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Abstract 

Artificial intelligence (AI) has been widely used in various medical fields, such as image diagnosis, 
pathological classification, selection of treatment schemes, and prognosis analysis. Especially in the 
image-aided diagnosis of tumors, the cooperation of human-computer interactions has become mature. 
However, the ethics of the application of AI as an emerging technology in clinical decision-making have 
not been fully supported, so the clinical decision support system (CDSS) based on AI technology has not 
fully realized human-computer interactions in clinical practice as the image-aided diagnosis system. The 
CDSS was currently used and promoted worldwide including Watson for Oncology, Chinese society of 
clinical oncology-artificial intelligence (CSCO AI) and so on. This paper summarized the applications and 
clarified the principle of AI in CDSS, analyzed the difficulties of AI in oncology decisions, and provided a 
reference scheme for the application of AI in oncology decisions in the future. 
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Introduction 
In the precision medicine era, the explosive 

growth of new drugs and approved indications has 
brought great challenges to the formulation of the best 
treatment scheme for different molecular phenotypes 
of different tumors [1-3]. With the technical support of 
big data and machine learning, clinical decision 
support systems (CDSS) based on artificial 
intelligence (AI) came into being [4-6]. By integrating 
different medical records, literature and clinical 
research data, the CDSS evaluates the drug efficacy, 
product accessibility, adverse reactions, the financial 
status of the patients and medical insurance types, 
and then provides individualized suggestions to help 
clinicians optimize treatment plans [7, 8]. The 
applications of AI have expanded from solving daily 
life problems to medical professional fields, such as 
image diagnosis, pathological diagnosis, clinical 
treatment decision-making, prognosis analysis, and 
new drug screening [9, 10]. 

The Watson system of IBM has been applied to 

the fields of fashion, finance, medical treatment, 
tourism, law, education, transportation and so on. 
Especially in the field of cancer, Watson for Oncology 
(WFO, IBM Corporation, United States), as the earliest 
widely used CDSS [11, 12], has been gradually 
popularized all over the world in the fields of lung 
cancer, colon cancer, rectal cancer, breast cancer, 
gastric cancer and gynecological cancer [13]. Based on 
the WFO system, the medical staff only need to input 
the structured data of the case. Within one minute, the 
system will output the most standard treatment 
method for the specific case and provide highly 
consistent evidence [11]. The WFO has provided 
services to more than 70 municipal medical 
institutions and more than ten thousand patients [13]. 
A CDSS called the Chinese society of clinical 
oncology-artificial intelligence (CSCO AI) system 
based on Chinese society of clinical oncology-breast 
cancer (CSCO BC) big data and CSCO BC guidelines 
had run into operation for three years nationwide [7]. 
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As of January 2022, excluding combined treatment 
regimens, there are currently 82 FDA drugs approved 
for breast cancer treatment [14]. Breast cancer therapy 
is expected to accelerate the pace of treatment and 
shorten the cycle of treatment guideline changes. The 
Oncologists face a huge and rapidly expanding 
knowledge base challenge [15, 16]. To mitigate this 
challenge, CSCO AI has now been applied to breast 
cancer treatment in the face of rapidly changing 
scientific evidence [17, 18], helping patients achieve 
personalized treatment based on drug approval and 
treatment guidelines. Other CDSSs, such as 
Archimedes IndiGO, Auminence, DiagnosisOne, and 
DXplain, have also gradually been developed and are 
beginning to be applied in the clinic [19, 20]. 

Overview of the CDSS 
The CDSS based on AI technology is essentially a 

computer program [8, 21]. In the early stage, the 
knowledge base was constructed through the key and 
prognostic information in structured medical records 
or literatures. Then, a search engine was used to filter 
the best results from the knowledge base through key 
information and then feedback to users [22], machine 
learning algorithms include logistic regression, 
support vector machine, artificial neural network, 
deep learning and so on. Due to the particularity of 
clinical application and the development of CDSS 
technology, unsupervised models are mainly used to 
operate. AI technology allows computers to simulate 
human reasoning thinking, collect and express the 
learned knowledge content by generating 
suggestions, reducing the dependence on memory, 
the decision error rate and the response time. It also 
helps make reasonable and safe decisions in clinical 
practice to ensure clinical safety, quality and improve 
the treatment efficiency [7, 11]. 

Composition and treatment judgment of 
the CDSS 

As one of the earliest CDSS in the world, WFO 
has indexed and stored test cases, documents, 
protocols and medical records from experts at the 
Memorial Sloan Kettering Cancer Center (MSKCC) 
and applied them to specific cases after being 
processed by a computational reasoning method [23, 
24]. In addition, unlike the CSCO AI, WFO updates 
the latest diagnosis and treatment information every 
one to two months and for understudied medical 
records, WFO also describes unsupported case 
information. When enter case information that WFO 
does not support, it would not process the case and 
return any suggestions [25]. WFO's treatment 
recommendations are divided into three groups and 
have corresponding labels: green represents 

“recommended treatment”, which has a strong 
evidence base, orange represents “consideration 
treatment”, and according to their clinical judgment, 
doctors can consider it as a suitable substitute, while 
red represents non-recommended treatment, which 
means due to specific contraindications or strong 
evidence against their use. If WFO is not aware of it at 
the time of the analysis, the treatment recommended 
by the oncology committee is classified as 
“unavailable” [26]. 

Different from WFO, CSCO AI system was 
established under the CSCO platform by using the 
CSCO database, guidelines. The CSCO AI system 
mainly built different knowledge maps based on the 
schemes in the CSCO guidelines. When doctors search 
for relevant information, it locates the knowledge 
map and output the results according to the key 
information. Similarly, it is also updated in real time 
with the guidelines to ensure the timeliness of the 
system, as shown in Figure 1. In addition to 
incorporating guidelines, medical records and 
literature data, CSCO AI also integrates medical 
insurance, clinical research and other data to make it 
more in line with the actual situation in China and to 
ensure that users can obtain more information with 
one click [7]. For a self-assessment of the decision- 
making scheme, CSCO AI adopts a quantitative 
scoring method, if the decision-making scheme 
conforms to the national comprehensive cancer 
network (NCCN) guideline class 1 evidence 
recommended by the high-level guidelines or the 
CSCO BC guideline class I recommendation and 
conforms to clinical practice, it is fully compliant, and 
3 points can be given; if it meets the high-level 
recommendation but does not meet the clinical 
practice, or meets the class 2A evidence of NCCN 
guidelines or the class II recommendation of CSCO 
BC guidelines and meets the clinical practice, it is in 
high-level compliance, and 2 points can be given. If it 
does not conform to the guidelines but conforms to 
clinical practice or only conforms to class 2B evidence 
of the NCCN guidelines or class III recommendations 
of the CSCO BC guidelines, 1 point can be given. If it 
does not comply with the guidelines and does not 
comply with clinical practice, 0 points will be given 
[7]. 

Application characteristics of the CDSS 
Based on the working principle, CDSS has 

several characteristics. First, the development 
knowledge base of the CDSS mainly comes from the 
big data of clinical guidelines or case composition 
included in high-level clinical research [27, 28]. 
Second, for the CDSS developed based on a guideline, 
convenience is improved at the cost of reducing its 
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reliability [7, 29-31]. Third, the updating speed and 
the abundance of information sources of the 
knowledge base can affect the heterogeneity of 
conclusions between the CDSS and multi-disciplinary 
team (MDT) [32]. Fourth, the CDSS can guide 
inexperienced doctors and interns [33]. However, the 
CDSS can only be regarded as a member of the MDT 
team as shown in Figure 2. After more than 20 years of 
development, the CDSS has played an important role 

in disease management, radiation dose calculation, 
image analysis, blood bank systems, nursing and 
other fields [34-36]. At present, most clinical studies 
on the reliability of CDSS has compared the schemes 
of MDT and MDT plus CDSS to explore the help 
provided by the AI system to doctors at different 
levels and for different diseases, which is closely 
related to the ethics of AI technology in clinical 
diagnosis and treatment decision-making [37]. 

 

 
Figure 1. Flow chart of the data operation in the CDSS. The data in the flow chart of the CDSS were operated according to the knowledge base, knowledge graph, 
interactive interface and clinical decision output sites. 

 
Figure 2. The applications of CDSS in clinical work. The knowledge base was constructed through the key and prognostic information in structured medical records, 
literature and guidelines. The search engine was used to filter the best results from the knowledge base through key information and feedback to the doctors. The doctor could 
make a clinical decision based on the CDSS suggestion and their clinical experience to treat patients, and the prognostic information of patients should be studied by the 
knowledge base that forms a positive cycle. 
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For the CSCO AI system, the establishment of a 
standardized and unified standard dataset, reliable 
data source and knowledge base, the efficiency of 
automatically outputting the scheme in line with 
clinical decision-making and a friendly communi-
cation interface are important directions to improve 
the reliability of the CDSS [7]. The knowledge base is 
the cornerstone of the CSCO AI system. System 
learning, testing and verification should be based on 
the knowledge base. The richness and representative-
ness of the knowledge base content directly affect the 
reliability of the system. The knowledge base of the 
CSCO AI mainly comes from clinical data and 
guideline evidence. The former is mostly 
semi-structured or unstructured, and the latter is 
structured data [38]. For the individual characteristics 
of patients in the literature (such as gender, age, PET, 
CT, MRI, blood tests, body fluid tests, stool tests, 
different tumor node metastasis (TNM) stages, 
molecular typing, past history, adverse reactions, 
etc.), mapping abstract data into graphic elements, 
supplemented by human-computer interactions, play 
the very important role in the application of 
knowledge retrieval, question and answer, know-
ledge recommendation, knowledge visualization and 
so on [39, 40]. It also provides an ideal technical 
method to solve the problem of "data islands", which 
is helpful to realize the integration of knowledge 
resources and improve the ability of knowledge 
services. For text-based data, it is necessary to conduct 
text analysis under the specifications of medical 
standard terms, such as semantic annotation and 
association analysis, to obtain all conceptual datasets 
about tumor diagnosis and treatment [7]. 

AI in the medical field usually focuses on 
acquiring knowledge from unstructured data, such as 
text (using natural language processing) or large 
structured datasets (using machine learning methods) 
[41-43]. After storing, indexing and delineating this 
knowledge, it uses computational reasoning methods 
to apply it to specific situations, generate and evaluate 
hypotheses, and then provide an evaluation for 
doctors [44, 45]. There are several diagnostic criteria 
for cancer, such as CancerLinq [46] and a system 
called OncoDoc [47]. Through “reading” the 
literature, protocols and medical records, and 
learning from MSKCC test cases and experts, WFO 
obtains a large amount of knowledge as a preliminary 
knowledge base [23, 24]. At the same time, WFO also 
provides evidence to support recommended treat-
ments, as well as specific case clinical trials, 
prescription information, potential adverse reactions 
related to treatment [11]. At present, WFO can 
provide rapid and accurate treatment suggestions for 
most cancer patients, compared the treatment 

regimens recommended for breast cancer cases 
between the Manipal multidisciplinary tumor board 
(MMDT) and WFO, the overall treatment 
concordance is up to 93% [11]. It can also play an 
important role in reducing doctors’ workload and 
training young doctors. In addition, WFO would 
regulate the treatment of cancers nationwide and 
enhance the trust between doctors and patients, 
especially in rural hospitals [13, 48]. 

Moreover, a CDSS should provide detailed 
evidence to support its recommendations, which is 
based on the credibility of the relevant literature [11]. 
Doctors can review the relevant evidence and judge 
whether it is applicable to the current case. When they 
choose to treat according to the recommended 
scheme, they also provide other information, such as 
the survival rate, incidence of adverse reactions, 
evidence supporting the recommended treatment, 
possible specific cases and clinical trials, prescription 
information, potential adverse reactions related to 
treatment to help doctors evaluate the efficacy and 
risk of the whole scheme. The CDSS can significantly 
shorten the time for junior doctors to consult the 
relevant literature and improve their ability to make 
accurate diagnosis and treatment suggestions in a 
short time. At the same time, it could eliminate the 
time cost by patients visiting top hospitals and help 
patients obtain the best treatment as soon as possible. 
Finally, the CDSS may solve the problem of doctor–
patient trust. In contemporary China, patients' 
distrust of doctors is increasing due to many reasons, 
such as a shortage of funds, excessive market-oriented 
operation, limitations of medical insurance 
reimbursement and a large number of nonneutral 
reports of health events in the media [49-51]. In 
addition, patients often suspect doctors of engaging in 
overtreatment [52]. The CDSS has no personal 
preferences. Therefore, it can be regarded as an 
objective and fair decision-making system and win 
the trust of patients. Cancer patients do not have to 
visit multiple experts to find a treatment they think is 
fair [53, 54]. 

The difficulties of application and 
development of the CDSS 

With the increasing popularity of WFO all over 
the world, in practice, many local doctors and medical 
institutions question the extent to whether WFO is 
suitable for cancer patients in their country. The 
problem is mainly emphasized in two aspects. On the 
one hand, a percentage of cancer cases is not 
supported by WFO. If the proportion of unsupported 
cases is very large (e.g., more than 50%), the total 
application value of WFO will be affected. On the 
other hand, in the supported cases, are the 
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recommendations of WFO consistent with those of 
MDT? In addition, how can we make the 
decision-making opinions put forward by WFO be 
more suitable for the local people [37]? 

In a study on lung cancer, among the medical 
records supported by the study on patients with 
isolated metastasis and patients with mutations in the 
driving gene of cancer progression, WFO did not 
support 18.1% of cases, among which 42% progressed 
after targeted therapy. The reason may be that the 
EGFR gene mutation phenotype of lung cancer in 
China is very different from that in the western 
countries. The mutation rate of the EGFR gene in 
patients with lung cancer is approximately 15% in 
Europe and the United States, while the probability of 
this mutation in China is 50% or higher [55-57]. 
Additionally, the drugs circulating in the market vary 
from country to country, such as immune checkpoint 
inhibitors involving PD-1 and PD-L1 antibodies. 
Patients' preferences, finance and medical insurance 
also need to be taken into account, which would 
eventually affect the consistency. Inconsistencies 
between WFO and MDT occurred in 7% of cases. 23% 
of these cases was due to differences in regulatory 
approval processes between countries, which can be 
remedied by incorporating locally approved therapies 
into the knowledge base of the expert system. The 
inconsistency may also be due to differences in 
treatment methods in patient subgroups affected by 
demographic characteristics such as the comorbidity 
burden, patient preference and social support system 
[58-61]. 

There are several difficulties in the current 
clinical research on CDSS. The sample size of the 
existing research is very small, and most studies do 
not mention unsupported cases, which would affect 
the efficiency of clinical use [62, 63]. Although the 
doctors who input cases into the CDSS are familiar 
with the system and the key elements to be extracted 
during the chart review process, the quality and 
repeatability of these tasks have not been formally 
tested, which may affect the recommendations of the 
CDSS. Since the CDSS provides evidence for its 
decision-making, oncologists could examine the 
evidence and consider the basis of the CDSS 
recommendations. An unexpected recommendation 
by the CDSS may prompt clinicians to examine their 
evidence and reconsider it according to the evaluation 
of the MDT. Although the use of the CDSS may also 
help to ensure that treatment is more standardized at 
the appropriate time, when personal preferences or 
well-known cognitive biases dominate personal 
decision-making, there may be treatment options that 
are not objectively standardized [64, 65]. Finally, lack 
of consistency does not mean the recommendations of 

MDT or CDSS are “uncorrected”. There are many 
effective explanations for differences, such as the 
differences in treatment methods between comorbid 
or aging patients [66-68]. 

Development direction of the CDSS 
There is still much room for the development 

and improvement of the CDSS in the future. First, the 
update rate of the knowledge base needs to be further 
improved. Second, the abundance of input informa-
tion and structured knowledge base information 
during training will reduce unsupported cases. Third, 
the CDSS feedback port should be more open, when 
there is no support case according to the treatment 
decision put forward by the CDSS, it should be 
discussed by the MDT and fed back to the CDSS for 
learning. After the treatment plan is proposed 
according to the decision, the dynamic changes in 
treatment also need to be fed back to the CDSS for 
learning. Fourth, the recommendation level of the 
CDSS for treatment decision-making should be 
quantified and evaluated according to the abundance 
of evidence. Fifth, when different countries introduce 
the CDSS, diagnosis and treatment equipment and 
drugs should be localized to improve the accessibility 
of the CDSS. 

The storage capacity of an AI-based CDSS is 
much stronger than that of the human brain. It can 
quickly collect and sort stored information to draw 
accurate conclusions faster than humans, such as 
diagnostic radiology and pathological imaging 
systems [69-71]. However, to adapt to a real native 
medical environment, the CDSS must be significantly 
improved. After obtaining ethical approval, the 
medical data of patients should be standardized and 
shared nationwide, and the follow-up system should 
be improved to obtain the complete information of 
patients. In different countries, the unique medical 
data warehouse should be established for the CDSS 
research. These data should be combined with 
international guidelines and medical systems in 
different countries to enable the CDSS to give full 
potential to serve patients in different countries [11, 
72, 73]. 

It should be emphasized that the CDSS cannot 
replace oncologists at present [74, 75]. It should be 
positioned as a good assistant or teacher for young 
doctors [13]. And there is another angle that is 
Collaborative intelligence, human and AI working 
synergistically. With the rapid development of CDSS, 
the CDSS for cervical cancer prevention automatically 
provides recommendations, accuracy of which is 
improved to 93% vs. the expert clinician as per the 
American Society of Colposcopy and Cervical 
Pathology (ASCCP) guidelines [76]. some doctors 
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blindly follow the suggestions of the CDSS and think 
it will replace them in the future. However, just 60% 
of treatment pairs for breast, lung, colon, and rectal 
cancers are identical or equally acceptable, with 70% 
of WFO therapeutic options identical to, or acceptable 
alternatives to, Bumrungrad International Hospital 
therapy. What's more, colorectal cancers exhibited the 
highest proportion of identical or equally acceptable 
treatments; however, stage IV cancers demonstrate 
the lowest. Therefore, collaborative intelligence 
already exists and very likely to dominate in the 
future, the CDSS that could support, rather than 
replace the clinicians provides therapeutic options 
which are generally consistent with recommendations 
[74]. Also, medicine is not only a science but it also 
involves other aspects, such as social and 
psychological factors [77, 78]. Doctors must consider 
individualized measures for different patients, even 
those with the same diagnosis. When using the CDSS, 
oncologists are required to confirm whether patients 
can tolerate surgery or radiotherapy, or whether there 
is any emergency. The treatment plan could only 
continue if this information is confirmed. After it 
provides treatment suggestions, the most appropriate 
treatment scheme according to the patient's physical 
and mental status, financial status, complications and 
willingness to receive treatment. 

In conclusion, the coincidence rate between the 
treatment decision made by the CDSS and the 
treatment decision of the MDT would be higher as AI 
technology continues to mature although the 
availability of drug treatment, professional treatment 
guidelines and the judgment of expert training will 
affect consistency. The AI-based CDSS may have a 
wide range of value in providing tumor treatment 
suggestions, especially at the hospitals where expert 
resources are not easy to obtain [11]. Before the CDSS 
acts as a doctor’s assistant, scientists should continue 
to explore and innovate to further promote medical 
progress [14]. 
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