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Abstract 

Background: Hepatocellular carcinoma is a rapidly advancing malignancy with a poor prognosis. 
Therefore, further research is needed on its potential pathogenesis and therapeutic targets. 
Methods: In this study, the relevant datasets were downloaded from the TCGA database and the key 
modules were identified using WGCNA in the necroptosis-related gene set, while single-cell datasets 
were scored using the necroptosis gene set. Differential genes in the high- and low-expression groups 
were determined using the WGCNA module genes as intersection sets to identify key genes involved in 
necroptosis in liver cancer. Then, prognostic models were constructed using LASSO COX regression 
followed by multi-faceted validation. Finally, model genes were found to be correlated with key proteins 
of the necroptosis pathway and used to identify the most relevant genes, followed by their experimental 
validation. Subsequently, on the basis of the analysis results, the most relevant SFPQ was selected for 
cell-level verification. 
Results: We constructed a prognosis model that included five necroptosis-related genes (EHD1, RAC1, 
SFPQ, DAB2 and PABPC4) to predict the prognosis and survival of HCC patients. The results showed 
that the prognosis was more unfavorable in the high-risk group compared to the low-risk group, which 
was corroborated using ROC curves and risk factor plots. In addition, we further checked the differential 
genes using GO and KEGG analyses and found that they were predominantly enriched in the neuroactive 
ligand-receptor interaction pathway. The results of the GSVA analysis demonstrated that the high-risk 
group was mainly enriched in DNA replication, regulation of the mitotic cycle, and regulation of various 
cancer pathways, while the low-risk group was predominantly enriched in the metabolism of drugs and 
xenobiotics using cytochrome P450. SFPQ was found to be the main gene that affects the prognosis and 
SFPQ expression was positively correlated with the expression of RIPK1, RIPK3 and MLKL. 
Furthermore, the suppression of SFPQ could inhibit hyper-malignant phenotype HCC cells, while the WB 
results showed that inhibition of SFPQ expression also resulted in lower expression of necroptosis 
proteins, compared to the sh-NC group. 
Conclusions: Our prognostic model could accurately predict the prognosis of patients with HCC to 
further identify novel molecular candidates and interventions that can be used as alternative methods of 
treatment for HCC. 
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Introduction 
Hepatocellular carcinoma (HCC) is among the 

deadliest types of cancer worldwide and was the 
fastest-growing malignancy until a few years ago. 
Recently, the rates of morbidity and mortality of HCC 
have been on the decline, with 2022 data showing that 
the incidence of HCC had declined by approximately 
2% per year from 2014 to 2018, although the overall 
number of new cases and deaths remain high(1). 
Treatment for HCC is currently based on therapy, 
such as sorafenib, levatinib, and regorafenib; surgical 
treatment methods, such as hepatectomy, liver cancer 
ablation, and liver transplantation; radiotherapy; as 
well as other types of treatment, such as percutaneous 
ethanol injections; and liver preservation therapy(2-4). 
However, the prognosis for HCC remains bleak. 
Many studies have confirmed some of the 
mechanisms that underlie the development of HCC, 
but more breakthroughs are still needed to enrich 
patient clinical care. In this regard, there has been a 
challenge in determining the heterogeneity and 
complexity of HCC. Therefore, there is a need to 
identify specific expression modules in HCC to help 
improve the treatment and prognosis of patients with 
HCC. 

Apoptosis, autophagy, and necroptosis are the 
three most studied manifestations of programmed cell 
death, with Chan et al. first introducing the concept of 
"necroptosis" in 2003(5). Receptor-interacting serine/ 
threonine-protein kinase 1 (RIPK1) is a key mediator 
of cell death and inflammation. Interact with Receptor 
Interacting Serine/Threonine Kinase 3 (RIPK3), their 
kinase-mediated necrosis is referred to as necroptosis. 
In necroptosis process, mixed lineage kinase 
domain-like protein (MLKL) also emerges as 
executioner in it, plays in a RIPK3-dependent form of 
regulated necrosis. So, necroptosis is mediated by the 
RIPK1/RIPK3/MLKL axis and has the morphological 
characteristics of a necrotic cell. It was found that, 
similar to apoptosis, necroptosis is tightly regulated 
by intracellular signaling factors, of which RIPK1 and 
RIPK3 are key regulators. The combination of these 
two factors recruits MLKL and triggers a 
conformational change, which ultimately lead to cell 
rupture(6, 7). Therefore, necroptosis studies are often 
evaluated by detecting RIP1, RIP3, and their binding. 
Recent studies have shown that necroptosis is 
associated with the pathogenesis of several diseases. 
In response, inhibitors of necroptosis, such as RIPK1 
inhibitors (Nec-1)(8), RIPK3 inhibitors (9GSK'840)(9), 
and MLKL inhibitors (Necrosulfonamide)(10), have 
been developed and offer an opportunity for the 
discovery of novel molecular biomarkers and treat-
ment targets. Furthermore, necroptosis participates in 
tumour metastasis and regulates tumour growth(11, 

12). Seifert et al.(13) reported that necroptosis can 
contribute to tumor progression and that as key 
pathway proteins of necroptosis, RIPK1 and RIPK3, 
are essential for tumor development. MLKL mediates 
enzyme activation and promotes necroptosis(14). 
Studies have also shown that pancreatic ductal 
adenocarcinoma cells promote tumor growth and 
proliferation by creating an immunosuppressive 
microenvironment through necroptosis(15). Up-regu-
lation of RIPK3 expression can inhibit the immuno-
suppressive activity of tumor-associated macro-
phages to a certain extent, which can suppress HCC 
tumorigenesis(16). The inflammatory response 
triggered by necroptosis can increase the develop-
ment of fibrosis in mouse models and promote the 
development of HCC(17). Furthermore, the findings 
of Li et al. and Chen et al. were in agreement with the 
results of the above-mentioned studies(18, 19). 
Therefore, we focus on necroptosis as a potential 
predictor of tumor prognosis. 

In this study, we obtained information on HCC 
patients from the GEO and TCGA databases. A 
prognostic model of necroptosis in HCC was 
constructed, and five genes were identified that were 
significantly associated with the prognosis. 
Furthermore, to further clarify the effect of the model 
on tumor prognosis, SFPQ was identified as the main 
gene that affects prognosis (HR = 1.828, p < 0.004). 
Next, to verify the correlation between SFPQ and 
necroptosis, SFPQ was found to be directly positively 
correlated with RIPK1 (r = 0.499, p < 0.001), RIPK3 (r = 
0.313, p < 0.001), and MLKL (r = 0.427, p < 0.001), 
suggesting that SFPQ may be a driver gene that 
promotes necroptosis. To further determine the effect 
of SFPQ in HCC, we engineered corresponding 
shRNAs that could target the SFPQ gene, and the 
result showed that inhibition of SFPQ expression 
could inhibit the malignant phenotype of HCC cells, 
while the WB results demonstrated a relatively lower 
protein expression in the sh-SFPQ group, compared to 
the sh-NC group. These outcomes may allow the 
identification of novel legal targets and intervention 
strategies for the management of HCC. 

Materials and Methods 
Single cell data acquisition and processing 

The single cell GSE149614 dataset was down-
loaded from the GEO database and included data on 
samples obtained from 10 patients with primary liver 
cancer tumors, 2 patients with portal vein cancer 
thrombosis, 1 patient with metastatic lymph nodes 
and 8 patients with normal liver tissue. Raw data 
contained a total of 25,479 genes and 71,915 cells. The 
percentages of mitochondria, ribosomes and erythro-
cytes were calculated using the PercentageFeatureSet 
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function with > 300 genes expressed per cell. 
Mitochondrial gene expression was less than 15%, 
ribosomal gene percentage was > 3%, while 
erythrocyte gene percentage was less than 1%. The 
total number of cells after filtering was 69,997 
(Supplementary Figures 1-2). The merged ScRNA-seq 
data were first normalized and the top 2000 highly 
variable genes were identified using the 
FindVariableFeature function, while all genes were 
scaled using the ScaleData function, and the top 2000 
highly variable genes were filtered and downscaled 
using the RunPCA function. Then batch correction 
was performed using the harmony algorithm. Cells 
were clustered using the "FindNeighbors" and 
"FindCluster" functions (resolution = 0.8) to identify 
clusters of cells (Supplementary figure 3). Next, we 
used the UMAP method for further reduction in 
dimensionality. Finally, we selected 24 subgroups of 
marker genes using the FindAllMarkers function, 
where Minpct = 0.25 (the expression ratio of the least 
differential gene). Finally, the marker genes were 
selected using a corrected p < 0.05. 

Transcriptome data acquisition and processing 
TCGA data were downloaded to be used as the 

training cohort using the "TCGAbiolinks" 
package(20), while the LIHC data type was counts. A 
total of 424 transcriptomic data samples with 
complete clinical data were used. The LIHC dataset, 
GSE14520, was downloaded to be used as the 
validation set from the GEO database and used for the 
external validation of the model. 

Acquisition of necroptosis genes 
A total of 626 necroptosis-related genes were 

obtained from the Genecards database(21) and a total 
of 99 genes were found to have a correlation score 
greater than 11. 

Single cell data necroptosis correlation score 
The AddModuleScore(22) function was used to 

calculate the average expression value of necroptosis 
genes in each cell of the single cell data, and the single 
cell data were classified into high and low expression 
groups according to the median expression value. 

Weighted gene co-expression network analysis 
(WGCNA) 

WGCNA(23, 24) is a systems biology analysis 
method used to characterize gene association patterns 
between different samples and can be used to identify 
highly synergistic sets of genes and candidate 
biomarker genes or therapeutic targets based on the 
endogeneity of the gene set and the association 
between the gene set and the phenotype. In this 
experiment, the ssGSEA(25) algorithm was used to 

assess the scoring of necroptosis genes in the LIHC 
expression matrix, and WCGNA was used to identify 
modules that are closely associated with necroptosis 
and to determine modular genes(26-28). 

Construction of a prognostic model of 
necroptosis 

Minimizing absolute contraction and the 
regression of the selection operator LASSO(29) 
regression are machine learning algorithms that are 
commonly used at present to construct diagnostic 
models, using regularization to determine the 
occurrence of overfitting during curve fitting and to 
improve the accuracy of the model. Based on the 
necroptosis genes selected, we used one-way Cox 
regression analysis to screen genes with prognostic 
significance, followed by LASSO regression analysis 
(glmnet package(30)) to select the genes that were 
ultimately used to construct the prognostic model. 
The model equation was as follows. Risk score 
(patient) = Σi Coefficient (gene) × Expression (gene). 
The prognostic genes were classified into high and 
low expression groups based on the median 
expression value and the survival of each gene. 

Prognostic model assessment 
The prognostic genes were found to be 

expressed in the high and low risk groups, based on 
the median value of the risk score, which was used to 
categorize the high and low risk groups. Risk factors 
were plotted using the pheatmap package, while 
survival curves were plotted for the high and low risk 
groups using the survminer package, and AUC areas 
at 1, 3, and 5 years were calculated using the time 
ROC package off R software(31). The predictive 
power of the model was validated using the 
GSE14520 dataset. 

Nomogram construction 
A nomogram was constructed to assess the risk 

of death in patients with LIHCC by combining clinical 
data with model risk score values. The results were 
then verified using a review of the prognostic ROC 
curve. 

GO/KEGG/GSVA analysis of the high- and 
low-risk groups 

Based on the grouping information of the high 
and low risk groups, differential analysis was 
performed using the Deseq2 R package(32) to screen 
for differential genes with a p-value of less than 0.05 
and an absolute logFC value greater than 1. Using the 
clusterProfiler R package(33) for Gene Ontology (GO) 
annotation analysis of gene ontology (GO) and the 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG)(34) pathway enrichment analysis of 
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differential genes, a critical value of p < 0.05 for FDR 
was considered to indicate statistical significance. To 
investigate differences in biological processes 
between the high and low risk groups, an enrichment 
analysis was performed using GSVA(35-37) based on 
a dataset containing the gene expression profiles of 
LIHC patients. The set of gene "c2.cp.kegg 
.v7.5.1.symbols.gmt" was downloaded from the 
MSigDB database for GSVA analysis and a p < 0.05 
was considered to indicate significant enrichment. 

Experimental validation 
a) Cell culture Human-derived HCC cells, 

MHCC97H, and Huh-7 cell culture were provided by 
the School of Integrative Medicine of the Anhui 
University of Chinese Medicine. Cells were cultured 
in a high glucose DMEM medium (Corning, USA) 
containing 10% FBS (Gibco, USA) and 1% 
penicillin-streptomycin (Hycolne, Uruguay) at 37 ° C 
in a 5% CO2 atmosphere. 

b) Transfection Lentiviral packaging was 
provided by Biotech (China). A Lipofectamine 2000 
system (Invitrogen) was used to transfect sh-NC and 
sh-SFPQ, according to the manufacturer's 
instructions. 

c) RT-qPCR After cell transfection, total RNA 
was extracted from all cells using a Total RNA 
Extraction Kit (Solarbio). Then, cDNA was obtained 
through reverse transcription using the Reverse 
Transcription Assay Kit (TAKARA), according to the 
manufacturer's instructions. A qPCR kit (TAKARA) 
was used to perform the experiments. Expression data 
were normalized to the expression level of β-actin 
using the 2-ΔΔCt method. 

d) MTT experiment The cells were inoculated at 
a density of 5 × 103 cells/well into 96-well plates and 
incubated overnight. The cells were then transfected 
for 12, 24, 48, and 72 h. A total of 10 μL of CCK-8 
solution was added to each well and incubated with 
the cells for 4 h. The absorbance was measured at 450 
nm using a spectrophotometer. 

e) EdU experiment The cells were inoculated at a 
density of 1 × 105 cells/well into 24-well plates and 
incubated overnight. Transfection was performed 
separately for up to 24 h. Then, Edu solution, 4% 
paraformaldehyde, 2 mg/ml glycine, 0.5% Tritonx- 
100, staining reaction solution, and DAPI were 
sequentially added, according to the manufacturer's 
instructions (Sangon Biotech, China). Finally, cells 
were washed twice with PBS. After staining was 
completed, the images were captured under a 
fluorescence microscope. 

f) Wound healing experiment Lines were drawn 
using a marker at the bottom of each well of the 6-well 
plates for positioning. Cells were spread in the 6-well 

plate and when their density reached 90%, cells were 
transfected and scored. The images of the well plates 
were captured at 0 and 24 h, respectively. Calculation 
formula: Mobility (%) = (0 h width - 24 h width)/0 h 
width x 100. 

g) Trans-well experiments The cells were 
digested and counted within 24 h after transfection 
treatment and added to the upper chamber after 
resuspension with a serum-free medium at a density 
of 2 x 104 cells/well per chamber. In the lower 
chamber, 600 μL of the medium containing 10% FBS 
was added. After 24 h of incubation, 500 μL of 
methanol was added for 30 min to fix the cells. 
Crystalline violet was added and kept overnight for 
staining, and excess was removed. The chambers 
were allowed to dry, images were captured under a 
microscope, and cell counts were recorded. 

h) WB experiment After cell transfection, 
cellular proteins were extracted using RIPA and 
PMSF (Beyotime, China), and protein quantification 
was performed using a BCA quantification kit 
(Thermofisher,). The experiments were conducted 
based on the WB basic method approach. The 
following steps were performed: preparation of PAGE 
gels, loading and electrophoresis, protein transfer, 
membrane closure, incubation of primary antibodies, 
incubation of secondary antibodies, and finally 
detection using ECL chemiluminescence detection 
kits (Novozymes Bio). Antibodies against RIPK3, 
MLKL and β-actin were purchased from Abcam 
(ab226297, ab243142 and ab115777), while RIPK1 
antibodies were purchased from Invitrogen 
(PA5-29223). 

Statistical analysis  
SPSS 17.0 software was used for statistical 

analysis. All data were replicated from three 
independent experiments and presented in the form 
of mean and standard deviation (mean +/- Standard 
error of the mean) after homogenization. One-way 
ANOVA was performed for comparisons between 
multiple groups, followed by an LSD-t test. p < 0.05 
was considered to indicate statistical significance. 

Results 
Single-cell data analysis 

We first integrated the single-cell dataset, 
GSE149614, and it showed a good level of integration 
(Figure 1A) with no significant batch effects. Then, the 
dataset was divided into two clusters based on tumor 
vs. normal (Figure 1B), and yielded a total of 2000 
differential genes between the two clusters, which 
were compared. Subsequently, the dataset was 
divided into 24 clusters (Figure 1C), and by reviewing 
the literature, the dataset was finally separated into 11 
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cell types based on the marker gene of the different 
cells, namely B cells, Cancer cells, Endothelial, Endo- 
Fibroblasts cells, Endo- Myeloids cells, Fibroblasts, 
Hepatocytes, Myeloids cells, Plasma cells, Prolife-
ration cells, and T Cells (Figure 1D-E). Then, the cells 
were further divided into high and low expression 
groups based on necroptosis gene scores, and the 
resulting 1,534 differential genes were obtained and 
compared, followed by screening for genes with p < 
0.05, Log2 FC > 1, which yielded a total of 767 
differential genes. Subsequent analysis of cell 
fractions in tumor versus normal and high and low 
risk groups revealed a prominently lower percentage 
of T cells in Tumor group and an increase in the 
percentage of T cells and myeloid cells in patients in 
the group with high necroptosis score, compared to 
the group with low score (Figure 1G). 

WGCNA analysis 
WGCNA analysis was performed on the 424 

samples obtained from the LIHC cohort of the TCGA 

database to determine the modules associated with 
necroptosis. Outliers were removed by sample 
grouping (Figure 2A), the soft threshold was set at 7 
(Figure 2B), the minimum gene expression of the 
module was set at 30 and mergeCutHeight was set at 
0.25. A total of 14 modules were obtained using the 
hierarchical clustering method with an average 
linkage (Figure 2C), and the correlation heat map of 
the modules was constructed (Figure 2D). Subseq-
uently, we used ssGSEA to assess correlations 
between necroptosis-related modules and found that 
the MEturquoise, MEyellow, and MEgreenyellow 
modules were strongly correlated with necroptosis 
(Figure 2E). Then, the module-gene correlations were 
calculated and we found that the MEturquoise 
module was the most strongly correlated (cor=0.8 
p=1e-200) (Figure 2F). 

Prognostic model construction 
The 43 differential oncogenes associated with 

necroptosis were targeted by intersecting the 

 

 
Figure 1. Single-cell data analysis of GSE149614. A. Distribution of samples from four different sources; B. Tumor versus normal distribution; C. Umap of the 24 cell clusters; 
D. Cell subgroups after labeling by marker genes; E. Marker genes for different subgroups; F. Cell distribution in the high and low necroptosis scoring groups; G. Plot of tumor 
versus normal and the proportion of cells in the high- and low-necroptosis scoring group. 
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MEturquoise module with the differential genes 
obtained from the single-cell dataset (Figure 3A). To 
screen for key genes associated with tumorigenesis, 
we performed the differential expression analysis of 
gene expression data obtained from the TCGA 
database using the R package, LIMMA. All 33 
differential genes that were significantly associated 
with prognosis were screened using univariate COX 
regression (Figure 3B), followed by further gene 
screening using Lasso COX regression analysis, with 
the trajectory of each gene shown in the figure (Figure 
3C). Meanwhile, a value of one was added to the raw 
matrix values of the TCGA data and the logarithm of 
2 was used as the processed value before analysis. 
Finally, we identified five genes that were 
significantly associated with the prognosis: EHD1, 
RAC1, SFPQ, DAB2 and PABPC4 (Figure 3D) (Table 
1). The formula used was risk score = 0.0389*EHD1 + 
0.2019*RAC1 + 0.3577*SFPQ + 0.0352*DAB2 + 
0.0613*PABPC4. 

Differential expression and cellular localization 
of the prognostic genes 

We determined the expression of each gene 
separately in tumor tissues and normal tissues using 
the TCGA database, and the five prognostic genes 
were found to be highly expressed in tumor tissues (p 
< 0.01) (Figure 4A-E). Then we explored the 

expression of each gene in the cells and found that 
EHD1 was expressed in Endo-fibroblasts cells; 
PABPC4 in Endo- Myeloids cells and Hepatocytes; 
RAC1 in endothelial, Endo-fibroblasts cells, and 
Endo-Myeloids cells; SFPQ in Endo-fibroblasts cells 
and proliferation cells; and DAB2 in Endo-Fibroblasts 
cells. 

 

Table 1. Expression of prognostic genes. 

Gene HR P value 
EHD1 1.795 <0.001 
RAC1 1.804 <0.001 
SFPQ 2.083 <0.001 
DAB2 1.299 <0.001 
PABPC4 1.771 <0.001 

 

Prognostic model of survival analysis and 
clinical correlation analysis 

To explore the significance of the model in 
guiding the patient's prognosis, the dataset was 
divided into high-risk and low-risk groups, based on 
the median value of the risk score, and the high-risk 
group had a worse prognosis, compared to the 
low-risk group, in the TCGA training set (p < 0.001) 
(Figure 5A). The ROC curve (Figure 5B) was analyzed 
and the area under the curve (AUC) at 1, 3, and 5 
years was found to be 0.756, 0.673, and 0.685, 

 

 
Figure 2. Screening for modules associated with necroptosis based on WGCNA analysis. A. Sample clustering to detect outliers; B. Soft threshold settings; C. The scale-free fit 
index for soft-thresholding powers. D. Module correlations. E. Each module correlates with module genes; F. MEturquoise module correlates with genes. 
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respectively, suggesting that the model is related to 
the prognosis of the patients, as confirmed by the risk 
factor plot (Figure 5C). We also validated the model 
using the GSE14520 dataset, which showed that the 
high-risk group had a worse prognosis (Figure 5D), 
with the area under the curve (AUC) being 0.776, 
0.590, and 0.623 at 1, 3, and 5 years, respectively 
(Figure 5E), while the risk factor plots were consistent 
with those of the training set (Figure 5F). Based on 
survival analysis, we further analyzed the correlation 
between the prognostic model and clinical traits, and 

the results showed that the more advanced the 
pathological and clinical staging, the higher the 
prognostic model score (Figure 6A-D). 

Construction of Nomogram plots 
To better assess the accuracy of the necroptosis 

model, we performed a univariate Cox analysis by 
combining clinical data with the Risk score of the 
prognostic model. To verify whether the risk score we 
constructed could be used as an independent 
prognostic factor, we performed a univariate COX 

 

 
Figure 3. Screening for key genes associated with tumourigenesis to construct prognostic models. A. Venn diagram were obtained for a total of 43 differential genes; B. One-way 
COX regression analysis to screen for prognostic genes; C. LASSO coefficient profile plots of each gene; D. The partial likelihood deviance for the LASSO Cox regression 
analysis. 
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regression analysis of the risk score based on clinical 
traits, and the forest plot showed that the risk score, 
tumor stage and overall survival were significantly 
associated, while the risk score had a better prognostic 
value (HR = 3.807, p < 0.001) (Figure 7A). 
Multifactorial COX also demonstrated a higher 
prognostic value for the risk score (HR = 3.200, p < 
0.001) (Figure 7B). Based on this, we constructed a 
Nomogram plot (Figure 7C) and a calibration curve 
plot (Figure 7D) to assess the predictive effect of the 
model on the actual result by plotting the fit of the 
actual probability and the probability predicted by the 
model under different scenarios in the plot. The 
results demonstrate that the nomogram is effective in 
predicting the prognosis of patients, which can be 
used to guide clinical decisions. 

Enrichment analysis of the differential genes in 
the high risk and low risk groups and the GSVA 
analysis 

To analyze the relationship between differential 
genes involved in biological processes, molecular 
functions, cellular components, biological pathways, 
and diseases in the high- and low-risk groups, we first 
performed a functional enrichment analysis of 
differential genes (Figure 8A). The results showed 

that the genes were mainly enriched in the regulation 
of the membrane potential, the regulation of the 
postsynaptic membrane potential, the neuropeptide 
signaling pathway, chloride transport, the positive 
regulation of the excitatory postsynaptic potential, the 
pattern specification process, and the embryonic 
septum. These functions are related to cellular 
neurotransmitter transmission and cell and tissue 
development. KEGG enrichment analysis was 
performed on differential genes (Figure 8B) and the 
results were mainly enriched in neuroactive 
ligand-receptor interaction and nicotine addiction. 

GSVA was used to analyze the differential 
expression of the genes mentioned above between the 
high-risk and low-risk groups to assess the 
enrichment of different metabolic pathways between 
the groups. The results showed that the high-risk 
group was mainly enriched in DNA replication, 
mitotic cycle regulation, and various tumor pathways, 
such as lung, colon, and liver cancers, indicating that 
prognostic genes are involved in multiple processes 
that lead to tumorigenesis and growth, and also 
demonstrate the relevance of prognostic models to 
liver cancer, which can be used to guide clinical 
treatment. 

 

 
Figure 4. Differential expression and cellular localization of prognostic genes. A-E. Genes were highly expressed in tumors, in order of EHD1, PABPC4, RAC1, SFPQ and DAB2 
(p<0.05); F-K. Genes were localized in cells, in order of EHD1, PABPC4, RAC1, SFPQ and DAB2. (*p<0.05, **p<0.01, ***p<0.001). 
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Figure 5. Correlation of prognostic models with clinical characteristics and survival analysis. A. Survival analysis of prognostic models; B.ROC analysis; C. Risk factor plots. D-E. 
GSE14520 validation set validation.  

 
Figure 6. Prognostic model and clinical correlation analysis. A-B. Prognostic model and age ethnicity are not statistically different (p>0.05); C-D. Prognostic model and Grade 
and stage correlation, the difference is statistically significant (p<0.05). 

 
Prognosis-related genes and necroptosis 
correlation analysis 

 To clarify the effect of the model on tumor 
prognosis, we also analyzed the effect of single genes 
on the prognosis of LIHC. eHD1, PABPC4, RAC1, 
SFPQ and DAB2 were found to be good prognostic 
indicators, with RAC1 (AUC = 0.913) and SFPQ (AUC 
= 0.843) being the best (Figure 9A-E). Then we further 
analyzed the time-dependent AUC curves and the 
results showed that the SFPQ curve had the best fit 
(1-year ACU = 0.743,3-year AUC = 0.654 and 5-year 
AUC = 0.604) (Figure 9F-J). This is consistent with the 
results of our previous study. Subsequently, we 

performed a one-way Cox regression analysis and 
found that all these genes were prognostic 
influencers. In a subsequent multiway Cox regression 
analysis, it was found that SFPQ is the main gene that 
affects prognosis (HR = 1.828, p < 0.004). Next, to 
verify the correlation between SFPQ and necroptosis, 
we analyzed the correlation between SFPQ and key 
pathway proteins: RIPK1, RIPK3, and MLKL. The 
results showed that SFPQ was positively correlated 
with RIPK1 (r = 0.499, p < 0.001), RIPK3 (r = 0.313, p < 
0.001), and MLKL (r = 0.427, p < 0.001), indicating that 
SFPQ may be a driver gene that promotes necroptosis. 
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Figure 7. Construction of forest plots and nomograms to better assess the accuracy of the necroptosis model. A. Single-factor COX regression forest plot; B Multi-factor COX 
regression forest plot; C. Construction of prognostic nomograms; D. Calibration plot. 

 

Effect of SFPQ on the malignant phenotype 
and necroptosis of HCC cells 

To further validate the role of SFPQ in HCC, we 
designed corresponding shRNAs that target the SFPQ 
gene. qRT PCR analysis showed that the relative 
expression of sh-SFPQ mRNA was lower than that of 
the sh-NC group (Figure 10A). The most potent 
sh-SFPQ-2 was selected for use in subsequent 
experiments. After SFPQ removal using shRNA, cell 
viability decreased significantly, compared to the NC 
group (Figure 10B). To further assess the effect of 
SFPQ on proliferation, an EdU assay was used. Figure 
10C shows that the suppression of SFPQ significantly 
inhibited the proliferative capacity of the cells. 
Additionally, we also assessed the effect of SFPQ on 
migration and invasion. The results of the wound 
healing assay and the Trans well assay showed that 
the migration and invasion abilities of the sh-SFPQ-2 
group were significantly lower than those of the NC 
group (Figure 10D-E). The above results indicate that 
inhibition of SFPQ expression could suppress the 

malignant phenotype of HCC cells. 
In addition, we explore whether there was an 

association between SFPQ and necroptosis. For 
validation, we used RIPK1, RIPK3, and MLKL, which 
are key proteins of necroptosis. The WB results 
showed that the relative expression of the sh-SFPQ 
protein was lower than that of the sh-NC group in 
both groups of HCC cells (Figure 10F). These results 
further confirm the validity of the prognostic model of 
necroptosis-related HCC. 

Discussion 
HCC is a highly heterogeneous disease with a 

high incidence and mortality rate that results in a 
relatively poor prognosis around the world and poses 
a serious threat to human health and life. Current 
methods of treatment for HCC include surgery, 
radiation therapy, interventional radiology, targeted 
drugs, and immunotherapy, but its prognosis is still 
not promising(38). The complexity of the etiology of 
HCC, whether associated with hepatitis virus 
infection or metabolic liver disease, leaves many 
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questions unanswered. Therefore, stratified analysis 
and precision drug use for patients have become the 
focus of future research on HCC treatment. Along 
with the advancement of high-throughput genomic 
technology, a thorough understanding of immune cell 
subpopulations and microenvironments of different 
types of cancer, combined with basic and clinical 
research, has great potential to identify more potential 
molecular markers. 

Necroptosis is a cellular self-destruction process 
that is activated to prevent blocking apoptosis. 
Necroptotic cells are usually characterized by rupture 
of the cell membrane, swelling of organelles, and 
disintegration of the plasmatic nucleus(39). Necrop-
tosis is a complementary mode of death due to apop-
totic failure, closely associated with inflammation and 
tumors(40). Recent studies have reported that liver 
aging is associated with increased necroptosis, 
leading to chronic inflammation of the liver, which in 
turn contributes to the development of liver fibrosis 
and chronic liver disease(41). In addition, necroptosis 
has generated widespread interest in a variety of liver 
diseases, including HCC, hepatic fibrosis, liver failure, 
hepatic ischemia-reperfusion injury, and non- 
alcoholic steatosis(11, 42, 43). RIPK3, a central factor 

of necroptosis, coordinates fatty acid metabolism and 
hepatocarcinogenesis in tumor-associated macro-
phages, highlighting a potential strategy that can be 
used to target immunometabolism in HCC(16). 
Similarly, RIPK1 represents an important substrate 
involved in cell death and inflammation, and studies 
have shown that RIPK1 and TRAF2 expression in 
HCC is associated with an unfavorable prognosis(44). 
Furthermore, resistance is a major barrier to the use of 
sorafenib, the first FDA-approved chemotherapy 
drug for advanced HCC. It was found that sorafenib 
induces necroptosis in HCC, while HSP90α can block 
resistance to sorafenib under hypoxic conditions, and 
in combination with its inhibitor, 17-AAG, is a 
potential regimen suitable for the treatment of 
HCC(45). Therefore, necroptosis-related genes are 
important for the treatment and prediction of 
prognosis of malignant tumors. In this study, we 
constructed a necroptosis prognostic model, exploring 
and analyzing various databases, which was shown to 
have a good predictive value for the prognosis of 
HCC and is expected to guide the treatment of 
patients with HCC and the early evaluation of the 
survival prognosis. 

 

 
Figure 8. Functional enrichment analysis to analyzed the relationship between differential genes involved in biological processes, molecular functions, cellular components, 
biological pathways and diseases in the high and low risk groups. A. GO enrichment analysis; B. KEGG enrichment analysis; C. GSVA analysis of high and low risk groups. 
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Figure 9. Prognostic genes and necroptosis correlation analysis. A-E. Single gene ROC curve, in order of DAB2, EHD1, PABPC4, RAC1 and SFPQ; F-J. Time dependent ROC 
curve, in order of DAB2, EHD1, PABPC4, RAC1 and SFPQ; K-L. Single and multifactor Cox regression analysis; M-Q. Scatter plot of prognostic genes DAB2, EHD1, PABPC4, 
RAC1 and SFPQ correlation with MLKL, RIPK1, RIPK3. 
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Figure 10. Effect of SFPQ on the malignant phenotype of HCC. A. qRT-PCR assay to detect the expression of SFPQ after shRNA transfection; B-F. Effect of sh-SFPQ transfection 
on cell proliferation (B and C), would healing (D), migration (E), and on necroptosis-related proteins (F). G. Effect of sh-SFP transfection on cell necrosis. *P < 0.05, **P < 0.01, 
***P < 0.001 vs sh-NC. 
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In this research study, we performed WGCNA 
analysis using the GEO and TCGA databases to 
obtain template genes that are closely associated with 
the poor prognosis of HCC. The correlation between 
necroptosis-related genes and the prognosis of HCC 
was further analyzed and a necroptosis prognostic 
model was constructed. The prognostic model 
included five genes, EHD1, RAC1, SFPQ, DAB2, and 
PABPC4, which are significantly associated with 
prognosis, which were selected and further analyzed 
to determine differences in their expression and 
cellular localization. Finally, we selected the SFPQ 
gene, which showed the highest prognostic value, for 
experimental validation. The results demonstrated 
that inhibition of SFPQ expression could prominently 
inhibit the viability, proliferative capacity, migration 
capacity, and invasive capacity of HCC cells. 
Furthermore, the WB results showed an association 
between SFPQ and necroptosis. When the expression 
of SFPQ was inhibited, the relative expression of key 
necroptosis proteins was also lower than that of the 
sh-NC group. This result further confirms the validity 
of the prognostic model of necroptosis-related HCC. 
To further explore the importance of the necroptosis 
model as a guide for patient prognosis, we divided 
the dataset into high-risk and low-risk groups and the 
results indicated that the high-risk group had a worse 
prognosis than the low-risk group (p < 0.001), which 
was confirmed by the ROC curve and risk score. To 
further evaluate the precision of the model, we 
constructed a nomogram, and the results indicated 
that the model was effective in predicting the 
prognosis of the patient and in guiding clinical 
decisions. In addition, we further explored differential 
genes between the high- and low-risk groups using 
GO and KEGG analyses, and the results showed that 
the genes were mainly enriched in Neuroactive 
ligand-receptor interactions and Nicotine addiction. 
Furthermore, GSVA analysis based on high and low 
risk groups was used to assess enrichment, and the 
results showed that the high risk group was mainly 
enriched in DNA replication, mitotic cycle regulation, 
and various tumor pathways, such as lung, colon, and 
liver cancers. Low-risk pathways were mainly 
enriched in the metabolism of drugs and xenobiotics 
by cytochrome P450. Together, these results suggest 
that prognostic genes are involved in multiple 
processes of tumorigenesis and growth, and further 
demonstrate that prognostic models are closely 
associated with liver cancer and can guide clinical 
treatment. 

The KEGG analysis showed that the differential 
genes were primarily enriched in Neuroactive 
ligand-receptor interaction and Nicotine addiction, 
and were most closely associated with the former. All 

these pathways are mainly involved in cellular 
neurotransmitter transmission, as well as cell and 
tissue development. Therefore, we hypothesized that 
these genes may influence necroptosis between cells 
by regulating neuroactive ligand-receptor interact-
ions, which accelerate the replication of cancer cells 
and thus lead to their rapid spread. The neuroactive 
ligand-receptor interaction signaling pathway is a 
collection of all receptors and ligands associated with 
intracellular and extracellular signaling pathways on 
the plasma membrane. In a study based on the TCGA 
database, Chen et al. predicted that SYT16 is a 
prognostic biomarker of low-grade gliomas and was 
found to be predominantly enriched in the neuro-
active ligand-receptor interaction pathway(46). 
Similar to our study, Lin et al. used WGCNA and 
single-cell analysis of differential expression of genes 
associated with ischemic stroke, which revealed that 
they were also enriched in the neuroactive ligand- 
receptor interaction pathway and the calcium 
signaling pathway(24). In addition, there are reports 
on differential genes in lung adenocarcinoma, which 
indicate that they were also enriched in neuroactive 
ligand-receptor interactions(47). Ouyang et al. also 
confirmed the results of our study in another way. 
The elevated expression of the Cadherin EGF LAG 
seven-channel G-type receptor 3 (CELSR3) was 
shown to be significantly associated with hepatocarci-
nogenesis and a poor prognosis, and most of its 
up-regulated genes were enriched in neuroactive 
ligand-receptor interactions(48). Furthermore, Zhang 
et al. used genome-wide DNA to conduct a hydroxy-
methylation analysis and identified 615 differentially 
hydroxymethylated regions. Based on the results, 
related genes were also significantly enriched in 
neuroactive ligand-receptor interactions(49). All these 
previous studies further support the scientific validity 
and potential clinical significance of this study. 

In addition, we summarized the differential 
expression of the genes mentioned above between the 
two groups using GSVA and concluded that the 
high-risk group was mainly enriched in the mTOR 
signaling pathway, Fc gamma receptor-mediated 
phagocytosis pathway, the Wnt signaling pathway, 
cancer pathway, endocytosis, ErbB signaling path-
way, renal cell carcinoma, neurotrophin signaling 
pathways, small cell lung cancer bladder cancer, base 
excision repair pathway, cell cycle, Spliceosome, 
thyroid cancer, base transcription factors and SNARE 
interaction in the vesicular transport, while the low 
risk group was mainly enriched in the metabolism of 
drugs and xenobiotics by cytochrome P450. These 
results suggest that these prognostic genes are 
involved in multiple processes of tumorigenesis and 
growth, and also demonstrate that the prognostic 
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model is highly relevant to HCC and can guide 
clinical treatment. Due to the complexity of the 
pathogenesis of HCC, cell cycle regulation and 
signaling as well as multigene interactions at multiple 
stages are involved. We found that all these pathways 
are commonly involved in cancer signaling and play 
an integral role in the development of cancers. mTOR 
is an immeasurable regulator of cell growth and 
proliferation, and the signaling pathway that it 
mediates plays an essential role in the regulation of 
cell growth and survival. Since much research has 
been conducted on the mTOR signaling pathway, it 
was found that it plays a crucial role in the 
development and progression of diabetes, cancer, and 
ageing(50). Xie et al. revealed that the mTOR / RPK3 
/ necroptosis axis is a driver of intestinal inflam-
mation and cancer. mTOR primarily affects RIPK3 
and improves necroptosis induced by TNF and 
molecular patterns associated with microbial patho-
gens(51). As is well known, mTOR is an important 
downstream protein kinase of the PI3K-Akt signaling 
pathway and is an influential target for cancer 
treatment. Shikonin is the main active ingredient in 
the Chinese medicine "Zicao", which regulates 
PI3K/AKT/mTOR and MAPK signaling and exerts a 
strong anticancer effect on various types of cancer by 
inhibiting RIPK1/3, which ultimately inhibits cell 
proliferation and induces necroptosis. Studies have 
suggested that shikonin and its derivatives can be 
used as potential new drugs for the treatment of 
cancer and inflammation(52). Furthermore, in a 
mouse experiment, the microplastic (MP) and plastic 
additive, DEHP, induced apoptosis and necroptosis 
by increasing the expression of RIPK1, RIPK3, and 
MLKL and decreased the expression of PI3K/AKT/ 
mTOR to activate oxidative stress(53). The above 
studies also imply the close association between the 
mTOR signaling pathway and necroptosis. 

The Fc gamma receptor is a class of cell surface 
receptors that bind to the Fc-terminus of antibodies 
and whose regulation is highly complex(54). Park et 
al. conducted a network-based gene expression 
analysis, which concluded that the Fcγ receptor- 
mediated phagocytosis pathway is strongly 
associated with cognitive function and cerebrospinal 
fluid biomarkers in Alzheimer's disease(55). Xin et al. 
used extensive experiments to demonstrate that 
ginsenoside Rg3 promotes Fc gamma receptor- 
mediated phagocytosis through the ERK1/2 and p38 
MAPK pathways(56). Interestingly, GO analysis also 
indicated that the Lian Hua Qing Wen formula, a 
herbal compound that exerts its effects against 
COVID-19, is enriched in Fc gamma receptor- 
mediated phagocytosis(57). Despite complex research 
on the Fc gamma receptor, there are no reports on its 

relationship with necroptosis, but it is still a 
promising therapy target in tumors and deserves to be 
studied in depth for its mechanism of action. On the 
contrary, the Wnt signaling pathway is a complex and 
common network in proteins that is most common in 
embryonic development and cancer. The Wnt 
signaling pathway is a set of multiple downstream 
channel signaling pathways that are stimulated by 
binding of the Wnt ligand protein to membrane 
protein receptors(58, 59). OSW-1 has previously been 
shown to be cytotoxic to many types of malignant 
cells. However, its antitumor mechanism is unclear. 
Jin et al. found that apoptosis and necroptosis could 
be induced in HCC cells and the signaling pathway 
was associated with Wnt, MAPK, VEGF, and P53(60). 
Similar to carcinogenesis, the link between the Wnt 
pathway and necroptosis also extends to hair growth. 
Zheng et al. investigated Nec-1, a necroptosis 
inhibitor, which induces the proliferation and migra-
tion of outer root sheath cells and increased their hair 
follicle length in organ cultures from mice and pigs. 
The mechanism involved inhibition of necroptosis 
and activation of the Wnt/β-linked protein pathway, 
which promotes hair growth(61). Furthermore, the 
variety of cancer pathways involved suggests that this 
prognostic model is universal and can exert a good 
prognostic prediction effect not only in HCC but also 
in a variety of tumors, such as renal cell carcinoma, 
small cell lung cancer, bladder cancer, and thyroid 
cancer, and a large number of studies support this 
view. Chen et al. predicted that necroptosis-associated 
genes can act as novel prognostic predictors of the 
immune microenvironment and treatment response 
in renal kidney renal clear cell carcinoma(62). 
Regarding the study of lung cancer cells, necroptosis 
is strongly associated with small cell and non-small 
cell lung cancers(63, 64). In addition, bladder cancer 
and thyroid cancer, together with necroptosis, have 
also come under close investigation. In the analysis of 
necroptosis-related genes with bladder cancer, its 
potential value in the tumor microenvironment, 
immunity and prognosis were revealed, providing 
valuable references for further in-depth investigations 
into the prognosis of bladder cancer and the 
development of immunotherapy(65). Wang et al. 
further supported this view by using a PKM2 
inhibitor to study cisplatin resistance in bladder 
cancer. Interestingly, they found that PKM2 inhibitors 
induced necroptosis, and in turn killed cells resistant 
to cisplatin, and the main cause of this reaction was 
that cell death was not inhibited by apoptosis 
inhibitors, but was affected by RIP3 inhibitors or RIP3 
siRNA(66). A similar strong association was also 
observed in thyroid cancer(67). Furthermore, the 
low-risk group was mainly enriched in the meta-
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bolism of drugs and xenobiotics by cytochrome P450. 
Nekvindova et al. showed that cytochrome p450 
expression decreased significantly in HCC tissues, 
compared to normal tissues. Furthermore, patients 
were more susceptible to drug toxicity and more 
sensitive to drugs, such as sorafenib(68). It can be 
concluded that necroptosis may be involved in the 
malignant progression of HCC through the pathways 
mentioned above and that necroptosis-related genes 
may be prognostic predictors and therapeutic targets 
for HCC. In summary, in this study, the applicability 
and scientific validity of the necroptosis prognostic 
model in cancer was further validated, and a 
prognostic model for HCC was established to 
improve the precision of individualized prognosis 
prediction of patients, which can hopefully provide 
some guidance for the treatment of patients with 
HCC. 

Conclusions 
HCC is a malignancy with a poor prognosis that 

can severely affect the health of a population. Along 
with the gradual development of therapeutic 
methods, the gaps in this field of research have 
gradually improved. We downloaded the relevant 
datasets from TCGA database and then used 
WGCNA to identify key modules in the necroptosis- 
related gene set. Single cell datasets were scored using 
the necroptosis gene set, while differential genes 
between high and low expression groups were 
calculated using the WGCNA module genes as the 
intersection sets to obtain key genes for necroptosis in 
liver cancer, followed by the construction of 
prognostic models using LASSO COX regression, 
followed by multifaceted validation. Finally, the 
correlation between model genes and key proteins in 
the necroptosis pathway was calculated to identify the 
most relevant genes, followed by experimental 
validation. A prognostic model of necroptosis was 
constructed in HCC, and five genes, EHD1, RAC1, 
SFPQ, DAB2, and PABPC4, were found to be 
significantly associated with the prognosis, while the 
SFPQ gene was selected to be used for experimental 
validation as it had the highest prognostic value. The 
results showed that SFPQ was positively correlated 
with RIPK1 (r = 0.499, p < 0.001), RIPK3 (r = 0.313, p < 
0.001), and MLKL (r = 0.427, p < 0.001), indicating that 
SFPQ may be a driver gene for the promotion of 
necroptosis. To explore the implications of the model 
in guiding patient prognosis, we divided the dataset 
into high-risk and low-risk groups and performed 
GO, KEGG, and GSV A analyses on the differential 
genes between the groups. In addition, the prognostic 
impact of single genes was further analyzed and the 
correlation between SFPQ and necroptosis was 

validated. To further validate the role of SFPQ in 
HCC, shRNAs that could target the SFPQ gene were 
designed. The results showed that the prognosis was 
more unfavorable in the high-risk group, compared to 
the low-risk group, which was confirmed using the 
ROC curves and risk factor plots. Furthermore, we 
further verified the differential genes screened by GO 
and KEGG analyses and found that they were 
predominantly enriched in the neuroactive ligand- 
receptor interaction pathway. The results of the GSVA 
analysis demonstrated that the high-risk group was 
mainly enriched in DNA replication, regulation of the 
mitotic cycle, and regulation of various cancer path-
ways, while the low-risk group was predominantly 
enriched in the metabolism of drugs and xenobiotics 
by cytochrome P450. SFPQ was found to be the main 
gene affecting the prognosis, and SFPQ was found to 
be positively correlated with RIPK1, RIPK3, and 
MLKL. In addition, the knockdown of SFPQ can 
inhibit the hypermalignant phenotype of HCC cells, 
and the WB results showed that inhibition of SFPQ 
expression also resulted in lower expression of 
necroptosis proteins than in the sh-NC group. All 
these results also provide novel molecular candidates 
and interventions that can be used as alternative 
methods of HCC treatment. However, this study has 
some limitations. Data were obtained from 
retrospective samples and there is a lack of clinical 
trial studies. A larger number of multicenter data are 
needed to verify our results. Furthermore, the role 
and function of necroptosis remains to be validated 
using more advanced methods and techniques. In 
general, this prognostic model can provide a rapid 
and accurate assessment of the survival prognosis of 
patients with HCC, which can serve as a guide for 
individualized clinical treatment and provide a 
method of individualized survival prediction and 
clinical outcome prediction for the use of antitumor 
immunotherapy in patients with HCC. 
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