.36 mm, progression was 9.7% 
and in the RLRL and LDA groups, respectively. The authors have 
concluded that RLRL is more effective for controlling AL and 
myopia progression over 12 months of use compared with 0.01% 
atropine eye drops. 

Firstly, the authors might not avoid the 
deliberate exclusion of false reports from 
parents. Secondly, this study was a localized 
but not a multicenter study, and the 
geographic representation was not great. 
Thirdly, only 0.01% atropine was used to 
compare the results from RLRL study, which 
is not the balanced dose for control of myopia 
by atropine. Fourthly, due to covid-19, online 
learning may bias the results in the study. 
Fifthly, the duration was 12 months, not long 
enough for a definite conclusion from this 
study.  

Xiong et 
al [220] 

2022 Post-trial 
follow up 

24 199 In the second year, the mean changes in AL were 0.28 ± 0.14 mm, 
0.05 ± 0.24 mm, 0.42 ± 0.20 mm and 0.12 ± 0.16 mm in SVS-SVS, 
SVS-RLRL, RLRL-SVS and RLRL-RLRL group, respectively (p < 
0.001). The respective mean SER changes were -0.54 ± 0.39D, -0.09 
± 0.55D, -0.91 ± 0.48D, and -0.20 ± 0.56D respectively. Over the 
2-year period, axial elongation and SER progression were 
smallest in RLRL-RLRL group (AL: 0.16 ± 0.37 mm; SER: -0.31 ± 
0.79D), followed by SVS-RLRL (AL: 0.44 ± 0.37 mm; SER: -0.96 ± 
0.70D), RLRL-SVS (AL: 0.50 ± 0.28 mm; SER: -1.07 ± 0.69D) and 
SVS-SVS group (AL: 0.64 ± 0.29 mm; SER: -1.24 ± 0.63D). No 
self-reported adverse events, functional or structural damage was 
noted. The authors have concluded that continued RLRL therapy 
sustained promising efficacy and safety in slowing myopia 
progression over 2 years. A modest rebound effect was noted 
after treatment cessation. 

Firstly, the study was a post-trial follow-up 
research, and the participants were not 
randomly assigned to control and 
experimental groups. Secondly, the 
continuation or cessation of the treatment 
was not pre-determined, which might cause 
the bias in the results. Thirdly, the number of 
participants in the control and RLRL therapy 
groups was not balanced. Fourthly, the study 
was based on Chinese children, therefore, the 
generalizability of this study to other 
ethnicities needs further exploration. 
 

Dong et 
al [218] 

2022 Randomized 
controlled 
trial 

6 111 The mean SER change over 6 months was 0.06 ± 0.30 D in the 
RLRL group and -0.11 ± 0.33 D in the sham device control group, 
with respective mean increases in AL of 0.02 ±0.11mm and 0.13 ± 
0.10 mm. In the multivariate GEE models, children in the RLRL 
group showed less myopia progression and axial elongation than 
those in the sham device control group (SER: coefficient, 0.167 D; 
0.050-0.283D; AL: coefficient, -0.101 mm; -0.139 to -0.062 mm). No 
treatment-related adverse events were reported. The authors 
have concluded that in myopic children, RLRL therapy with 
100% power significantly reduced myopia progression over 6 
months compared with those treated with a sham device of 10% 
original power. The RLRL treatment was well tolerated without 
treatment-related adverse effects. 

Firstly, the duration of this trial was 6 
months, not sufficient for the observations of 
the full myopia control effects. Secondly, the 
rebound effect of RLRL treatment was not 
present. Thirdly, online screen-based learning 
might have affected the results of myopia due 
to covid-19. Fourthly, in the control group, 
the authors used 10% of RLRL energy, which 
might not be appropriate since 10% of RLRL 
energy might also have certain effects. Fifthly, 
masking of participants was not strict.  
 

Liu et al 
[211] 

2022 Randomized 
controlled 
trial 

1 98 A linear mixed-effects model showed that the AL of the subjects 
in RLRL decreased from 24.63 ±1.04 mm to 24.57 ± 1.04 mm, and 
the SChT thickened by 18.34 µm. CVI had a slight but significant 
increase in the 0–6 zone. However, all the anterior segment 
parameters did not change after RLRL treatment. The authors 
have concluded that choroid’s thickening is insufficient to explain 
the AL shortening. The unchanged anterior segment and 
improved choroid blood flow suggest that AL shortening is 
related to changes in the posterior segment. 

Firstly, the follow-up duration for this study 
is short. Secondly, the authors did not know 
how AL would rebound after discontinuation 
of their RLRL treatments in myopia. Thirdly, 
it is unclear how the short-term axial 
shortening links to long-term myopia control. 
Fourthly, it is unclear whether short-term 
axial shortening occurs in emmetropic 
subjects or only in myopic adults. 
 

Tian et al 
[233] 

2022 Randomized 
controlled 
trial 

6 224 The median 6-month changes in AL of the LLRL and control 
groups were - 0.06 mm and 0.14 mm, respectively. The difference 
between groups was significant. The median 6-month changes in 
SER were 0.125 D and -0.25 D for the LLRL and control groups, 
respectively. The difference between groups was significant. 
Compared with the control, the proportion of children with 
hyperopic shift in the LLRL group was higher (51.65% vs. 3.41%), 
and the proportion of children with shortened AL in the LLRL 
group was higher (63.74% vs. 2.27%). No adverse event was 
observed. The authors have concluded that 650 nm LLRL 
significantly slowed down the myopia progression in children 
aged 6–12 years, and there was no observable side effect in the 
short term. 

Firstly, the duration of this study was 1 year, 
and the cessation time was 3 months, not long 
enough for the controlling effect on myopia. 
Secondly, the sample size is not good enough 
to draw a scientific conclusion. Thirdly, not 
all examination results were objective, such as 
the examination for accommodation. 
Fourthly, LRL recorded was subjective.  
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Authors Year Type of 
Studies 

Study 
Duration 
(Months) 

Sample Size Efficacy and Study Results Limitations 

Yang et 
al [234] 

2022 Prospective 
study 

1 25 The RFPD in LLRLT eyes significantly increased 5 min after 
LLRLT, and the increment was 1.70 ± 0.83%. The RFPD 
significantly decreased from 5 min to 1 h after LLRLT with a 
mean of −2.62 ± 0.86% decrement. The RFPD levels returned to 
baseline at 1 h after LLRLT. However, compared with 
insignificant RFPD changes in non-LLRLT eyes, there was no 
significant difference in RFPD changes at any sampling point. No 
significant changes in RFT, CFBF, and CFT were found in LLRLT 
eyes at each sampling point. Although 3 min of LLRLT has no 
effect on the choroid, it may cause a short-term transient increase 
in RFPD. The authors have concluded that their study provides 
theoretical support for the role of LLRLT in myopia control. 

Firstly, the follow-up duration in this study 
was short, therefore, the long-term efficacy 
and safety of RLRL for myopia require 
further investigation. Secondly, the rebound 
effect was not determined. 
 

Chen et 
al [232] 

2022 Randomized 
controlled 
trial 

12 86 AL elongation and myopic progression were 0.01 mm (− 0.05 to 
0.07 mm) and 0.05 D (− 0.08 to 0.19 D) in the LRL group, which 
were less than 0.39 mm (0.33 to 0.45 mm) and − 0.64 D (− 0.78 to − 
0.51 D) in the SFS group. The change of SFCT in the LRL group 
was greater than that in the SFS group. Accommodative response 
and positive relative accommodation in the LRL group were 
more negative than those in the SFS group. Forty-two subjects 
completed the observation of LRL cessation, AL and SER 
increased by 0.16 mm (0.11 to 0.22 mm) and − 0.20 D (95%− 0.26 
to − 0.14 D) during the cessation, and SFCT returned to baseline. 
The authors have concluded that LRL is an effective measure for 
preventing and controlling myopia, and it may also have the 
ability to improve the accommodative function. There may be a 
slight myopic rebound after its cessation.  

Firstly, only 25 cases were included in this 
study, which might cause the bias in their 
conclusions. Secondly, the data of RLRL 
therapy was from only one device, which 
needs confirmation from data obtained from 
other machines because different devices for 
RLRL therapy might have other power 
intensities and wavelengths. Thirdly, the 
appropriate exposure durations were not 
determined. 
 

Wang et 
al [235] 

2023 Retrospectiv
e study 

12 434 The mean age of participants was 9.7 (2.6) years with SER of -3.74 
(2.60) diopters. There were 115 (26.50%), 76 (17.51%), and 20 
(4.61%) children with AL shortening based on cutoffs of 0.05 
mm/year, 0.10 mm/year, and 0.20 mm/year, respectively. In the 
multivariable model, AL shortening was significantly associated 
with older baseline age, female gender, and longer baseline AL or 
greater SER. Among AL shortened eyes, the mean AL difference 
was -0.142 (0.094) mm/year. Greater AL shortening was observed 
among children who were younger and had longer baseline AL. 
The authors have concluded that more than a quarter of children 
have had AL shortening [0.05 mm following RLRL therapy, and 
the overall mean AL change was -0.142 mm/year.  

Firstly, the children were Chinese ethnicity, 
which might not be representative in other 
geographic regions of the world. Secondly, 
this study duration is not long enough for 
follow-up study of RLRL therapy on the 
control of myopia. Secondly, AL 
measurements might be affected by the 
changes in choroidal thickness. Thirdly, no 
data on outdoor activities on myopia was 
available in the retrospective study, which 
could cause significant bias. Fourthly, the 
study duration is 1 year for follow-up 
information, not sufficient for an estimate of 
myopia reduction that should take a few 
years to complete. 
 

 
 

Controversies 
Effects of various lights on myopia may be quite 

different. For instance, red-light, a long wavelength 
light should lead to hyperopia defocus [50, 159, 236] 
and induce myopia [30]. However, it is not always the 
case. The effect of red-light on progression of myopia 
is quite different. For instance, some researchers have 
reported that the predominant effect of red-light is to 
induce hyperopia but not myopia [51, 52]. Little or no 
difference has been found in refractive error in a 
rhesus monkey model with or without quasi 
monochromatic red-light [75] while rhesus monkeys 
with long red wavelength filters show significant 
hyperopia [51]. These results suggest that chromatic 
signaling is not required in certain cases [75]. 
Reduction of the luminance contrast may lead to 
chromatic contrast mainly in emmetropization [61, 
237], causing imbalance in strengths of short and long 
wavelength signals [51]. Other reports have suggested 
that spectral wavelength and specific wavelength 
ranges may significantly influence myopia 
progression. For example, 630 nm light and 624 nm 

light may significantly affect myopia progression in 
rhesus monkey and tree shrew models [212, 238]. 
RLRL at 650 nm and 1600 lx may significantly inhibit 
progression of myopia in school children [20]. Tian et 
al have also concluded that 650 nm RLRL therapy 
may significantly retard myopia progression in 
children of 6–12 years old, without serious side effects 
in a 6-month trial [233]. Yang et al have demonstrated 
that 650 nm RLRL therapy for 3 min has had no effect 
on the choroid but had effect with a transient increase 
of retinal fovea perfusion density [234]. Low intensity 
and long wavelength red-light (635 nm) may also 
inhibit myopia progression in school children in 
Eastern China [219].  

Prospectives 
Myopia has been increasing steadily, especially 

in East Asia. Red-light may improve choroidal blood 
perfusion and may be a critical tool for control of 
myopia via cytochrome and nitric oxide signaling. In 
all, application of red-light may retard myopia 
effectively, possessing high potential for prevention of 
myopia onset and control of myopia progression. 
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However, the safety and the implementation of RLRL 
therapy are two biggest issues for extensive 
investigations. In addition, whether such a therapy is 
effective in high myopia requires further scientific 
studies. Furthermore, whether RLRL therapy can 
prevent onset of myopia remains unknown. Finally, 
whether RLRL therapy can be used to replace 
atropine therapy for myopia control needs 
comparative studies.  
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