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Abstract 

Objective: To explore extrathyroidal extension (ETE) in children and adolescents with papillary thyroid 
carcinoma using a multiclassifier ultrasound radiomic model. 
Methods: In this study, data from 164 pediatric patients with papillary thyroid cancer (PTC) were 
retrospectively analyzed and patients were randomly divided into a training cohort (115) and a validation 
cohort (49) in a 7:3 ratio. To extract radiomics features from ultrasound images of the thyroid, areas of 
interest (ROIs) were delineated layer by layer along the edge of the tumor contour. The feature 
dimension was then reduced using the correlation coefficient screening method, and 16 features with a 
nonzero coefficient were chosen using Lasso. Then, in the training cohort, four supervised machine 
learning radiomics models (k-nearest neighbor, random forest, support vector machine [SVM], and 
LightGBM) were developed. ROC and decision-making curves were utilized to compare model 
performance, which was validated using validation cohorts. In addition, the SHapley Additive exPlanations 
(SHAP) framework was applied to explain the optimal model. 
Results: In the training cohort, the average area under the curve (AUC) was 0.880 (0.835-0.927), 0.873 
(0.829-0.916), 0.999 (0.999-1.000), and 0.926 (0.892-0.926) for the SVM, KNN, random forest, and 
LightGBM, respectively. In the validation cohort, the AUC for the SVM was 0.784 (0.680-0.889), for the 
KNN, it was 0.720 (0.615-0.825), for the random forest, it was 0.728 (0.622-0.834), and for the 
LightGBM, it was 0.832 (0.742-0.921). Generally, the LightGBM model performed well in both the 
training and validation cohorts. From the SHAP results, original_shape_MinorAxisLength,original_ 
shape_Maximum2DDiameterColumn, and wavelet-HHH_glszm_SmallAreaLowGrayLevelEmphasis have 
the most significant effect on the model. 
Conclusions: Our combined model based on machine learning and ultrasonic radiomics demonstrate 
the excellent predictive ability for extrathyroidal extension (ETE) in pediatric PTC. 

Key words: machine learning, papillary thyroid carcinoma, ultrasonic radiomics, children and teenagers, extrathyroidal 
extension, SHAP 

Introduction 
The incidence of papillary thyroid carcinoma 

(PTC) is 70%-90% among adult and pediatric thyroid 
carcinomas [1, 2]. PTCs are well-differentiated, 
dormant tumors with low rates of recurrence and 

occurrence [3, 4]. Nevertheless, specific histologic 
subtypes of PTC (high cell count, diffuse sclerosing, 
and infiltrative) display aggressive behavior and 
recurrence with extrathyroidal extension (ETE), 

 
Ivyspring  

International Publisher 



Int. J. Med. Sci. 2023, Vol. 20 

 
https://www.medsci.org 

279 

vascular invasion, and distant metastases [3, 5, 6]. 
According to previous research, pediatric thyroid 
cancer is more aggressive than adult thyroid cancer 
and is more susceptible to extrathyroidal extension, 
lymph node metastasis (LNM), and distant metastasis 
[6-8]. 

Minimal ETE is defined as a primary tumor 
larger than 4 cm that is contained within the thyroid 
gland or has invaded the surrounding strap muscles, 
according to the TNM classification of differentiated 
thyroid carcinoma by the Eighth Edition of the 
American Joint Committee on Cancer (AJCC) [9]. In 
contrast, extensive ETE refers to the primary tumor 
invasion of subcutaneous soft tissue, trachea, larynx, 
esophagus, recurrent laryngeal nerve, carotid artery, 
prevertebral fascia, or mediastinal vessels. According 
to prior research, ETE is one of the independent risk 
factors for LNM in the central and lateral cervical 
areas, whether in papillary thyroid microcarcinoma or 
PTC [10]. Furthermore, ETE is associated with higher 
tumor recurrence and distant metastases. Initial 
studies revealed that ETE is associated with a poor 
prognosis. The preferred treatment for papillary 
thyroid carcinoma in children is surgical resection, 
and ETE dictates the surgical technique [11, 12]. 
Children with ETE have the option of total or partial 
thyroidectomy. In contrast, children without ETE 
have the option of lobectomy, which can retain the 
endocrine function of the thyroid and parathyroid 
glands and prevent injury to the contralateral 
recurrent laryngeal nerve [13]. The maintenance of 
thyroid and parathyroid endocrine function is 
especially important for children and adolescents 
during their growth years. Therefore, it is essential to 
determine the presence of ETE prior to surgery. 

The gold standard for determining extrathy-
roidal extension is surgical histopathology image 
analysis, but this invasive examination method cannot 
be used for preoperative prediction [14, 15]. 
Ultrasound is the most prevalent method of 
preoperative examination for thyroid cancer. Not only 
is it inexpensive and noninvasive, but it is also 
extremely beneficial for preoperative evaluation, 
including for determining tumor size, extent, capsule 
invasion, and lymph node metastasis [16, 17]. 
However, until recently, the majority of ultrasound 
examination results were based on the subjective 
opinion of the sonographer, making the results too 
dependent on the patient’s medical condition and the 
sonographer's level of experience [16, 17]. Radiomics, 
which is the quantitative analysis of very large 
quantities of data in medical images using computer 
technology, has been receiving a growing amount of 
attention as a result of its enhanced diagnostic and 
prognostic accuracy [18, 19]. 

Children and adults differently manifest thyroid 
tumors ultrasonographically [12]. Adult-appropriate 
standards or models may not apply to children and 
adolescents. A few researchers have published reports 
in recent years on the ultrasonomics of papillary 
thyroid carcinoma in adults, but there have been no 
reports on papillary thyroid carcinoma in children 
and adolescents [20]. Therefore, we developed and 
validated a machine-learning method based on 
ultrasound radiomics for the targeted prediction of 
ETE in papillary thyroid cancer in children. 

Materials and Methods 
Patients 

The study’s operational flowchart is depicted in 
Figure 1. This study complied with the Declaration of 
Helsinki, and was approved by the Ethics Committee 
of Tianjin Cancer Institute and Hospital (No. 
bc2020033). The guarantees were fully informed and 
consented to the research. From January 2013 through 
August 2022, a total of 164 suitable patients were 
recruited from the Cancer Institute and Hospital at 
Tianjin Medical University. And referring to the 
previous study [21-25], we also divided the samples 
into training sets (n=115) and validation sets (n=49) in 
a ratio of 7:3. 

The following were the criteria for inclusion: (1) 
patients with papillary thyroid cancer were diagnosed 
by postoperative pathology; (2) preoperative thyroid 
ultrasound examination and surgery were performed 
at Tianjin Medical University Cancer Hospital; (3) all 
patients were under 18 years of age. 

The exclusion criteria were as follows: (1) 
patients at our institution who did not have 
preoperative thyroid ultrasonography; (2) patients 
who underwent thyroidectomy in other hospitals and 
only underwent cervical lymph node dissection in our 
hospital; (3) patients with incomplete ultrasound and 
pathophysiological information; (4) other types of 
thyroid cancer; and (5) preoperative imaging 
examination confirmed distant metastasis. 

Age, sex, and clinical data, including tumor 
location and pathological features, were retrieved 
from medical records. This retrospective study was 
authorized by the Cancer Institute and Hospital of 
Tianjin Medical University’s local ethics council, and 
informed consent was not necessary. 

Ultrasound Image Acquisition 
All patients received a standard ultrasound 

evaluation before surgery utilizing Philips Q5 or 
Philips iU22 ultrasound equipment (both Health care, 
Eindhoven, the Netherlands). Modestly tilting the 
patient’s head while they were lying supine was ideal. 
This allowed for a thorough assessment of the thyroid 
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and cervical region via longitudinal, horizontal, and 
continuous scanning using ultrasonography. Ultra-
sound was used to observe the size of thyroid tumors 
(longest axis of nodules), tumor location (left lobe, 
right lobe, or isthmus), tumor location (upper, middle, 
and lower pole), internal echo pattern (uniform, 
uneven, or uneven), tumor boundary (clear, hazy, or 
blurred), and tumor calcification. 

Diagnostic Criteria for Image Analysis 
Radiologists 1 and 2 (Radiologist 1 has 12 years 

of expertise in thyroid imaging, and Radiologist 2 has 
10 years of experience in thyroid imaging) indepen-
dently evaluated and verified the preoperative 
ultrasound imaging for all patients without 
knowledge of the histological findings. ETE can be 
diagnosed according to AJCC standards if any of the 
two following criteria is met: (1) greater than 25 
percent of the lesion's circumference is in contact with 
the thyroid capsule or the envelope line of the lesion's 
contact with the thyroid gland disappears; (2) a tumor 
of any size exceeds the thyroid capsule and invades 
subcutaneous soft tissue, larynx, trachea, esophagus, 
recurrent laryngeal nerve, carotid artery, or 
mediastinal vessels. 

Region of Interest (ROI) Segmentation and 
Radiomic Feature Extraction and Selection 

All Region of Interest (ROI) Segmentations were 
performed using the software ITK-SNAP (version 
3.8.0, http://www.itk-snap.org) by two radiologists 
with more than 5 years of experience in thyroid 
imaging. They also had no idea whether each patient 
had ETE, lymph node metastasis, clinical status, or 
pathological status. The interclass correlation coeffi-
cient (ICC) was used to assess the feature extraction’s 
interobserver and intraobserver agreement. An ICC 
greater than 0.75 was regarded as excellent [26, 27]. 

A total of 1,421 image features were extracted 
from these ROIs on ultrasound images using 
PyRadiomics (version 2.2.0, https://github.com/ 
Radiomics/pyradiomics). The extracted features were 
divided into four categories, including shape features, 
first-order statistical features, texture features, and 
higher-order statistical features. Then, using the 
correlation coefficient screening method, one of the 
coefficients with a correlation coefficient greater than 
0.90 was eliminated, leaving 217 features. Last, 
LASSO was used to extract the sixteen most crucial 
features. 

Radiomics Model Building and Model 
Evaluation 

Four famous classifiers (KNN (k-nearest 
neighbor), support vector machine (SVM), random 

forest, and LightGBM) were used to create risk 
stratification models for radiological prediction after 
radiomics feature dimension reduction. Following 
that, a brief description of the four building methods 
mentioned previously. To begin, the k-Nearest 
Neighbor (KNN) classification algorithm, while 
theoretically mature, is also one of the most basic 
machine learning algorithms [28]. The method works 
on the assumption that if the majority of the k-nearest 
(i.e., the closest neighbor in the feature space) samples 
in the vicinity of a sample belong to the same class, 
then the sample does as well. Second, support vector 
machine (SVM) is a machine learning approach that is 
based on statistics learning’s structural risk 
minimization principle [29]. It projected information 
into a multidimensional space and classified it using 
hyperplanes. And then, Random forest is an ensemble 
machine learning method for classification and 
regression that works by constructing a large number 
of decision trees and combining them into a single 
tree (classification) or average prediction (regression) 
model [30]. Finally, LightGBM is a Microsoft 
ensemble algorithm that provides an efficient 
implementation of the gradient boosting algorithm. 
The primary advantage of LightGBM is that it 
dramatically accelerates the training algorithm, 
resulting in a more effective model in many cases [31]. 

During the training phase, the hyperparameters 
of each classifier were tuned using an iterative grid 
search approach to prevent overfitting and to 
optimize the model’s performance. 

Using the receiver operating characteristic (ROC) 
curve and calculating the area under the ROC curve, 
the prediction performance was evaluated (AUC). It 
was assessed, with the assistance of the calibration 
curves of the best combination model, whether the 
anticipated likelihood and the experimental findings 
were consistent with one another. This was 
accomplished by comparing the two sets of data. 
Decision curve analysis (DCA) was used to determine 
the clinical utility of the optimal combined model by 
calculating the net benefits for threshold probabilities. 

Visualization of the prediction by SHapley 
Additive exPlanations (SHAP) 

To address the “black box” aspect of machine 
learning models and improve interpretability, we 
showed the final model using the SHapley Additive 
exPlanations (SHAP) dependence plot, which 
explains how a single feature influences the output of 
the LightGBM prediction model [32]. This is a 
standard approach for interpreting machine learning 
model results [33]. The SHAP value can be used to 
estimate each feature’s contribution to the expected 
outcome. SHAP analysis assessed the SHAP value of 
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each sample feature, which showed that feature’s 
sensitivity to changes in model output. By linearly 
dividing the prediction result into the effect of each 
feature, the significance of features could be 
determined and the role of various features in the 
model could be displayed. 

 

Table 1. Patient characteristics of the training and validation 
cohorts 

Characteristic Training cohort 
(%), n=115 

Validation cohort 
(%), n=49 

χ2 P 

Age   3.517 0.061 
<14 year 30 (26.1%) 20 (40.8%)   
≥14 year 85 (73.9%) 29 (59.2%)   
Sex   2.252 0.133 
Female 73 (63.5%) 37 (75.5%)   
Male 42 (36.5%) 12 (24.5%)   
Tumor size in ultrasound   1.714 0.424 
≤2cm 50 (43.5%) 19 (38.8%)   
2-4cm 47 (40.9%) 25 (51.0%)   
>4cm 18 (15.7%) 5 (10.2%)   
Tumor location   1.120 0.571 
Left 53 (46.1%) 27 (55.1%)   
Right 59 (51.3%) 21 (42.9%)   
Isthmus 3 (2.6%) 1 (2.0%)   
Pathological subtype   1.744 0.418 
Classic 101 (87.8%) 46 (93.9%)   
Follicular 8 (7.0%) 1 (2.0%)   
Else 6 (5.2%) 2 (4.1%)   
Hashimoto thyroiditis   0.225 0.635 
Yes 42 (36.5%) 33 (67.3%)   
No 73 (63.5%) 16 (32.7%)   
Tumor border   0.594 0.441 
Unclear 80 (69.6%) 37 (75.5%)   
Clear 35 (30.4%) 12 (24.5%)   
Calcification   0.020 0.886 
Yes 88 (76.5%) 38 (77.6%)   
No 27 (23.5%) 11 (22.4%)   
Lymph node metastasis   0.776 0.378 
Yes 102 (88.7%) 41 (83.7%)   
No 13 (11.3%) 8 (16.3%)   
Radiological ETE   0.024 0.876 
Yes 76 (66.1%) 33 (67.3%)   
No 39 (33.9%) 16 (32.7%)   
Pathological ETE    0.617 0.432 
Yes 70 (60.9%) 33 (67.3%)   
No 45 (39.1%) 16 (32.7%)   

 

Statistical Analysis 
Continuous characteristics were analyzed using 

the two-sample t-test or the Mann-Whitney U test, 
whereas categorical characteristics were examined 
using the chi-square test or Fisher’s exact test. R 
(version 4.0.0) and Python were utilized to conduct 
statistical analyses (version 3.6). Normally distributed 
data are expressed as the mean ± SD, and 
non-normally distributed data are presented as the 
mean and standard deviation, which are used to 
describe data that follow a normal distribution, while 
the median is used to describe data that do not 
(interquartile range). The significance value for all 
tests was set at p<0.05, and all tests were conducted 

using a two-tailed approach. 

Results 
Clinical Characteristics 

With a mean age of 14.60 ± 3.52 years and a 
male-to-female ratio of 27:55, a total of 164 PTC 
patients were enrolled. A total of 103 children were 
pathologically identified as ETE, while 61 children 
were pathologically identified as non-ETE. Using 
stratified sampling, all patients were randomly 
assigned to a training group (n = 115) and a validation 
group (n = 49). The clinical data and sonographic 
characteristics of the training and validation groups 
are displayed in Table 1. Pathology and ultrasound 
image features did not differ significantly (all P > 0.05) 
between the two groups. 

Radiomics Features Extraction and Selection 
For each target tumor, the ROI was manually 

drawn using ITK-SNAP (version 3.8.0, 
http://www.itk-snap.org). With intraobserver ICCs 
ranging from 0.802 to 0.996 and interobserver ICCs 
ranging from 0.799 to 0.985, favorable interobserver 
and intraobserver repeatability of feature extraction 
was achieved. And then, we extracted 1,421 image 
features from each grayscale ultrasound image using 
Pyradiomics. Then, to lower the dimension of these 
features, we employed the correlation coefficient 
screening approach and eliminated one of the features 
with a correlation coefficient larger than 0.90. There 
was a total of 217 films screened. Using LASSO 
regression, 16 features with nonzero coefficients were 
selected from the training cohort (Figure 2A-B). The 
16 features are original_firstorder_Minimum, 
original_glrlm_RunEntropy, original_glrlm_Short-
RunLowGrayLevelEmphasis, original_shape_ 
Maximum2DDiameterColumn, original_shape_ 
MinorAxisLength, wavelet-HHH_gldm_ 
DependenceNonUniformityNormalized, wavelet- 
HHH_glrlm_HighGrayLevelRunEmphasis, wavelet- 
HHH_glszm_SmallAreaLowGrayLevelEmphasis, 
wavelet-HHL_firstorder_Median, wavelet-HHL_ 
glszm_LargeAreaLowGrayLevelEmphasis, wavelet- 
HLH_firstorder_Minimum, wavelet-HLL_glszm_ 
SizeZoneNonUniformity, wavelet-LHH_firstorder_ 
Range, wavelet-LHH_glszm_SmallAreaHighGray-
LevelEmphasis, wavelet-LLH_glcm_Imc1 and 
wavelet-LLH_glrlm_ShortRunEmphasis. Original_ 
shape_MinorAxisLength had the strongest correlation 
coefficient with envelope invasion in papillary 
thyroid cancer in children (Figure 2D). We conducted 
correlation analyses on these 16 screened features and 
found that they were all relatively independent 
factors (Figure 2C). As indicated in Figure 2D, the 
correlation coefficients of these 16 characteristics were 



Int. J. Med. Sci. 2023, Vol. 20 

 
https://www.medsci.org 

282 

found to be highly connected with ETE in papillary 
thyroid cancer in children. 

Predictive Performance of Models 
With an AUC of 0.999 (95% CI: 0.999–1.000) in 

the training cohort, the radiomics-random forest 
model produced the most satisfactory results. The 
AUC values of the SVM, KNN, and LightGBM models 
in the training cohort were 0.880 (0.835-0.927), 0.873 

(0.829-0.916), and 0.926 (0.892-0.959), respectively 
(Figure 3A). In the validation set, the LightGBM 
model had the highest AUC value of 0.832 
(0.742-0.921). The AUC values of the SVM, KNN, and 
random forest models were 0.784 (0.680-0.889), 0.720 
(0.615-0.825), and 0.728 (0.622-0.834), respectively 
(Figure 3B). 

 

 
Figure 1. Flow chart of this study. 

 
Figure 2. LASSO algorithm for radiomics feature selection. (A) Mean square error path using 10-fold cross validation. (B) LASSO coefficient profiles of the radiomics features. 
(C) The correlation of 16 features was extracted. (D) Correlation coefficients of 16 features. 
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Figure 3. Predictive Performance of Models. (A) ROC curves for the radiomic models in the training cohort. (B) ROC curves for the radiomic models in the validation cohort. 
(C) Decision curve analysis of the radiomic models in the training cohort. (D) Decision curve analysis of the radiomic models in the validation cohort. 

 

Table 2. Summary of the performance of radiomics models and 
sonographer judgments in the training and validation cohorts 

 Accuracy Sensitivity Specificity 
SVM    
Training cohort 0.79 0.84 0.83 
Validation cohort 0.72 0.89 0.65 
KNN    
Training cohort 0.79 0.81 0.75 
Validation cohort 0.73 0.82 0.61 
RandomForest    
Training cohort 0.99 1.00 0.99 
Validation cohort 0.72 0.84 0.54 
LightGBM    
Training cohort 0.84 0.91 0.80 
Validation cohort 0.78 0.79 0.78 
Radiological ETE    
Training cohort 0.65 0.76 0.49 
Validation cohort 0.63 0.73 0.44 

 
 
The results of decision curve analysis in the 

validation and training sets are consistent with their 
AUC values, with the LightGBM model offering the 
greatest overall net benefit in the validation cohort 
and the random forest model providing the greatest 
overall net benefit in the training cohort (Figure 
3C-3D). 

According to the initial results, although the 

random forest model performs best on the training 
set, it performs poorly on the validation set and is not 
stable. While the SVM model, the KNN model, and 
the LightGBM models have reasonably steady 
performance in the training set and validation set, the 
LightGBM model has the best AUC value and the 
most significant net benefit overall. 

We compared the radiomics models established 
by various methods with the ultrasound diagnosis of 
clinical pathologists. In terms of accuracy, sensitivity, 
and specificity, we discovered that the radiomics 
models generated by the four methods performed 
significantly better than the sonographers’ judgment 
in both the training cohort and the validation cohort 
(Table 2). 

Visualization of the best radiomics model by 
SHapley Additive exPlanations (SHAP) 

In addition to accuracies and AUCs, we 
visualized the LightGBM model’s features using 
SHAP analysis. The SHAP bar graph was generated 
by examining the mean absolute SHAP values of 16 
ultrasound radiomics features to determine the 
degree of impact on the final projected probability 
(Figure 4A). Figure 4B demonstrates that each row 
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represents a feature, the horizontal axis indicates 
SHAP values, and each dot represents a data sample. 
Different colors on the SHAP scatterplot represent the 
positive or negative influence of each 
ultrasonography sign on the projected probability. A 
redder hue denotes a higher value of the trait, 
whereas a bluer color denotes a lower value. The 
SHAP values for the top-ranked characteristics 
differed significantly depending on the presence or 
absence of ETE. From the results, it is clear that the 
differences in the three characteristics, original_ 
shape_MinorAxisLength, original_shape_Maximum-
2DDiameterColumn, and wavelet-HHH_glszm_ 
SmallAreaLowGrayLevelEmphasis, have the most 
significant effect on the model, and the blue dots are 
mainly gathered in the left portion of the axis, while 
the red dots mainly appear in the right portion. 

Discussion 
Recurrence and mortality rates for PTC patients 

with ETE are higher than those without ETE [9, 15]. In 
children and adolescents, papillary thyroid cancer is 
more aggressive and susceptible to capsule invasion, 
lymph node metastasis, and distant metastasis than in 
adults [2, 4, 13]. Though the treatment for adults and 
children is similar, pediatric PTC patients with ETE 
must undergo total/subtotal thyroidectomy; these 
patients will develop chronic hypothyroidism after 
surgery [7, 34, 35]. It is necessary to preserve as much 
thyroid tissue as possible to preserve the function of 
the thyroid gland in children during their period of 
growth and development. Furthermore, this 
technique places a higher burden on the surgeon and 
thus calls for a higher degree of skill; it also has the 
potential to hinder postoperative parathyroid 
function and boost the chance of recurrent laryngeal 
nerve injury [34, 35]. A thorough diagnosis of ETE 
prior to surgery can, therefore, help the surgeon 
choose the appropriate surgical approach and limit 
the risk of reoperation. 

 

 
Figure 4. SHAP plots of the LightBGM model. (A) The classified bar charts of the SHAP summary plots show the influence of each parameter on the LightBGM model. Class 
0: Non ETE; Class 1: ETE (B) The SHAP summary plot’s scatter plot shows the relationship between the radiomics characteristic value and the predicted probability through 
colors, including positive and negative predictive effects. 
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Ultrasound is the preferred imaging technique 
for diagnosing PTC [16, 17]. It can disclose the degree 
of PTC interaction with the neighboring thyroid 
capsule, but its diagnostic precision is limited. 
Ultrasound diagnosis of thyroid tumor capsule 
invasion prior to surgery is highly subjective and 
dependent on the diagnostic skill of the sonographer. 
In addition, the ultrasonographic manifestations of 
thyroid cancer in children and adults differ 
significantly. For this reason, it is essential to enhance 
the accuracy of ultrasound-based ETE diagnosis in 
pediatric PTC. 

Based on US (Ultrasound) radiomics, we created 
four prediction models for ETE of papillary thyroid 
carcinoma in children [36, 37]. After evaluating the 
four most prominent machine-learning models in 
radiomics, we found that the LightBGM model had 
excellent performance in differentiating ETE from 
papillary thyroid cancer in children, as well as 
excellent generalizability. 

Each algorithm for machine learning has its own 
advantages and disadvantages [38-40]. Without 
research on the subject, it is impossible to predict how 
well an algorithm will perform on a given 
machine-learning task [38-40]. Almost all previous 
radiomics research has employed a single approach 
for modeling without providing any reason. The 
KNN (k-nearest neighbor) approach was initially 
suggested in 1968 by Cover and Hart. It is a mature 
method in principle, with simple concepts that are 
straightforward to comprehend and implement, and 
there is no need to estimate parameters. Support 
vector machine (SVM) learning, also known as 
machine learning with maximal (support) separation 
boundaries (vectors), is a powerful classification 
technology that has been applied to cancer genome 
classification or subtyping and is frequently 
employed in omics analysis [38]. SVM processes 
nonlinear data, small samples, and high-dimensional 
data advantageously [38]. The integrated machine 
learning technique known as a random forest can 
boost prediction accuracy without considerably 
increasing processing time. LightGBM (light gradient 
boosting machine) is a decision tree-based distributed 
gradient boosting system. It is distributed and 
efficient, having the following benefits: quicker 
training efficiency and reduced memory 
consumption, greater precision, support for parallel 
learning, and the ability to manage enormous 
volumes of data. In this study, a multiclass 
classification algorithm study was conducted on the 
same data and task, and it was discovered that KNN 
and SVM performed consistently, but their overall 
efficiency was not outstanding. Despite having the 
highest AUC value in the training set, the random 

forest model is unstable in the validation set. With the 
greatest AUC and best generalization in the validation 
group, LightGBM shows promise for additional 
research and validation with larger sample sets and 
multicenter data. In this investigation, we examined 
the SHAP values of our model. The mean absolute 
Shapley values have been developed to create an 
explicable radiomics model and eliminate its 
infamous “black box” aspect. 

Our study has several limitations: (1) The 
algorithm for feature selection also influences the 
performance of the model. We did not compare the 
dimensionality reduction algorithms; consequently, 
the final feature selection may not be optimal. (2) 
Because of the retrospective nature of the study, case 
selection bias could potentially confound the results. 
Tumor boundaries were ill-defined in some instances 
with PTC. These cases were omitted from the analysis. 
This study was biased because the majority of the 
patients had PTC with ETE. (4) The radiomic model 
we created to distinguish ETE was created and 
verified at a single medical center. (5) Grayscale 
ultrasound images were used in our research; 
however, the radiomic features of multimodal 
ultrasound will be incorporated into the nomogram in 
the future. We want to use elastography and 
contrast-enhanced ultrasound pictures, both of which 
may provide more radiomic properties than standard 
2D scans. (6) The sample size of this study is too small; 
more extensive multicenter investigations with larger 
samples are needed. 

In conclusion, this research uses four machine- 
learning models of US radiomics to predict the ETE of 
papillary thyroid cancer in children. LightGBM-based 
radiomics models outperform the other three most 
used machine-learning algorithms in radiomics when 
applied to prediction accuracy. 
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