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Abstract 
Background: Lipid metabolism plays a pivotal role in cancer progression and metastasis. This study aimed to 
investigate the prognostic value of lipid metabolism-related genes (LMRGs) in early-stage lung adenocarcinoma 
(LUAD) and develop a lipid metabolism-related gene prognostic index (LMRGPI) to predict their overall 
survival (OS) and treatment response. 
Methods: A total of 774 early-stage LUAD patients were identified from The Cancer Genome Atlas (TCGA, 
403 patients) database and Gene Expression Omnibus (GEO, 371 patients) database. The non-negative Matrix 
Factorization (NMF) algorithm was used to identify different population subtypes based on LMRGs. The Least 
Absolute Shrinkage and Selection Operator (LASSO) and multivariate Cox regression analyses were used to 
develop the LMRGPI, with receiver operating characteristic (ROC) curves and concordance index being used 
to evaluate its performance. The characteristics of mutation landscape, enriched pathways, tumor 
microenvironment (TME), and treatment response between different LMRGPI groups were also investigated. 
Results: We identified two population subtypes based on LMRGs in the TCGA-LUAD cohort, with distinct 
prognosis, TME, and immune status being observed. LMRGPI was developed based on the expression levels of 
six LMRGs, including ANGPTL4, NPAS2, SLCO1B3, ACOXL, ALOX15, and B3GALNT1. Higher LMRGPI was 
correlated with poor OS both in TCGA and GSE68465 cohorts. Two nomograms were established to predict 
the survival probability of early-stage LUAD, with higher consistencies being observed between the predicted 
and actual OS. Higher LMRGPI was significantly correlated with more frequent TP53 mutation, higher tumor 
mutation burden (TMB), and up-regulation of CD274. Besides, patients with higher LMRGPI presented 
unremarkable responses for gefitinib, erlotinib, cisplatin, and vinorelbine, while they tend to have a favorable 
response for immune checkpoint inhibitors (ICIs). The opposite results were observed in the low-LMRGPI 
group.  
Conclusions: We comprehensively investigated the prognostic value of LMRGs in early-stage LUAD. Given 
its good prognostic ability, LMRGPI could serve as a promising biomarker to predict the OS and treatment 
response of these patients. 
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Introduction 
Lung cancer is one of the most common incident 

cancers and the leading cause of cancer-related death 
worldwide [1]. As the most predominant pathological 
subtype, lung adenocarcinoma (LUAD) makes up 
more than 40% of lung cancer cases [2, 3]. In recent 
decades, although we have made promising progress 

in the screening, diagnosis, and management of 
LUAD patients, it remains a lethal disease because a 
large fraction of patients is diagnosed at the advanced 
disease stage [4, 5]. Approximately 30% of LUAD 
patients are diagnosed at early stage with limited 
disease symptoms, with surgical resection and 
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post-operation adjuvant therapy being recommended 
for these patients according to various protocols [6, 7]. 
Adjuvant treatment is not required for stage IA 
patients with negative tumor margins [6, 8]. However, 
stage IB patients with high-risk factors and stage IIA 
patients need to receive adjuvant chemotherapy to 
avoid disease relapse as recommended by National 
Comprehensive Cancer Network (NCCN) Guidelines 
[8]. Although surgery and adjuvant treatment could 
bring remarkable survival benefits for these 
individuals, some patients still cannot escape the fate 
of disease recurrence within five years [6, 9]. 
Therefore, effective biomarkers that could monitor 
disease recurrence and progression are urgently 
needed for patients with early-stage LUAD. 

Lipids, a large class of metabolites composed of 
different fatty acids [10], are essential components of 
the biological membranes and structural units that 
make up cells [11]. Besides, they are also used for 
energy storage and metabolism and serve as crucial 
signaling molecular roles in most cellular activities 
[11]. Altered cellular metabolism and energetics are 
recognized hallmarks of cancer cells. Accumulating 
evidence elucidated that lipid metabolism disorder in 
the tumor microenvironment (TME) is significantly 
correlated with the malignant phenotypes of cancer 
cells [11]. For instance, Hall et al. reported that MYC 
drives the production of specific eicosanoids, which 
are critical for lung cancer cell survival and 
proliferation [12]. This phenomenon indicated that 
MYC expression drives aberrant lipid metabolism in 
lung cancer. Furthermore, Zhang et al. found that 
knockdown of MGLL (a key enzyme in lipid 
metabolism) inhibits the proliferation and metastasis 
of LUAD cell lines, supporting that lipid metabolism 
plays a pivotal role in LUAD progression and 
metastasis [13]. As we all know, TME also serves an 
important role in cancer progression, metastasis, 
immune evasion, and treatment resistance. 

The crosstalk between altered lipid metabolism 
and TME can strongly impact other cancer hallmarks 
[14]. Different components of TME have distinct 
metabolism programs [14]. Lipid metabolism 
reprogramming of different immune cells could 
change the biological behavior of the tumor and affect 
the antitumor immune response [14, 15]. Therefore, 
targeting lipid metabolism is considered as a new 
strategy for malignancy treatment. This study 
systematically evaluated the prognostic value of lipid 
metabolism-related genes (LMRGs) in early-stage 
LUAD. In this study, we developed a lipid 
metabolism-related gene prognostic index (LMRGPI) 
that based on the expression levels of six LMRGs to 
predict the prognosis and treatment response for 
early-stage LUAD patients. An independent external 

validation cohort was also used to evaluate its 
predictive ability and risk stratification ability. 
Besides, we also identified two different LMRGs 
subtypes that have very different prognosis and 
immune characteristics via non-negative Matrix 
Factorization (NMF) algorithm. We believe our 
findings will provide potential biomarkers and 
therapeutic targets for these individuals. 

Materials and methods 
Raw data acquisition and processing 

The transcriptional, mutation and clinical data of 
403 stage I-II LUAD samples and 43 adjacent tissues 
were downloaded from the TCGA database. Because 
there were no progression-free survival (PFS) and 
disease-free survival (DFS) records in the TCGA 
database, we obtained these data from UCSC Xena 
(https://xena.ucsc.edu/). There were three formats 
(count, FPKM, and FPKM-UQ) of RNA-seq data, and 
we selected the second one for further analysis. The 
human.gtf file was adopted to raw matrix annotation. 
Furthermore, the GSE68465 cohort was also 
downloaded from the Gene Expression Omnibus 
(GEO) (https://www.ncbi.nlm.nih.gov/) database, 
an independent external validation cohort, which 
including transcriptional data and clinical 
information of 371 early-stage LUAD patients. As 
previously reported, 776 LMRGs were obtained from 
the Molecular Signature Database v. 7.0 (MSigDB, 
http://www.gsea-msigdb.org/gsea/msigdb/). We 
used the “VLOOK UP” function in Microsoft Excel to 
match the gene expression matrix with clinical data 
according to their unique ID number to generate the 
merged matrix for later analysis. The detailed 
clinicopathological characteristics of patients in the 
TCGA and GSE68465 cohorts is presented in Table 1. 

DELMRGs identification and functional 
enrichment analysis 

First, we adopted intersecting analysis between 
the gene expression matrix of early-stage LUAD 
patients from the TCGA-LUAD cohort and the 
extracted LMRGs. Then, differential expression 
analysis was performed to filter differentially 
expressed lipid metabolism-related genes 
(DELMRGs) between early-stage LUAD and normal 
samples by using the R software, “limma” package, 
with |log2(Foldchange)| >1.0 and false discovery rate 
(FDR)< 0.05 being used as cut-off value. The volcano 
plot and heatmap were also generated to visualize the 
distribution of the identified DELMRGs using R 
software, “ggplot2” and “pheatmap” packages. 
Subsequently, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and Gene Ontology (GO) analyses 
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were exploited to investigate the most significantly 
enriched pathways and biological processes of the 
DELMRGs using R software, “clusterProfiler” 
package. 

 

Table 1. The detailed clinical characteristics of patients in the 
TCGA and GEO cohorts 

Variables TCGA cohort GSE68465 cohort 
Age   
≥65 218 191 
<65 170 180 
Unknown 15 0 
Gender   
Female 219 188 
Male 184 183 
Clinical stage   
I 279 114 
II 124 257 
T stage   
T1 154 138 
T2 220 217 
T3 29 16 
N stage   
N0 314 292 
N1 82 79 
Unknown 7 0 
Survival status   
Death 123 175 
Alive 280 196 

 

Sample clustering using NMF algorithm 
After differential expression analysis, intersected 

analysis was performed to identify common 
DELMRGs in the TCGA-LUAD and GSE68465 
cohorts. Then, NMF was carried to divide patients 
into different subtypes according to the following 
steps: (a) the univariate Cox regression analysis was 
performed to identify potential prognostic DELMRGs 
via R software, “survival” package; (b) sample 
clustering through “brunet” method in R software, 
“NMF” package; (c) according to parameters such as 
cophenetic, dispersion, silhouette, and sparseness, the 
optimal number of the cluster was identified to 
classify patients into different subtypes; and (d) the 
consensus heatmap was generated in accordance with 
the above optimal cluster number to view the 
distribution characteristic among different subtypes. 

Then, we also explored the relationship between 
different clusters and the prognosis of patients with 
early-stage LUAD, including OS, PFS, and DFS. The 
Kaplan-Meier survival curves were generated to 
depict the survival difference via R software, 
“survival” and “survminer” packages. The log-rank 
test was used to evaluate the statistical difference. 
Besides, the MCPcounter algorithm [16] was adopted 
to estimate the infiltration of the immune cells 
between different clusters. According to the previous 
study [17], six immune subtypes play tumor- 
promoting or suppressive effects in human cancer. 

We also investigated the association between different 
clusters and immune subtypes. 

LMRGPI construction and validation 
We used the TCGA-LUAD cohort to develop the 

LMRGPI to stratify patients into different risk groups 
and predict their OS and treatment response. The 
GSE68465 cohort was set as an independent external 
validation cohort to assess the performance of 
LMRGPI. First, we performed univariate Cox 
regression analysis to identify potential prognostic 
LMRGPI for early-stage LUAD. Variables with a P 
value<0.05 were selected into the Least Absolute 
Shrinkage and Selection Operator (LASSO) regression 
analysis to reduce the number of genes in the final risk 
model through R software, “glmnet” package. 
Ultimately, genes in the LASSO regression were 
selected into the multivariate Cox regression analysis 
and therefore constructed the LMRGPI according to 
the following formula: 

𝐿𝑀𝑅𝐺𝑃𝐼 = � 𝛽𝑖 ∗ 𝑒𝑥𝑝𝑖
𝑘

𝑖=1
 

In the formula, “βi” represents the coefficient of 
the selected LMRG in the multivariate Cox analysis 
and “expi” refers to its expression value. 
Subsequently, all patients were divided into high- and 
low-LMRGPI groups according to the median value 
of LMRGPI. Survival curve and risk plot were 
generated to visualize the survival difference and 
status for each patient. Besides, the receiver operating 
characteristic (ROC) curve was also adopted to 
evaluate the performance of LMRGPI in predicting 1-, 
3-, and 5-year OS of early-stage LUAD patients via R 
software, “survival”, “survminer”, and “timeROC” 
packages. Likewise, we performed the above analyses 
in the GSE68465 cohort to confirm whether the 
LMRGPI could be a potential prognostic factor by 
dividing patients into two groups according to the 
median of the LMRGPI in the TCGA cohort. 
Furthermore, cBioPortal (http://www.cbioportal. 
org/) database was exploited to summarize the 
mutation landscape of the identified LMRGs in the 
multivariate Cox analysis, with the “OncoPrint” 
module being used for visualization. Meanwhile, the 
Human Protein Atlas (HPA, https://www. 
proteinatlas.org/) was also adopted to analyze their 
protein expression level, and the original immuno-
histochemistry (IHC) Figures were obtained for 
further analysis. Next, we performed the univariate 
and multivariate Cox analyses in TCGA and 
GSE68465 cohorts to determine whether LMRGPI 
could be an independent prognostic factor for 
early-stage LUAD compared with other common 
clinicopathological parameters, such as age, gender, 
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disease stage, T stage, and N stage. 

Nomogram development and evaluation 
Then, we used R software, “rms” and “regplot” 

packages to develop two nomograms to illustrate 
each patient’s 1-, 3-, and 5-year survival probability by 
integrating LMRGPI and common clinicopathological 
variables. Calibration curves were also generated to 
evaluate the consistency between the predicted and 
the actual OS. Furthermore, the Kaplan-Meier 
survival curve and ROC curve were also used to 
compare the discrimination ability of LMRGPI and 
other preexisting prognostic scores in predicting the 
OS of early-stage LUAD. Additionally, we also calcu-
lated their concordance index (C-index) and RMS 
values through R software, “rms” and “survcomp” 
packages to further assess their predictive ability. 

Clinical relevance, mutation landscape, and 
enrichment analysis between high- and 
low-LMRGPI groups 

Next, we investigated the relationship between 
LMRGPI and clinicopathological characteristics, the 
identified clusters by NMF, and the previously 
defined immune subtypes using R software, 
“ComplexHeatmap” package. Two waterfall plots 
were generated to explore the detailed gene mutation 
characteristics between high- and low-LMRGPI 
groups via R software, “maftools” package. Gene set 
enrichment analysis (GSEA) was then performed to 
identify the most significantly enriched pathways 
between high- and low-LMRGPI groups using R 
software, “clusterProfiler” package. We used 
“c2.cp.kegg.v7.4.symbols.gmt” as a reference gene set 
and visualized the top five pathways in different 
groups. 

Immune cells infiltration and immune function 
status between high- and low-LMRGPI groups 

Then, single-sample gene set enrichment 
analysis (ssGSEA) [18] was adopted to estimate the 
infiltrating score of immune cells and the activity of 
immune-related pathways using R software, “GSVA” 
and “GSEABase” packages. The Wilcoxon rank-sum 
test was used to compare the statistical difference 
between high- and low-LMRGPI groups. Besides, we 
also investigated the correlation between LMRGPI 
and immune cells infiltration, tumor mutation burden 
(TMB), and immune checkpoint inhibitors (ICIs) 
related genes expression levels. 

Chemotherapeutic and immunotherapy 
response rates between high- and low-LMRGPI 
groups 

We then calculated the half inhibitory 
concentration (IC50) of commonly used antitumor 

drugs in the TCGA-LUAD dataset via R software, 
‘pRRophetic’ package [19] to evaluate the clinical 
utility of LMRGPI for the treatment of early-stage 
LUAD. Meanwhile, the Wilcoxon signed-rank test 
was utilized to compare the difference in the IC50 
between low- and high-LMRGPI groups. To further 
investigate the prognostic value of LMRGPI in 
predicting the OS of patients treated with ICIs, we 
downloaded the gene expression matrix and survival 
data of the IMvigor 210 cohort [20] and performed 
survival analysis. Besides, we calculated the area 
under the curve (AUC) of LMRGPI in predicting 1-, 
3-, and 5-year OS of patients in the IMvigor 210 
cohort. Tumor Immune Dysfunction and Exclusion 
(TIDE, http://tide.dfci.harvard.edu/) algorithm can 
predict anti-PD1 and anti-CTLA4 response across 
several melanoma datasets and a limited dataset of 
non-small cell lung cancer (NSCLC) [21]. The TIDE 
score could help oncologists choose patients who are 
more suitable for ICIs therapy. In prospective clinical 
trials, the TIDE score will be of great significance in 
immunotherapy decision-making [21]. With the help 
of the TIDE online webserver, we predicted the 
response rate of immunotherapy in high- and 
low-LMRGPI groups. Furthermore, we also explored 
the correlation between LMRGPI and TIDE score, 
microsatellite instability (MSI), immune exclusion 
score, and immune dysfunction score. 

Statistical analysis 
The statistical difference between the categorical 

variables was detected by the Chi-square test. The 
non-parameter Wilcoxon rank-sum test was used to 
examine the relationship of continuous variables 
between the two groups. The LASSO regression and 
Cox regression analyses were used for LMRGPI 
development. Kaplan-Meier survival analysis was 
used to test the survival difference between different 
risk groups. A log-rank test was adopted to examine 
the statistical difference. A two-sided P-value < 0.05 
was considered significant. All analyses were 
conducted in R software (version 3.6.3) for windows 
64.0. 

Results 
DELMRGs identification and functional 
enrichment analysis 

The detailed study process of this study is 
illustrated in Figure 1. There were 752 LMRGs in the 
TCGA-LUAD cohort after matching the gene 
expression matrix and LMRGs list (776 genes). A total 
of 105 genes were identified as DELMRGs after 
differential expression analysis (Figure 2a). Of these, 
64 were up-regulated genes, while 51 were 
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down-regulated genes (Figure 2b). Next, we 
conducted GO and KEGG enrichment analyses to 
investigate the most significantly enriched biological 
processes and pathways of the identified DELMRGs. 
Not surprisingly, GO analysis revealed that the 
DELMRGs were mainly enriched in the biological 

process that involved fatty acid metabolism (Figure 
2c). KEGG analysis indicated that the DELMRGs were 
mainly enriched in the PPAR signaling pathway, 
glycerophospholipid metabolism pathway, and 
arachidonic acid metabolism pathway (Figure 2c). 

 

 
Figure 1. Flow chart of the study. LUAD, lung adenocarcinoma; TME, tumor microenvironment; NMF, non-negative Matrix Factorization; DELMRGs, differentially 
expressed lipid metabolism-related genes; LMRGPI, lipid metabolism-related gene index; TT, targeted therapy; IO, immunotherapy. 



Int. J. Med. Sci. 2022, Vol. 19 

 
https://www.medsci.org 

716 

 
Figure 2. DELMRGs identification of early-stage LUAD. (a) The heatmap to show the DELMRGs between LUAD and normal samples. A total of 105 DELMRGs were 
identified through differential expression analysis (64 up-regulated and 51 down-regulated genes). (b) The volcano plot to show the up-regulated and down-regulated DELMRGs. 
(c) GO and KEGG enrichment analysis of the identified DELMRGs. DELMRGs, differentially expressed lipid metabolism-related genes; LUAD, lung adenocarcinoma; GO, Gene 
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular component; MF, molecular function. 
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Figure 3. Different LMRGs subtype identification and clinical relevance analysis. (a) Two different subtypes were identified via the NMF algorithm. (b-d) The 
relationship between different subtypes and OS (b), PFS (c), and DFS (d) of early-stage LUAD. (e) Sankey plot to show the association between different subtypes and immune 
subtypes. (f) TME composition between different subtypes. LMRGs, lipid metabolism-related genes; NMF, non-negative Matrix Factorization; OS, overall survival; PFS, 
progression-free survival; DFS, disease-free survival; LUAD, lung adenocarcinoma; TME, tumor microenvironment; ns represents no statistical significance; * represents P<0.05; 
*** represents P<0.001. 

 

Different molecular subtypes identification 
based on DELMRGs 

First, we performed univariate Cox analysis to 
identify the most significant prognostic LMRGs in the 
TCGA-LUAD cohort. Then, we conducted NMF to 

divide patients into different clusters according to 
relevant parameters. In this analysis, we observed that 
the optimal number of clusters is two according to 
cophenetic, dispersion, silhouette, sparseness, and so 
on (Figure S1a). Figure 3a showed the expression 
level of LMRGs related to the prognosis of patients 
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with early-stage LUAD in different clusters. Besides, 
we compared the OS, PFS, and DFS between different 
clusters. Better OS, PFS, and DFS were identified with 
patients in cluster 2 than in cluster 1 (Figure 3b-d). 
Besides, we also investigated the relationship between 
different immune subtypes and clusters via the 
Sankey plot. It showed that patients in cluster 1 are 
mainly classified into Immune C1 (wound healing), 
Immune C2 (IFN-gamma dominant), and Immune C6 
(TGF-beta dominant) subtypes (Figure 3e). On the 
contrary, patients in cluster 2 are mainly classified 
into Immune C3 (inflammatory) subtype (Figure 3e). 
The MCPcounter algorithm was used to estimate the 
infiltration of the immune cells in different clusters. 
We found that the infiltration levels of cytotoxic 
lymphocytes, fibroblasts, and NK cells were 
significantly higher in cluster 1 than in cluster 2 
(Figure 3f). However, cluster 2 had a higher 
infiltration level of endothelial cells, myeloid 
dendritic cells, and neutrophils (Figure 3f). 

LMRGPI construction and validation 
First, we performed univariate Cox regression 

analysis to identify potential prognostic LMRGPI for 
early-stage LUAD in the TCGA-LUAD cohort. We 
found that 17 genres were correlated with the 
prognosis of these patients. Second, we conducted 
LASSO regression analysis to reduce the number of 
genes in the final risk model through R software, 
“glmnet” package, with 15 genes were identified 
through this step (Figure 4a, b). Ultimately, six genes 
were recognized as independent prognostic LMRGs 
via multivariate Cox analysis, including ANGPTL4, 
NPAS2, SLCO1B3, ACOXL, ALOX15, and B3GALNT1. 
According to their coefficients, we calculated LMRGPI 
using the following formula: LMRGPI= expression 
level of ANGPTL4 * 0.108 + expression level of 
NPAS2* 0.265 + expression level of SLCO1B3 * 0.083 + 
expression level of ACOXL * (-0.261) + expression 
level of ALOX15 *(-0.191) + expression level of 
B3GALNT1 * 0.177. All patients in this cohort were 
divided into high- and low-LMRGPI groups 
according to the median value of LMRGPI. The 
survival curve showed that patients with 
high-LMRGPI were associated with the worse OS 
when compared with patients with low-LMRGPI 
(Figure 4c). The risk plot also showed detailed 
survival outcomes of each patient (Figure 4e). We 
used the GSE68465 cohort as an independent external 
validation cohort to further assess the performance of 
LMRGPI. Consistently, similar results were observed 
in the GSE68465 cohort (Figure 4d, f). Besides, we 
used ROC curves and calculated AUC values to 
evaluate the performance of LMRGPI in predicting 1-, 

3-, and 5-year OS of early-stage LUAD patients. We 
observed that LMRGPI had good performance in 
predicting the OS in these individuals both in the 
TCGA-LUAD cohort (AUC for 1-, 3-, and 5-year OS: 
0.701, 0.720, and 0.665; Figure 4g) and GSE68465 
cohort (AUC for 1-, 3-, and 5-year OS: 0.680, 0.643, and 
0.632; Figure 4h). 

Next, we used the cBioPortal database to 
summarize the mutation landscape of the identified 
LMRGs in the multivariate Cox analysis. We observed 
that 8% of patients harbored SLCO1B3 mutation, with 
amplification being the most predominant genetic 
alteration type (Figure 4i). Meanwhile, the HPA 
database was also adopted to analyze their protein 
expression level. We found that ALOX15 and NPAS2 
protein were highly expressed in the LUAD samples 
(Figure 4j, k). In contrast, SLCO1B3 protein was not 
detected in the LUAD sample (Figure 4l). The protein 
expression level of other prognostic LMRGs is not 
available in the HPA database. Subsequently, we 
performed subgroup analysis to evaluate the 
prognostic significance of LMRGPI in different 
subgroups, including age (Figure 5a, b), gender 
(Figure 5c, d), disease stage (Figure 5e, f), T stage 
(Figure 5g-i), and N stage (Figure 5j, k). It indicated 
that except for patients with T1 (Figure 5g) and N1 
(Figure 5k) stage disease, higher LMRGPI was 
significantly associated with poor OS in other 
subgroups. Ultimately, we performed single factor 
and multi-factor Cox analyses to determine whether 
LMRGPI could be an independent prognostic factor 
for early-stage LUAD compared with other common 
clinicopathological parameters. Not surprisingly, we 
observed that LMRGPI could serve as an independent 
prognostic index for these individuals (Figure 5l, m). 

Nomograms development and assessment 
Next, we developed two nomograms to illustrate 

each patient’s 1-, 3-, and 5-year survival probability by 
integrating LMRGPI and common clinicopathological 
variables. We could easily calculate each patient’s 
total points and the corresponding survival 
probability using the constructed nomogram (Figure 
6a, b). Calibration curves indicated higher 
consistencies between the predicted OS and the actual 
OS rates in the TCGA-LUAD cohort (Figure 6c) and 
the GSE68465 cohort (Figure 6d). Furthermore, we 
compared the discrimination ability of LMRGPI and 
other preexisting prognostic scores in predicting the 
OS of early-stage LUAD. It showed that LMRPI had 
comparable risk stratification ability to other 
prognostic scores (Figure S1b-f). The C-index (Figure 
6e) and RMS (Figure 6f) values also supported the 
above results. 
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Figure 4. LMRGPI establishment and validation for early-stage LUAD. (a) Each independent variable’s trajectory. The horizontal axis represents the log value of the 
independent variable lambda, and the vertical axis represents the independent variable’s coefficient. (b) Confidence intervals with different values of lambda. (c, d) Survival curves 
to evaluate the risk stratification ability of LMRGPI in the TCGA-LUAD (c) and GSE68465 (d) cohorts. (e, f) Risk plots to illustrate the survival status of different LMRGPI groups 
in the TCGA-LUAD (e) and GSE68465 (f) cohorts. (g, h) ROC curves to evaluate the sensitivity and specificity of LMRGPI to predict the 1-, 3-, and 5- year OS of early-stage 
LUAD. in the TCGA-LUAD (g) and GSE68465 (h) cohorts. (i) mutation landscape of the identified prognostic LMRGs in the cBioPortal database. (j-l) Protein expression 
analysis of ALOX15 (j), NPAS2 (k), and SLCO1B3 (l) in LUAD and normal samples using the HPA database. LMRGPI, lipid metabolism-related gene prognostic index; LUAD, 
lung adenocarcinoma; LMRGs, lipid metabolism-related genes; LASSO, Least Absolute Shrinkage and Selection Operator; TCGA, The Cancer Genome Atlas; ROC, receiver 
operating characteristic curve; OS, overall survival; HPA, Human Protein Atlas. 
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Figure 5. Subgroup analysis and independent prognostic analysis of LMRGPI. (a-k) Subgroup analysis stratified by age (a, b), gender (c, d), disease stage (e, f), T 
stage (g-i), and N stage (j, k) to further confirm the risk stratification ability of LMRGPI in different subgroups. (l, m) The univariate (l) and multivariate (m) Cox analyses to 
determine the independent prognostic ability of LMRGPI. LMRGPI, lipid metabolism-related gene prognostic index. 
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Figure 6. Nomogram construction and validation to predict the prognosis of early-stage LUAD. (a, b) Two nomograms were constructed via R software, “rms” 
and “regplot” packages to present the survival probability of each patient in the TCGA-LUAD (a) and GSE68465 (b) cohorts. (c) Calibration curve to evaluate the consistency 
between the actual and predicted 1-, 3- and 5-year OS of early-stage LUAD in the TCGA cohort. (d) Calibration curve to evaluate the consistency between the actual and 
predicted 1-, 3- and 5-year OS of early-stage LUAD in the GSE68465 cohort. (e, f) The C-index (e) and RMS (f) values of LMRGPI and other prognostic models were calculated 
to compare their predictive ability. LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas; OS, overall survival. 

 

Clinical relevance, mutation landscape, and 
enrichment analysis between high- and low- 
LMRGPI groups 

Next, we investigated the relationship between 
LMRGPI and clinicopathological characteristics, 
different clusters, and immune subtypes. It showed 
that LMRGPI was significantly correlated with age, 
disease stage, T stage, N stage, cluster, and immune 
subtype (Figure 7a). Afterward, we generated two 

waterfall plots to explore the detailed gene mutation 
characteristics between high- and low-LMRGPI 
groups. We identified that TP53, TTN, MUC16 were 
the most frequently mutated genes in these groups 
(Figure 7b, c). Besides, we also observed that the 
high-LMRGPI group harbored a more frequent TP53 
mutation rate than the low-LMRGPI group (Figure 
7b, c). Furthermore, we performed GSEA analysis to 
identify the most significantly enriched pathways 
between the two groups. We found that genes in the 
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high-LMRGPI significantly enriched in cell cycle, 
cytokine-cytokine receptor interaction, ECM receptor 
interaction, focal adhesion, and regulation of actin 
cytoskeleton (Figure 7d, Table S1). However, genes in 
the low-LMRGPI significantly enriched in 

alpha-linolenic acid metabolism, arachidonic acid 
metabolism, proximal tubule bicarbonate reclamation, 
systemic lupus erythematosus, and vascular smooth 
muscle contraction (Figure 7e, Table S1). 

 

 
Figure 7. Clinical relevance, gene mutation landscape, and pathway enrichment analysis between different LMRGPI groups. (a) The heatmap was generated 
to show the relationship between LMRGPI and other clinicopathological variables. (b, c) Waterfall plots summarize the gene mutation landscape in high- (b) and low-LMRGPI 
(c) groups. (d, e) GSEA to investigate the biological processes and pathways enriched in high- (d) and low-LMRGPI (e) groups. LMRGPI, lipid metabolism-related gene prognostic 
index; GSEA, Gene Set Enrichment Analysis; * represents P<0.05; ** represents P<0.01; *** represents P<0.001. 
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Figure 8. Immune function, ICIs related genes expression pattern, and chemotherapeutic drugs sensitivity between different LMRGPI groups. (a) Immune 
cells infiltration score and immune-related pathways activity in the low- and high-risk groups estimated by ssGSEA. (b-e) The correlation between LMRGPI and the expression 
level of CD274 (b), PDCD1 (c), CTLA4 (d), and TIGIT (e). (f-i) The relationship between LMRGPI and drug sensitivity of gefitinib (f), erlotinib (g), vinorelbine (h), and cisplatin 
(i). ICIs, immune checkpoint inhibitors; LMRGPI, lipid metabolism-related gene prognostic index; ssGSEA, single-sample gene set enrichment analysis; ns represents no statistical 
significance; ** represents P<0.01; *** represents P<0.001. 

 

The immune function between high- and 
low-LMRGPI groups 

We then adopted ssGSEA to estimate the 
infiltrating score of immune cells and the activity of 
immune-related pathways in different LMRGPI 
groups. The results demonstrated that the infiltration 

levels of B cells, iDCs, Macrophages, Mast cells, and 
NK cells were significantly different in the two groups 
(Figure 8a). Meanwhile, the two groups also had 
different scores of APC co-inhibition, MHC class I, 
parainflammation, and Type II IFN response (Figure 
8a). Subsequently, we investigated the correlation 
between LMRGPI and immune cells infiltration, TMB 
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value, and the expression level of common ICIs 
related genes. The results revealed that LMRGPI was 
positively correlated with the infiltration levels of 
cytotoxic lymphocytes and fibroblasts. In contrast, it 
was negatively correlated with the infiltration levels 
of T cells, myeloid dendritic cells, neutrophils, and 
endothelial cells (Figure S2a). Besides, we observed 
that LMRGPI was positively correlated with TMB 
value (Figure S2b). We found that higher LMRGPI 
was also significantly associated with up-regulation of 
CD274 (Figure 8b and Figure S2c). Nevertheless, 
there was no significant statistical difference between 
LMRGPI and PDCD1 (Figure 8c), CTLA4 (Figure 8d), 
TIGIT (Figure 8e), and LAG3 (Figure S2d) expression. 
Interestingly, it showed that LMRGPI also positively 
correlated with POLE2 expression (Figure S2e). 

Chemotherapeutic and immunotherapy 
response rates between high- and low-LMRGPI 
groups 

Next, we investigated the association between 
LMRGPI and commonly used antitumor drugs 
sensitivity via R software, “pRRophetic” package to 
evaluate the clinical utility of LMRGPI for the 
treatment of early-stage LUAD. We found that lower 
LMRGPI was significantly correlated with higher 
IC50 of gefitinib (Figure 8f), erlotinib (Figure 8g), 

cisplatin (Figure 8h), and vinorelbine (Figure 8i). We 
also downloaded the gene expression matrix and 
survival data of the IMvigor 210 cohort to explore the 
prognostic value of LMRGPI in predicting the OS of 
patients treated with ICIs. It revealed that LMRGPI 
could also be served as a potential prognostic 
biomarker for these patients (Figure 9a, b). Besides, 
we used the TIDE algorithm to predict the response 
rate of immunotherapy in high- and low-LMRGPI 
groups. We observed that patients with higher 
immunotherapy responses presented with higher 
LMRGPI (Figure 9c). Ultimately, we explored the 
correlation between LMRGPI and TIDE score, MSI, 
immune exclusion score, and immune dysfunction 
score. The results demonstrated that lower LMRGPI 
was significantly associated with a high TIDE score 
(Figure 9d) and immune dysfunction score (Figure 
9f). However, higher LMRGPI was correlated with a 
higher immune exclusion score (Figure 9g). There was 
no significant difference between LMRGPI and MSI 
(Figure 9e). 

Discussion 
The current study identified two different 

LMRGs subtypes based on the NMF algorithm and 
explored their association with patients’ prognosis 
and immune cells infiltration. We observed very 

 

 
Figure 9. The prognostic value of LMRGPI in ICIs treatment. (a) Kaplan-Meier survival analysis of the LMRGPI subgroups in IMvigor 210 cohort. (b) ROC curves to 
show the prognostic value of LMRGPI in predicting the 1-, 3-, and 5-year OS of patients treated with ICIs in the IMvigor 210 cohort. (c) The relationship between LMRGPI and 
immunotherapy response in the TCGA-LUAD cohort. (d-g) The correlation between LMRGPI and TIDE score (d), MSI score (e), immune dysfunction score (f), and immune 
exclusion score (g). LMRGPI, lipid metabolism-related gene prognostic index; ICIs, immune checkpoint inhibitors; ROC, receiver operating characteristic curve; OS, overall 
survival; TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; ns represents 
no statistical significance; * represents P<0.05; ** represents P<0.01; *** represents P<0.001. 
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different prognostic and immune profiles between 
different subtypes. Most importantly, we developed a 
novel prognostic index, LMRGPI, based on the 
expression levels of six LMRGs. It could be used to 
predict the prognosis and treatment response of 
early-stage LUAD patients. Furthermore, the results 
from an independent external validation cohort 
validation also depict a similar predictive ability of 
LMRGPI. 

We observed that patients in cluster 1 suffered 
from worse OS, PFS, and DFS than patients in cluster 
2. Besides, it showed that patients in cluster 1 are 
mainly classified into Immune C1, Immune C2, and 
Immune C6 subtypes, which are correlated with more 
aggressive immune infiltrates and worse prognosis 
[17, 22]. On the contrary, patients in cluster 2 are 
mainly classified into the Immune C3 subtype, which 
is associated with a more favorable immune 
composition and better clinical outcomes [17, 22]. 
Therefore, we furtherly estimated the infiltration of 
the immune cells in different clusters. We found that 
cluster 1 correlated with higher cytotoxic lympho-
cytes, fibroblasts, and NK cells infiltration levels than 
cluster 2. Accumulating studies have shown that 
cancer-associated fibroblasts (CAFs) could transfer 
lipid to the TME to support cancer cell growth [15, 23, 
24]. Recently, Gong et al. elucidated that 
reprogramming of lipid metabolism in CAFs 
potentiates migration of colorectal cancer cells 
through in vivo and in vitro experiments [15]. 
Furthermore, dysfunctional CD8+ T cells increased 
their uptake and accumulation of specific long-chain 
fatty acids (FAs), thus resulting in T cell dysfunction, 
inhibition of mitochondrial function, and reduction of 
FA catabolism [14, 25]. Lipids also affect cytotoxic NK 
cells, which are vital in the antitumor response [14, 
26]. A recent study revealed that lipid accumulation in 
NK cells attenuated its antitumor immunity and failed 
to reduce tumor growth in obesity [27]. Therefore, 
lipid accumulation could reprogram immune cells in 
TME and support a tumor-promoting microenviron-
ment. 

Next, six LMRGs are recognized as correlated 
with OS of early-stage LUAD through LASSO and 
Cox regression analyses, including ANGPTL4, NPAS2, 
SLCO1B3, ACOXL, ALOX15, and B3GALNT1. 
ANGPTL4 is a member of the angiopoietin family and 
acts as a regulator of lipid and glucose metabolism. 
Upregulation of ANGPTL4 is associated with 
malignant biological behavior in various malignancies 
[28-31]. Yang et al. reported that ANGPTL4 regulates 
ferroptosis through NOX2, thus inducing cell death 
and chemoresistance in epithelial ovarian cancer [28]. 
NPAS2 is the most significant circadian rhythm gene, 
has received extensive attention due to its 

sophisticated function in various diseases 
development. He et al. revealed that NPAS2 
polymorphism is an independent prognostic marker 
for lung cancer patients [32]. Besides, Yuan et al. 
indicated that overexpression of NPAS2 significantly 
promoted cell proliferation and inhibited 
mitochondria-dependent intrinsic apoptosis, and thus 
contributed to a worse prognosis of patients with liver 
cancer [33]. SLCO1B3 is a liver-specific transporter 
and is physiologically involved in the uptake of bile 
acids [34]. Although numerous studies explored its 
functional change and prognostic value in various 
malignancies, the molecular regulatory mechanism of 
SLCO1B3 is not well elucidated [35]. Sekine et al. 
reported that the expression of SLCO1B3 is associated 
with intratumoral cholestasis and CTNNB1 mutations 
in liver cancer [34]. ACOXL is a rate-limiting enzyme 
in peroxisomal fatty acids β-oxidation, and it could 
initiate the oxidative metabolism of long-chain fatty 
acids [36]. Therefore, ACOXL plays a crucial role in 
lipid metabolism. He et al. found that ACOXL is 
overexpressed in prostate cancer cell lines and could 
be served as a novel biomarker for prostate cancer 
[37]. Nevertheless, the biological function and 
prognostic significance of ACOXL in LUAD and other 
tumors are not studied [37]. ALOX15 oxidizes 
polyunsaturated fatty acids to generate several 
bioactive lipid metabolites, and many studies have 
elucidated its importance in oxidative and 
inflammatory responses [38]. Recently, Zhang et al. 
revealed that CAFs could secrete exosomal miR-522 to 
inhibit ferroptosis in gastric cancer cell lines and 
promote acquired chemoresistance by targeting 
ALOX15 and blocking lipid peroxides accumulation 
[39]. B3GALNT1 is a galactosyltransferase that 
catalyzes the transfer of galactose [40]. Umeyama et 
al. indicated that B3GALNT1 is a potential therapeutic 
target in lung cancer through bioinformatic analysis 
[40]. However, the association between B3GALNT1 
expression and cancer development and progression 
is not well discussed as well. 

Subsequently, all patients were divided into low- 
and high-LMRGPI groups based on the median value 
of risk score both in TCGA and GSE68465 cohorts. 
Subsequent analyses demonstrated that it could be 
used as an independent prognostic index for 
early-stage LUAD. Ultimately, we constructed two 
nomograms to predict each patient's 1-, 3-, and 5-year 
survival probability by integrating LMRGPI with 
other clinicopathological variables, with a series of 
tests being performed to evaluate their discrimination 
and calibration abilities. These results proved that 
LMRGPI is a reliable prognostic index, and the 
nomograms could be an effective tool to predict the 
prognosis of early-stage LUAD. We then investigated 
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the gene mutation landscape, immune function, and 
treatment response in different LMRGPI groups. We 
identified that the high-LMRGPI group harbored a 
more frequent TP53 mutation rate than the low- 
LMRGPI group. Numerous studies identified that 
TP53 mutation is closely correlated with treatment 
resistance and lethal prognosis in lung cancer [41-43]. 
However, many studies revealed that TP53 mutation 
was significantly correlated with remarkable clinical 
benefit from PD-1 inhibitors for patients with LUAD 
since it increases TMB, up-regulates PD-L1 
expression, and remodels TME [43-45]. 

In this study, we also evaluated the relationship 
between LMRGPI and chemotherapeutics efficacy, 
suggesting that lower LMRGPI was correlated with 
the sensitivity to vinorelbine and cisplatin and the 
first-generation epidermal growth factor receptor 
(EGFR) tyrosine kinase inhibitors (TKIs) (gefitinib and 
erlotinib). The results of lung adjuvant cisplatin 
evaluation (LACE) meta-analysis confirmed that 
adjuvant cisplatin plus vinorelbine can significantly 
improve the OS of early-stage LUAD after the 
operation [46]. Because EGFR was frequently mutated 
in patients with LUAD, especially in Eastern Asia, 
numerous studies have attempted to apply 
EGFR-TKIs in early-stage LUAD treatment. The 
results from the ADAURA study reported that 
adjuvant osimertinib (a third-generation EGFR-TKI) 
could significantly prolong the DFS of resectable 
NSCLC with EGFR mutation [47]. Besides, the 
EVIDENCE study also revealed that icotinib could 
significantly improve DFS and has a better tolerability 
profile in these patients [48]. Our study provided a 
novel prognostic index that could stratify patients 
who may benefit from adjuvant chemotherapy or 
targeted therapy. With the promising effect of ICIs in 
advanced/ metastatic lung cancer treatment, more 
and more studies are investigating the possibility of 
immunotherapy in early-stage lung cancer. 
IMpower010 is a randomized multicentre phase 3 
study that explores adjuvant atezolizumab (a PD-L1 
inhibitor) versus best supportive care in early-stage 
NSCLC [49]. The results showed that atezolizumab 
after adjuvant chemotherapy offers a promising 
treatment option for these patients [49]. Given that 
PD-L1 and TMB are the most predominantly used 
biomarkers to predict the efficacy of immunotherapy 
in lung cancer, higher values predict better 
therapeutic efficacy. We investigated the relationship 
between LMRGPI and TMB value and PD-L1 
expression. The results revealed that LMRGPI was 
positively correlated with TMB value and CD274 
expression level. Besides, we used the TIDE algorithm 
to predict the response rate of immunotherapy in 
high- and low-LMRGPI groups. A lower TIDE score 

means a lower potential for immune evasion, 
suggesting patients may benefit from ICIs treatment 
[50]. We observed that lower LMRGPI was 
significantly associated with a higher TIDE score and 
immune dysfunction score, indicating an immune 
dysfunction status. Our study showed that higher 
LMRGPI was associated with superior 
immunotherapy efficacy in early-stage LUAD, and it 
could be a novel biomarker to ICIs efficacy prediction. 
However, there are several inevitable limitations in 
our study. First, although LMRGPI could effectively 
predict the OS and treatment response of early-stage 
LUAD and an independent external cohort was used 
to validate its performance, all these results were 
obtained from the bioinformatic analysis. Second, we 
identified that CAFs were significantly correlated 
with LMRGPI and its infiltration level differed in two 
subtypes. However, these results are observed based 
on algorithm estimation. Third, searching for effective 
prognostic and predictive biomarkers for 
immunotherapy is an arduous task for us and needs a 
long way to go. Our study developed a novel 
biomarker and provided potential insights in this 
area. However, well-designed prospective studies are 
warranted in the future to address this issue. 

Conclusions 
To sum up, lipid metabolism plays a crucial role 

in the prognosis, TME, and antitumor immune 
response of early-stage LUAD. We identified two 
distinct population subtypes according to LMRGs, 
and they have very different prognoses and immune 
functions. Most importantly, we established a novel 
biomarker LMRGPI that could predict the OS and 
treatment response of these individuals. Taken 
together, LMRGPI is a promising biomarker for early- 
stage LUAD patients. 
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