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Abstract 

Background: Necroptosis, a cell death of caspase-independence, plays a pivotal role in cancer biological 
regulation. Although necroptosis is closely associated with oncogenesis, cancer metastasis, and immunity, there 
remains a lack of studies determining the role of necroptosis-related genes (NRGs) in the highly immunogenic 
cancer type, kidney renal clear cell carcinoma (KIRC). 
Methods: The information of clinicopathology and transcriptome was extracted from TCGA database. 
Following the division into the train and test cohorts, a three-NRGs (TLR3, FASLG, ZBP1) risk model was 
identified in train cohort by LASSO regression. The overall survival (OS) comparison was conducted between 
different risk groups through Kaplan-Meier analysis, which was further validated in test cohort. The Cox 
proportional hazards regression model was introduced to assess its impact of clinicopathological factors and 
risk score on survival. ESTIMATE and CIBERSORT algorithms were introduced to evaluate immune 
microenvironment, while enrichment analysis was conducted to explore the biological significance. Correlation 
analysis was applied for the correlation assessment between checkpoint gene expression and risk score, 
between gene expression and therapeutic response. Gene expressions from TCGA were verified by GEO 
datasets and immunohistochemistry (IHC) analysis. 
Results: This NRGs-related signature predicted poorer OS in high-risk group, which was also verified in test 
cohort. Risk score could also independently predict survival outcome of KIRC. Significant changes were also 
found in immune microenvironment and checkpoint gene expressions between different risk groups, with 
immune functional enrichment in high-risk group. Interestingly, therapeutic response was correlated with the 
expressions of NRGs. The expressions of NRGs from TCGA were consistent with those from GEO datasets 
and IHC analysis. 
Conclusion: The NRGs-related signature functions as a novel prognostic predictor of immune 
microenvironment and therapeutic response in KIRC. 

Key words: prognosis, immune microenvironment, therapeutic response, kidney renal clear cell carcinoma, necroptosis, gene 
signature 

Introduction 
Kidney cancer incidence is rising globally, 

particularly in the younger population [1, 2]. In 2020, 
there are more than 431,000 new cases and 179,000 
deaths from kidney cancer in the world [3]. Kidney 
renal clear cell carcinoma (KIRC), the most common 

histological subtype, is characterized by extensive 
tumor heterogeneity, distinct clinical courses, and 
potential specific treatment vulnerabilities [4]. Genetic 
alterations occur frequently in KIRC, such as somatic 
mutations of VHL, PBRM1, SETD2, BAP1, KDM5C, 
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and PI3K-AKT-mTOR pathway genes [4, 5]. Although 
nephrectomy partially or radically showed good 
efficacy in treating localized KIRC, over 30% patients 
present with advanced-stage disease, and 25% of all 
patients ultimately experience disease relapse [6]. In 
recent years, the treatment scenario of advanced KIRC 
has evolved dramatically, with the emergence of 
targeted agents and immune checkpoint inhibitors 
(ICI). Indeed, real-life clinical practice faces the huge 
challenge of optimizing individualized therapeutic 
strategies. Biomarkers and prediction models can be 
applied for improving risk stratification and case 
selection for targeted therapy, immunotherapy, and 
combined therapeutics [4]. To date, no reliable 
predictive biomarkers have been identified for 
mirroring immune microenvironment and 
therapeutic response in KIRC. 

Necroptosis is a caspase-independent necrotic 
cell death by genetical regulation, the main mediators 
of which include receptor interacting protein kinase 1 
(RIPK1) and RIPK3, and mixed lineage kinase 
domain-like (MLKL) [7]. Accumulating evidence 
indicates that necroptosis plays a critical role in 
regulating oncogenesis and cancer progression, but it 
seems to be a double-edged sword [8]. For instance, 
the key mediator of necroptotic pathway, RIPK3 is 
downregulated in several cancer types, which 
associates with the increased tumor aggressiveness 
and chemoresistance [9-11]. This evidence suggests 
that necroptosis plays a positive role in anti-cancer 
progression. Conversely, the key necroptotic 
executioner, MLKL is upregulated in some cancers, 
correlating with highly invasive tumor behavior and 
immunosuppressive microenvironment [12, 13]. In 
addition, experimental studies indicate that cancer 
cells can induce the necroptosis of microvascular 
endothelial cells, thus promoting cancer cell 
extravasation and metastasis [14, 15]. Therefore, the 
function of necroptosis in cancer development is 
complex and context-dependent. 

Interestingly, the spontaneous and mild 
necroptosis of tumor cells triggers pro-tumor 
immunity through releasing immunosuppressive 
molecules to modulate the tumor microenvironment 
including myeloid-derived suppressor cells (MDSC) 
and M2-like macrophages [16]. In contrast, the 
massive and acute necroptosis of tumor cells induced 
by chemotherapy or irradiation is often more 
immunogenetic, increasing the anti-tumor immunity 
through the activation of IFN-γ-expressing T cells 
[16]. Necroptosis has emerged as a promising cancer 
therapeutic target in combination with cancer 
immunotherapy. In the murine model, necroptosis 
induction of tumor cells in situ, can improve 
anti-tumor immunity when synergized with immune 

checkpoint blockade [17, 18]. Numerous key 
molecules in necroptotic pathways have been 
identified to be critical factors for cancer prognosis. 
The decreased MLKL expression is correlated with a 
reduced overall survival (OS) in ovarian carcinoma, 
gastric cancer, and colon cancer [19-21]. The 
upregulated RIPK1 expression associates with a poor 
prognosis in glioblastoma and breast cancer [22, 23]. 

However, it remained unclear whether 
necroptosis-related genes (NRGs) were associated 
with KIRC prognosis. This study was designed to 
construct a NRGs risk model in KIRC and determine 
its relationship with tumor immunity and therapeutic 
response. As presented in the flow process diagram 
(Figure 1), we developed a three-NRGs (TLR3, 
FASLG, ZBP1) signature which could predict OS, 
immune microenvironment, and therapeutic response 
in KIRC, followed by the verification of TCGA test 
cohort, GEO datasets, and clinical histological 
staining. 

Materials and methods 
Data acquisition 

The collection of 12 necroptosis-related genes 
(NRGs) was conducted from the platform 
“http://www.gsea-msigdb.org/gsea/msigdb/search
.jsp”, including CASP8, CFLAR, FADD, FAS, FASLG, 
MLKL, RIPK1, RIPK3, TICAM1, TLR3, TNF, and 
ZBP1. TCGA database provided the information of 
clinicopathology and transcriptome with KIRC 
samples (T) = 539 and normal samples (N) = 72. GEO 
database provided two datasets including GSE40435 
(N = 101, T = 101), and GSE53757 (N = 72, T = 72). 

Construction of a prognostic NRGs signature 
and its validation 

The expression data of 12 NRGs were firstly 
extracted from TCGA database, followed by the 
screening of differentially expressed genes (DEGs) 
between KIRC and normal tissues using R package 
“limma” with the filter conditions (fdrFilter = 0.05, 
logFCfilter = 1). After integrating the expression data 
of DEGs and survival data (more than 30 days), R 
package “caret” was applied to divide them into two 
cohorts (train cohort and test cohort). In train cohort, 
R package “glmnet” and the least absolute shrinkage 
and selection operator (LASSO) regression were 
applied for the NRGs risk signature identification. 
Following the risk score calculation using the formula: 
risk score = ∑ (gene expression × corresponding 
regression coefficient) [24], the subjects were classified 
into high-risk and low-risk groups based on the 
median score. R packages “survival” and 
“survminer” were introduced to evaluate overall 
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survival (OS) based on Kaplan Meier (K-M) method. 
R package “timeROC” was applied for the generation 
of receiver operating characteristic (ROC) curve, 
while the area under the ROC curves (AUCs) of risk 
score, grade, and stage were used to evaluate the 
accuracy for predicting OS. Principal component 
analysis (PCA) was introduced for the exploration of 
group distribution using R package “ggplot2”. 
Univariate and multivariate Cox proportional hazards 
regression models were introduced to evaluate the 
impact of risk score, and clinicopathological factors 
(age, gender, pathological grade, and clinical stage) on 
OS. The same analyses were conducted to validate the 
risk signature power in the test cohort. GSE40435 and 
GSE53757 datasets were further introduced to verify 
the expressions of FASLG, TLR3, and ZBP1. 

Immune microenvironment assessment 
The immune infiltration (immune score and 

stromal score) was assessed by the ESTIMATE 
algorithm [25], followed by analyzing the correlation 
of immune infiltration with risk score. 

Immune enrichment analysis 
Single sample gene set enrichment analysis 

(ssGSEA) was applied for the score calculation of 
immune cells and immune-related functions between 

different risk groups using R package “GSVA”. As the 
annotated reference, “c5.all.v7.4.symbols.gmt” was 
introduced to GSEA software (v 4.1.0) for the 
exploration of potential immunomodulatory 
functions. 

Drug response analysis 
From the CellMiner platform, we obtained the 

NCI-60 data, containing 60 types of cancer cell lines 
and the efficacy of FDA-approved drugs. The 
correlation of NRGs expressions with therapeutic 
response was assessed using Pearson correlation test. 

Immunohistochemistry (IHC) staining 
Eight pairs of paraffin-embedded KIRC and 

adjacent samples were collected in the First Affiliated 
Hospital of Wenzhou Medical University. Slices were 
baked at 65 °C for 2 h, followed by dewaxing and 
antigen retrieval. After 10-min inactivation of 
endogenous enzymes by 3% hydrogen peroxide at 
room temperature, the slices underwent PBS rinsing 3 
times for 3 min each. Following the blocking step by 
bovine serum albumin, the primary antibodies against 
FASLG, TLR3, and ZBP1 were applied to incubate the 
slices overnight at 4 °C. Then washed them with PBS 3 
times for 5 min each. After incubation with the 
secondary antibody at 37 °C for 30 min, the slices 

 

 
Figure 1. The flow process diagram of identifying NRGs risk model. 
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underwent DAB color rendering for 5-10 min, and 
hematoxylin redye for 3 min. The slices were finally 
observed under microscope, followed by integrated 
optical density (IOD) measurement by Image Pro Plus 
6.0 image software. The relative expressions of 
FASLG, TLR3, and ZBP1 were presented as average 
optical density (IOD/positive staining area). 

Statistical analysis 
R software (v 4.1.0), IBM SPSS software (v 22), 

and GraphPad Prism (v 8.3) were applied for all 
statistical analyses and diagram drawing. Chi-Square 
test and K-M method were used to compare the 
characteristics in Table 1 of train cohort, and test 
cohort. The survival comparison and independent OS 
predictors were analyzed using K-M method, 
univariate, and multivariate Cox proportional 
hazards regression model, respectively. Pearson or 
Spearman correlation test was applied to analyze the 
correlation concerning risk score. The two-way 
analysis of variance (ANOVA) in GraphPad Prism 
was conducted for the comparison of IHC 
quantitative results. P values less than 0.05 were 
identified as statistical differences. 

 

Table 1. Characteristics of train cohort, test cohort, and entire 
cohort 

 Train cohort,  
N = 257 

Test cohort,  
N = 256 

Entire cohort,  
N = 513 

P* 

Number (%) Number (%) Number (%) 
Age    0.319 
≤65 165 (64.2) 175 (68.4) 340 (66.3)  
>65 92 (35.8) 81 (31.6) 173 (33.7)  
Gender    0.476 
Female 92 (35.8) 84 (32.8) 176 (34.3)  
Male 165 (64.2) 172 (67.2) 337 (65.7)  
Grade    0.778 
1-2 115 (44.7) 116 (45.3) 231 (45.0)  
3-4 137 (53.3) 137 (53.5) 274 (53.4)  
Unknown 5 (2.0) 3 (1.2) 8 (1.6)  
Stage    0.312 
I/II 160 (62.3) 152 (59.4) 312 (60.8)  
III/IV 97 (37.7) 102 (39.8) 199 (38.8)  
Unknown 0 (0.0) 2 (0.8) 2 (0.4)  
Survival    0.935 
Live 172 (66.9) 172 (67.2) 344 (67.1)  
Dead 85 (33.1) 84 (32.8) 169 (32.9)  

*Statistical analysis in age, gender, grade, stage, and survival between train cohort 
and test cohort. 

 

Results 
Identification of differentially expressed NRGs 
with prognostic value 

We firstly divided 513 KIRC patients with 
survival time more than 30 days into train cohort (N = 
257) and test cohort (N = 256). Table 1 shows the 
characteristics of train cohort, test cohort, and entire 
cohort. From 12 NRGs mentioned above, we then 
screened 5 DEGs (FAS, FASLG, MLKL, TLR3, and 

ZBP1) between KIRC and normal tissues. Among 
these DEGs, we further identified three prognostic 
genes in train cohort, including FASLG (hazard ratio, 
HR = 1.314; 95% confidence interval, 95%CI = 
1.016-1.700; P = 0.038), TLR3 (HR = 0.744; 95%CI = 
0.623-0.889; P = 0.001), and ZBP1 (HR = 2.394; 95%CI = 
1.513-3.789; P < 0.001) (Figure 2A). 

Construction and validation of the NRGs risk 
signature 

In train cohort, LASSO regression model analysis 
was conducted on the remaining prognostic NRGs 
(FASLG, TLR3, and ZBP1), which finally confirmed 
the least errors of three NRGs including FASLG, TLR3, 
and ZBP1 in the risk signature (Figure 2B-2C). The 
formula was listed as follows: risk score = (0.115 × 
FASLG expression) + (-0.316 × TLR3 expression) + 
(0.658 × ZBP1 expression). K-M method was 
performed to determine the impact of risk signature 
on prognosis, finding that KIRC patients in low-risk 
group had a longer OS compared with those in 
high-risk group (P < 0.001) (Figure 2D). The AUCs of 
risk score for predicting 1/3/5/7/10-year OS were 
0.707, 0.635, 0.667, 0.715, and 0.712, respectively 
(Figure 2E). The AUCs of grade and stage for 
predicting 10-year OS were 0.594 and 0.675, 
respectively (Figure 2F). The same coefficients were 
applied for the risk score calculation in test cohort. 
Consistently, test cohort showed the similar result in 
survival outcome (P < 0.01) (Figure 2G). The AUCs of 
risk score for predicting 1/3/5/7/10-year OS were 
0.669, 0.626, 0.670, 0.662, and 0.775, respectively 
(Figure 2H). The AUCs of grade and stage for 
predicting 10-year OS were 0.685 and 0.668, 
respectively (Figure 2I). The risk score formula was 
also applied to predict OS between high- and low-risk 
groups in other subtypes of renal cell carcinoma 
(RCC), such as kidney renal papillary cell carcinoma 
(KIRP) and kidney chromophobe (KICH), which 
showed a poorer ability in predicting OS than KIRC 
subtype (Figure S1). 

In train cohort, the distribution of ranked risk 
scores and individual survival status were shown in 
Figure 3A, 3B, indicating a longer survival time for 
KIRC patients in low-risk group. Moreover, the 
between-group distribution was discrete in PCA 
scatter plot (Figure 3C). The comparisons in Figure 
3D suggested the upregulated expressions of FASLG 
and ZBP1, but the downregulated expression of TLR3 
in high-risk group. Consistently, the results including 
risk score distribution, individual survival status, 
PCA scatter plot, and gene expression comparisons 
were all successfully validated in test cohort (Figure 
3E-3H). 
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Figure 2. The NRGs risk model construction in KIRC. (A) The NRGs with prognostic values assessed by univariate Cox proportional hazards regression model in train 
cohort. (B-C) The selection of three-NRGs for risk model by LASSO analysis. K-M curves and time-dependent ROC curves for OS in (D-F) train cohort and (G-I) test cohort. 
Abbreviation: KIRC, kidney renal clear cell carcinoma; NRGs, necroptosis-related genes; LASSO, the least absolute shrinkage and selection operator; K-M, Kaplan-Meier; OS, 
overall survival. 

 

The risk score in three-NRGs signature 
independently predicts OS in KIRC 

Cox proportional hazards regression model was 
introduced for the screening of the OS independent 
predictors. In univariate analysis, the factors with 
significant difference were listed as follows: risk score 
(HR = 3.106; 95% CI = 2.023-4.769; P < 0.001), clinical 
stage (HR = 2.117; 95%CI = 1.734-2.584; P < 0.001), and 
pathological grade (HR = 2.265; 95%CI = 1.697-3.021; 
P < 0.001) (Figure 4A). Univariate regression analysis 

indicated no statistical difference in gender which was 
not included in multivariate Cox proportional 
hazards regression model. Therefore, multivariate 
Cox proportional hazards regression model was 
further applied to analyze these significant factors, 
finding that the independent predictors for OS 
included risk score (HR = 2.717; 95%CI = 1.706-4.329; 
P < 0.001), clinical stage (HR = 1.947; 95%CI = 
1.542-2.458; P < 0.001) (Figure 4B). 
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Figure 3. Validation of this NRGs-related risk model. (A) The risk score distribution and (B) OS status in train cohort. (C) PCA plot and (D) the comparison of FASLG, 
TLR3, and ZBP1 expressions between high- and low-risk groups in train cohort. (E) The risk score distribution and (F) OS status in test cohort. (G) PCA plot and (H) the 
comparison of FASLG, TLR3, and ZBP1 expressions between high- and low-risk groups in test cohort. 

 
Differential risk score was further compared 

between groups based on clinicopathological factors. 
G3-4 and stage III-IV groups had higher risk scores 
than G1-2 (P < 0.01) and stage I-II (P < 0.01), but no 
statistical difference was found in risk scores between 
groups of age and gender in train cohort (Figure 

4C-4F), which was successfully validated in test 
cohort (Figure 4G-4J). 

The NRGs signature closely associates with 
tumor immunity 

The ESTIMATE algorithm was introduced to 
assess immune infiltration, showing a positive 
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correlation of risk score with immune score (P < 0.001; 
Figure 5A), but no statistical difference was found 
between risk score and stromal score (Figure 5B). The 
score comparisons were performed in 16 immune cell 
types and 13 kinds of immune-related functions 
between different risk groups. Among these immune 
cells, 9 types including B cells, CD8 positive T cells, 
Macrophages, pDCs, T helper cells, Tfh, Th1 cells, Th2 
cells, and TIL, had higher scores in high-risk group 
than in low-risk group (Figure 5C). Among these 
immune-related functions, 12 kinds including 
Parainflammation, MHC class I, inflammation 
promoting, APC co-inhibition or co-stimulation, 
check point, Cytolytic activity, CCR, T cells 

co-inhibition or co-stimulation, HLA, and Type I IFN 
Response, had higher scores in high-risk group than 
in low-risk group, except Type II IFN Response 
(Figure 5D). We further enriched the immuno-
modulatory functions, including regulation of 
monocyte differentiation, regulation of T cell 
activation, T helper 1 type immune response, T helper 
cell lineage commitment, and abnormal proportion of 
CD8 positive T cells (Figure 5E). In addition, the 
expressions of immune checkpoint genes (CTLA-4, 
LAG-3, PD-1, and SIGLEC15) were positively 
correlated with risk scores, and were significantly 
higher in high-risk group (Figure 6A-6H). 

 

 
Figure 4. Prognostic values of clinicopathological factors and risk score. (A-B) Screening the independent predictors for OS in KIRC by univariate and multivariate 
Cox proportional hazards regression model. Since univariate regression analysis indicated no statistical difference in gender, it was not included in multivariate Cox proportional 
hazards regression model. The comparison of risk score between groups based on (C) pathological grade, (D) clinical stage, (E) age, and (F) gender in train cohort. The 
comparison of risk score between groups based on (G) pathological grade, (H) clinical stage, (I) age, and (J) gender in test cohort. 
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Figure 5. Correlation of NRGs-related signature with immune microenvironment. The association between risk score and (A) immune score, or (B) stromal score. 
Boxplots comparing the scores of (C) immune cells and (D) immune-related functions between different risk groups. (E) Immune functions enriched in high-risk group. 

 

The expressions of NRGs associates with 
therapeutic response 

To explore the potential clinical significance of 
NRGs signature, we integrated the data concerning 
cancer cell expressions and the efficacy of 
FDA-approved drugs. Cancer cells with higher 
FASLG expression were more sensitive to LEE-011, 

oxaliplatin, and palbociclib (Figure 7A). Cancer cells 
with higher TLR3 expression were more sensitive to 
JNJ-42756493 and IPI-145 (Figure 7B), but they were 
correlated with increased drug resistance to 
tyrothricin. Cancer cells with higher ZBP1 expressions 
were more sensitive to the following drugs including 
LDK-378, alectinib, and brigatinib (Figure 7C). 



Int. J. Med. Sci. 2022, Vol. 19 
 

 
https://www.medsci.org 

385 

 
Figure 6. Correlation of NRGs-related signature with checkpoint gene expressions. The association of risk score with the expression levels of (A-B) CTLA-4, (C-D) 
LAG-3, (E-F) PD-1, and (G-H) SIGLEC15. 
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Figure 7. Correlation of NRGs expressions with therapeutic response. The association between drug sensitivity and the expressions of (A) FASLG, (B) TLR3, and (C) 
ZBP1. 

 

Differential expressions of NRGs between 
KIRC and normal samples 

Through TCGA database, we found the 
significant upregulation of FASLG, TLR3, and ZBP1 
expressions both in train cohort and test cohort (P < 
0.001; Figure 8A-8B). Consistently, in GSE53757 and 
GSE40435 datasets, the expressions of the three genes 
were significantly higher in KIRC tissues than in 
normal ones (P < 0.001; Figure 8C-8D). At the 
histological level, we further used IHC staining to 
validate the differential expressions of FASLG, TLR3, 
and ZBP1 in KIRC samples (Figure 8E-8H). 

The construction of a NRGs nomogram for 
predicting survival 

To promote the clinical value of this novel risk 
model, a nomogram including risk score and 
clinicopathological features was constructed to 
predict 1/3/5/7/10-year OS (Figure 9A). The 
calibration plots for predicting 1/3/5/7/10-year OS 
based on the NRGs nomogram exhibited a favorable 
agreement of actual probability with the predicted 
probability (Figure 9B). To highlight the role of risk 
score in this nomogram, we constructed a second 
nomogram including only clinicopathological 

features, showing the inferior prediction effect 
especially in predicting 7- and 10-year OS (Figure S2). 

Discussion 
Clear cell renal cell carcinoma (ccRCC), also 

known as KIRC, is featured by angiogenic, 
inflammatory, and highly immunogenic 
microenvironment, showing different sensitivity to 
anti-angiogenic drugs and immunotherapy. The 
exploration of risk prediction model remains a big 
challenge to the selection of precision medicine for 
KIRC patients. New evidence suggests that RCC cells 
with high grade exhibit high levels of RIPK1 and 
RIPK3, which are more susceptible to necroptosis 
triggered by TNF receptor 1 [26]. Necroptotic 
pathway is involved in tumor necrosis [27], 
contributing to about half of the necrosis in head and 
neck squamous cell carcinoma [28]. In KIRC, necrosis 
is a common pathological phenomenon correlating 
with invasive phenotypes and poor prognosis [29]. In 
addition, necroptosis is correlated with microvascular 
invasion which has potential prognostic value in RCC 
[30]. These evidence leads to the speculation that 
tumor spontaneous necroptosis is associated with 
adverse clinical outcome of KIRC. As a cancer type of 
high immunogenicity, KIRC microenvironment 
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exhibits a high-level T cell infiltration [31]. Within the 
spectrum of immunogenic cell death and drug 
resistance, necroptosis targeting has emerged as a 
potent anti-cancer therapeutic strategy [32, 33]. 

Therefore, this study explored the potential impact of 
NRGs signature on KIRC microenvironment and its 
corresponding therapeutic response. 

 

 
Figure 8. Differential expressions of NRGs by GEO and IHC staining validation. The comparison of FASLG, TLR3, and ZBP1 expressions between KIRC and normal 
samples in train cohort (A) and test cohort (B). Differential expressions of FASLG, TLR3, and ZBP1 validated by GSE53757 (C) and GSE40435 (D) datasets. (E-G) IHC staining 
was applied to validate the differential expressions of FASLG, TLR3, and ZBP1 using KIRC samples from our clinical center. Scale bar = 50 µm. (H) Image Pro Plus 6.0 image 
software was applied to assess the relative expressions of FASLG, TLR3, and ZBP1 which were presented as average optical density. Data are expressed as mean ± SEM. 
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Figure 9. The construction of a nomogram for predicting survival. (A) A nomogram including risk score and clinicopathological features was constructed to predict 
1/3/5/7/10-year OS. (B) The calibration plots for predicting 1/3/5/7/10-year OS based on the NRGs nomogram. 

 
We firstly screened out the differentially 

expressed NRGs with prognostic values in KIRC, 
from which we constructed the novel risk signature 
consisting of three NRGs (FASLG, TLR3, and ZBP1). 
KIRC patients in high-risk group exhibited the 
upregulated expressions of FASLG and ZBP1 but a 
downregulated TLR3 expression. The pathway of Fas 
and Fas Ligand (FasL, FASL, FASLG) can initiate 
necroptosis upstream of RIPK3 and MLKL in renal 
tubular epithelial cells [34]. The cell surface FasL 
induces Fas-mediated killing, while autocrine 

secretion of soluble FasL can protect RCC cells from 
cytotoxic lymphocytes killing [35]. Previous studies 
indicated that FasL overexpression contributes to 
immune escape and associates with a poor prognosis 
in RCC [36, 37]. As the toll-like receptor (TLR) family 
member, TLR3 has attracted most attention in its 
immune functional role, and prior studies report its 
high expression in immune and epithelial cells. In 
recent years, TLR3 overexpression is also found in 
multiple cancer types, but increasing evidence reveals 
that in tumorigenesis and progression, the dual or 
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contradictory roles of TLR3 correlate with 
heterogeneous tumor cells and complex 
microenvironment [38]. TLR3/TICAM-1 axis induces 
necroptosis via RIPK3 and MLKL [39]. Damage- 
associated molecular patterns (DAMPs) released from 
necrotic cells, such as double-stranded RNA (dsRNA), 
can activate TLR3 and subsequently lead to 
proinflammatory response. TLR3 expression in 
human cancers is closely related to clinical 
characteristics, prognosis, metastasis, and therapy 
resistance [38, 40]. A study revealed that TLR3 is 
frequently overexpressed in both primary and 
metastatic KIRC [41]. ZBP1 interacts with RIPK3 to 
mediate tumor necroptosis [42]. The role of ZBP1 
remains ambiguous in tumor progression and 
metastasis. Recent research indicated that ZBP1 is 
highly increased in late stage of mouse and human 
tumors, and ZBP1 deletion inhibits tumor metastasis 
in pre-clinical cancer models [43]. The expression of 
ZBP1 is increased in human cancers such as ovarian 
cancer and colon cancer, which is also associated with 
poor prognosis [44, 45]. Interestingly, we also 
validated the significant upregulation of FASLG, 
TLR3, and ZBP1 expressions through TCGA, GEO 
datasets, and IHC staining samples from our center. 
The risk score calculated based on the three-NRGs 
signature could independently predict survival 
outcome in patients with KIRC. 

The tumor immune microenvironment of KIRC 
has a high degree of immune cells infiltration with 
various immunomodulatory molecules [46], which 
may critically impact the immunotherapeutic 
resistance and efficacy [47]. Based on the score 
comparisons of immune cell types and 
immune-related functions, we found that high-risk 
group with shorter OS possessed higher scores in 
macrophages, CD8 positive T cells, T cell co-inhibition 
and co-stimulation, suggesting an unbalanced and 
dynamic immune regulation in KIRC progression. 
Furthermore, the increased expressions of T cell 
exhaustion markers caused by persistent antigenic 
stimulation can lead to the functional loss of CD8 
positive T cells [48]. Consistently, our study indicated 
the elevated expressions of immune checkpoint genes, 
including CTLA-4, LAG-3, PD-1, and SIGLEC15. The 
enriched analysis also revealed the critical role of 
immunomodulatory functions in KIRC progression, 
such as abnormal proportion of CD8 positive T cells, T 
helper 1 type immune response. Consistent with 
previous studies [49, 50], our study found that cellular 
immune response was active in KIRC of the high-risk 
group. However, the overall effect of immunogenic 
cell death (ICD) may be limited by the defense 
mechanisms of tumor, such as PD-1 pathway. 
Interestingly, experimental evidence indicates the 

crosstalk between necroptosis and complement- 
dependent cytotoxicity acting on cancer cells [51]. 
Therefore, the combination of targeting necroptosis- 
related ICD and immunotherapy could be a novel 
therapeutic direction for KIRC. 

Based on the TCGA dataset analyses, a novel 
cluster named mixed subgroup was identified and 
exhibited striking overexpression of mitochondrial 
DNA (mtDNA) [52]. Mixed subgroup affiliation was 
associated with a highly significant shorter OS in 
KIRC [52]. mtDNA has been reported to release to the 
cytosol of cancer cells that bear necroptosis and ZBP1 
senses the cytosolic mtDNA for the initiation of cancer 
necroptosis under glucose deprivation or stress 
condition [53-55]. Furthermore, endogenous 
oxidatively damaged mtDNA can induce 
proinflammation in epithelial cells through binding to 
ZBP1 [56]. In our model, ZBP1 has the highest hazard 
ratio among three NRGs. Based on the evidence of 
necroptosis and ZBP1 expression, we deduce a close 
affiliation between the mixed subgroup and the 
high-risk group in our NRGs risk model. In addition, 
we analyzed the expression of mitochondrial and 
angiogenesis-related genes in our NRGs risk model. 
The high-risk group displayed significantly higher 
levels of mitochondrial gene expressions and lower 
levels of angiogenesis gene expressions compared to 
the low-risk group (Figure S3, S4). This evidence 
strengthens the role of the high-risk group in our 
model, for the upregulation of mitochondrial genes is 
associated with tumor growth and cancer multidrug 
resistance [57]. On the other hand, lower angiogenesis 
gene expression is associated with a poor prognosis in 
advanced RCC [58]. 

To promote the clinical transformation of the 
NRGs signature, we further identified the sensitive 
FDA-approved drugs for multiple cancer cell types 
with higher expressions of FASLG, TLR3, and ZBP1. 
Increased expression of FASLG is associated with 
sensitivity of cancer cells to oxaliplatin, ribociclib 
(LEE-011) and palbociclib. Oxaliplatin plus 
gemcitabine is a combination-therapeutic strategy for 
advanced KIRC [59], while the combination of 
oxaliplatin and decitabine is a promising option to 
treat KIRC [60]. Ribociclib and palbociclib are orally 
administered small-molecule inhibitors of CDK4/6, 
which function in synergy with other drugs to 
suppress KIRC in preclinical models [61-63]. The 
upregulated expression of TLR3 was associated with 
sensitivity of cancer cells to erdafitinib (JNJ-42756493) 
and duvelisib (IPI-45), but it was associated with 
increased drug resistance to tyrothricin. Erdafitinib 
shows preliminary clinical activity in advanced solid 
tumors with genomic alterations of Fibroblast Growth 
Factor Receptor (FGFR) pathway, which is also a 
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crucial target for KIRC treatment [64, 65]. Moreover, 
tyrothricin complex contains gramicidin A as a 
potential agent for KIRC therapy [66, 67]. PI3K/AKT 
and VHL/HIF pathways are closely connected to 
form a large signaling network contributing to KIRC 
[68]. In clinical practice, a PI3K inhibitor, not 
duvelisib, shows anti-cancer effects on RCC [69]. The 
upregulation of ZBP1 expression was correlated with 
sensitivity of cancer cells to ceritinib (LDK-378), 
alectinib, and brigatinib. Recently, clinical case studies 
demonstrated that these small molecule inhibitors of 
anaplastic lymphoma kinase are promising agents for 
RCC precise treatment [70, 71]. 

Finally, a NRGs nomogram was constructed to 
predict 1/3/5/7/10-year OS by combining NRGs risk 
score and clinicopathological features, showing a 
favorable agreement between the actual and 
predicted probability. However, this study still exists 
some limitations. Firstly, our study is retrospective in 
nature, requiring the use of prospective studies to 
validate the findings. Secondly, larger KIRC cohorts 
are still required to test the applicability of the 
necroptosis related signature. Thirdly, the novel 
molecular mechanisms of NRGs in KIRC need to be 
investigated via in vivo and in vitro experiments. 

Conclusions 
Based on the systematic analyses, we identified 

and verified a three-NRGs (TLR3, FASLG, ZBP1) risk 
signature with good performance in predicting 
survival outcome, immune microenvironment, and 
therapeutic sensitivity in KIRC. These findings offer 
molecular-level evidence to the critical role of 
necroptotic process in regulating immune 
microenvironment and therapeutic response in KIRC. 
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