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Abstract 

Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by cognitive 
impairment and memory loss, for which there is no effective cure to date. In the past several years, 
numerous studies have shown that increased inflammation in AD is a major cause of cognitive 
impairment. This study aimed to reveal 22 kinds of peripheral immune cell types and key genes associated 
with AD. The prefrontal cortex transcriptomic data from Gene Expression Omnibus (GEO) database 
were collected, and CIBERSORT was used to assess the composition of 22 kinds of immune cells in all 
samples. Weighted gene co-expression network analysis (WGCNA) was used to construct gene 
co-expression networks and identified candidate module genes associated with AD. The least absolute 
shrinkage and selection operator (LASSO) and random forest (RF) models were constructed to analyze 
candidate module genes, which were selected from the result of WGCNA. The results showed that the 
immune infiltration in the prefrontal cortex of AD patients was different from healthy samples. Of all 22 
kinds of immune cells, M1 macrophages were the most relevant cell type to AD. We revealed 10 key 
genes associated with AD and M1 macrophages by LASSO and RF analysis, including ARMCX5, EDN3, 
GPR174, MRPL23, RAET1E, ROD1, TRAF1, WNT7B, OR4K2 and ZNF543. We verified these 10 genes by 
logistic regression and k-fold cross-validation. We also validated the key genes in an independent dataset, 
and found GPR174, TRAF1, ROD1, RAET1E, OR4K2, MRPL23, ARMCX5 and EDN3 were significantly 
different between the AD and healthy controls. Moreover, in the 5XFAD transgenic mice, the differential 
expression trends of Wnt7b, Gpr174, Ptbp3, Mrpl23, Armcx5 and Raet1e are consistent with them in 
independent dataset. Our results provided potential therapeutic targets for AD patients. 
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Introduction 
Alzheimer’s disease (AD) is one of the most 

common neurodegenerative diseases with a high 
prevalence [1], which is currently difficult to cure and 
imposes a heavy burden on both patients and families 
[2]. The main clinical manifestations of AD patients 
are memory loss and cognitive dysfunction, and its 
pathology is mainly characterized by Aβ deposition 
[3], tau protein hyperphosphorylation [4], neuro-
fibrillary tangles [5] and an increase in inflammation 
[6]. 

A growing evidence suggests that neuro-
inflammation is a major player in AD pathology. 
Microglia and astrocytes are actively involved in the 

immune response of the Central Nervous System 
(CNS) [7, 8]. During the development of AD, 
microglia enter an activated state [9], which may 
affect neuronal apoptosis and the maintenance of 
synaptic plasticity [10]. Activated microglia 
internalize pathogenic substances in the brain 
through cytosolic drinking, phagocytosis or receptor- 
mediated endocytosis [11-13]. However, microglia in 
the aging brain are subject to dysfunction or persistent 
activation [14-16], which usually leads to an 
exacerbation of AD pathology. Transcriptome studies 
have revealed that activated astrocytes also exist in 
AD [17]. It has been proposed that inflammatory 
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injury induces the A1 astrocyte through the NF-κB 
pathway. What’s more, astrocytes of the A1 
phenotype can express inflammatory mediators [18]. 
The homeostatic function of astrocytes is affected in in 
neurodegenerative disorders which induces the death 
of neurons and oligodendrocytes [19]. Moreover, 
activated microglia and astrocytes could interact and 
promote neurodegeneration [20]. 

Several recent studies have highlighted the close 
association of AD and peripheral inflammation [21]. 
For example, the presence of pro-inflammatory 
cytokines may increase the probability of AD in obese 
people [22], and obesity has been listed as one of the 
risk factors for AD [23, 24]. Strong evidence showed 
that type II diabetes increases the risk of AD [25]. 
Moreover, peripheral immune cells, including 
macrophages, natural killer (NK) cells and 
neutrophils, are actively involved in the pathological 
response to AD [26]. Monocyte chemokine receptors, 
such as CXCL1, are more highly expressed in AD 
patients [27]. And neutrophils can enter the CNS of 
AD mice and surround Aβ plaques via neutrophil 
extracellular traps [28], which may lead to increased 
neuroinflammation [29]. In addition, T regulatory 
cells (TRegs) are at high peripheral level in AD 
patients [30], and the increase of TRegs could be 
beneficial to AD patients, which affect microglia 
responses [31]. In conclusion, immune cells are 
involved in the occurrence of AD. The molecular 

mechanisms between immune cells and the 
occurrence of AD needs to be further investigated. 

In this study, we explored the relationship 
between immune cells and AD and identified 
AD-associated key genes by a range of bioinformatics 
methods. We revealed the alteration of immune 
infiltration of AD pathology, explored AD-associated 
immune cells, and identified AD-related key genes 
which affected the occurrence and development of 
AD. Our results refined the current knowledge on 
immune infiltration of AD pathology and provided a 
valuable resource for future studies on immune- 
related signaling pathways in AD. 

Methods and Materials 
Data preprocessing and immune cell 
evaluation 

As shown in Figure 1, we first downloaded the 
GSE33000 dataset from Gene Expression Omnibus 
(GEO) database. The dataset including 310 samples 
from the prefrontal cortex of AD patients and 157 
samples from healthy controls. We used R software to 
process the raw data of the GSE33000 dataset. Then 
the raw matrix was normalized by the limma package 
(version 3.46.0) [32]. CIBERSORT was performed to 
identify the composition of 22 immune cells from 
gene expression profiles [33]. If the immune cell type 
is not detected in more than half of all samples, this 

cell type will be excluded. The 
retained cell types could be detected 
in most samples. We determined the 
differential immune cells between 
two groups (p-value < 0.05) by 
wilcox.test. The level of immune cell 
infiltration was demonstrated using 
ggplot2 (version 3.3.3) and 
pheatmap (version 1.0.12) packages. 
As for external verification, we 
downloaded the GSE44770 dataset, 
which includes 129 AD samples and 
101 healthy controls of the 
prefrontal cortex. The raw data of 
the GSE44770 dataset were also 
processed in the same way of 
GSE33000 dataset. 

WGCNA 
Firstly, the raw expression 

matrix of the dataset was 
normalized by the limma package, 
and genes in the top 25% variance of 
all samples were screened, then 
gene co-expression networks were 
constructed using WGCNA package 

 

 
Figure 1. Flow chart of this study. GEO: Gene Expression Omnibus, AD: Alzheimer’s Disease, WGCNA: 
weighted gene co-expression network analysis, LASSO: least absolute shrinkage and selection operator, RF: 
random forest, ROC: receiver operating characteristic. 
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(version 1.70-3) [34]. We first determined an 
appropriate soft threshold power to achieve a 
scale-free topology. By calculating the similarity 
between genes, the coefficient of similarity between 
genes was obtained, and genes were clustered into 
different modules and labeled with different colors. 
We set the minimum number of genes per module to 
30. Trait information was based on the outcome of 
immune infiltration and disease. Correlations 
between modules and the trait information were 
calculated through Pearson correlation method. The 
module with the highest correlation with traits was 
selected for subsequent analysis. Then we performed 
further screening based on gene significance (GS) and 
module importance (MM). 

Functional enrichment analysis 
The Kyoto Encyclopedia of Genes and Genomes 

(KEGG) and Reactome pathway analysis of key 
module genes were performed by clusterProfiler 
(version 3.18.1) [35] and ReactomePA [36] (version 
1.34.0) packages. The significance criterion was 
p-value<0.05. 

Construction of models and identification of 
key genes 

To filter out the key genes, we analyzed the 
selected candidate module genes using the least 
absolute shrinkage and selection operator (LASSO) 
and random forest (RF), which were used to calculate 
the importance of key genes in the dataset. The 
“randomForest” (version 4.6-14) and “glmnet” 
(version 4.1-1) packages were adopted for LASSO and 
RF analysis [37]. The data were randomly divided into 
training cohort and test cohort, and the intersection of 
the two gene lists from the training cohort by LASSO 
and RF analysis was regarded as the key genes. We 
used VennDiagram (version 1.6.20) [38] to visualize 
the intersection of gene lists. The sensitivity and 
specificity of the model were validated by receiver 
operating characteristic (ROC) curve using “ROCR” 
package (version 1.0-11) [39]. 

Validation of key genes in GEO datasets 
In order to validate the relationship between AD 

and key genes, we constructed logistic regression 
model based on the common genes of the two gene 
lists in the training cohort. The internal data GSE33000 
were randomly grouped according to the test cohort 
and training cohort 3/7. We generated logistic 
regression model in the training cohort, and the test 
cohort was used for verification. The ROC curve of the 
pROC (version 1.17.0.1) package was used to evaluate 
the effectiveness of the model [40]. Confusion matrix 
evaluated the accuracy of the model. In addition, we 
also use k-fold cross-validation to verify our results. 

The samples of the GSE33000 dataset were randomly 
divided into 10 equal parts, each time 1 of the 10 parts 
was used as the test cohort, and all the others were 
used as the training cohort. The maximum test cohort 
accuracy and training cohort accuracy were found for 
ten cross-validations, the fold corresponding to the 
maximum accuracy was used as the test cohort and 
the rest as the training cohort. The ROC and confusion 
matrix were also used to evaluate the effectiveness of 
the model in the test and training cohort. We also 
verified the relative expression levels of key genes in 
the GSE44770 dataset. The ggboxplot was used to 
display the relative expression levels of key genes in 
the AD and control groups. We used T-test for 
statistical analysis between two groups. The 
significance criterion was p-value<0.05. 

Animals 
5.5-month-old heterozygous 5XFAD mice (on a 

C57BL/6N background) overexpress mutant human 
amyloid beta (A4) precursor protein 695 (APP) with 
the Swedish (K670N, M671L), Florida (I716V), and 
London (V717I) Familial Alzheimer's Disease (FAD) 
mutations along with human presenilin 1 (PS1) 
harboring two FAD mutations, M146L and L286V. 
Both transgenes are regulated by the mouse Thy1 
promoter to drive overexpression in the brain [41]. 
The mice are kept in Tongji University Animal Center 
with constant temperature and humidity, light and 
dark cycle for 12h. The control group and the AD 
group consist of two male mice and two female mice, 
respectively. 

RNA extraction and quantitative real 
time-PCR 

We extract RNA from the prefrontal cortex of all 
mice by RNAiso Plus (9109, TaKaRa, Dalian, China) 
following the manufacturer’s instructions. 
Quantitative real-time PCR was carried out using the 
AceQ Universal SYBR qPCR Master Mix (Q411, 
Vazyme, Biotech, Nanjing, China). Relative 
expression levels of genes were calculated by ΔΔCt 
method and normalized to β-Actin and compared 
with control samples. All sequences for RNA primers 
are shown in Table 1. 

Statistical analysis 
All data are presented as mean ± standard 

deviation (SD). Each experiment was replicated at 
least three times. Data visualization and analysis were 
performed with GraphPad Prism 8 (GraphPad 
Software Inc., La Jolla, CA, USA). Statistical analysis 
was performed using student’s t-test. 
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Table 1. Lists of primer sequences used for quantitative real-time 
PCR 

Genes Sequences 
β-Actin Forward: CTAAGGCCAACCGTGAAAAG 

Reverse: ACCAGAGGCATACAGGGACA 
Ptbp3 Forward: CTCGCTTAGACCTTCCTACTGG 

Reverse: CTGCTTGAGGAAATGCGATGGC 
Mrpl23 Forward: GTTTGCGGGACACCGAAAG 

Reverse: CCACCCAGTTGGTAAAGGGG 
Armcx5 Forward: AAGAGCGCAGGTCCAACTTC 

Reverse: AGTCATTCAGCCCCTTTCCA 
Wnt7b Forward: ATGAGGACATGGGACCCTCA 

Reverse: AGCCCTGGCAGTTTCTTACC 
Edn3 Forward: GCTGCACGTGCTTCACTTAC 

Reverse: GCTGGGAGCTTTCTGGAACT 
Raet1e Forward: ATCCTACCTCAGCAGACCTTC 

Reverse: TGGTGTTAGACACCTTGTCCC 
Gpr174 Forward: TCTCCAAGGTAAGTGGTGCC 

Reverse: TGGCTGCTGGAATGATCCAC 
Traf1 Forward: GCCCTGGACTGAGTTCCTATG 

Reverse: GAGGGGGACCCTGGGTATT 
 

Results 
Immune infiltration was altered in the 
prefrontal cortex of AD patients 

GSE33000 dataset include 310 AD samples and 

157 healthy samples from the prefrontal cortex. 
CIBERSORT was performed to obtain the relative 
composition of 22 kinds of immune cells (Figure 2A). 
The composition of the 22 kinds of immune cells was 
shown in Figure 2B, and the immune infiltration was 
different in AD and healthy samples. As described in 
materials and methods, we found 8 cell types, 
memory B cells, resting dendritic cells, neutrophils, 
activated NK cells, plasma cells, resting memory CD4 
T cells, CD8 T cells and follicular helper T cells were 
not detected in more than half of all samples, so we 
excluded these cell types, and the remained 14 cell 
types were used for subsequent analyses. Pearson 
correlation coefficients were used to calculate the 
correlation of the 14 immune cell types with AD. As 
shown in Figure 2C, M2 macrophages, CD4 naive T 
cells, regulatory T cells, eosinophils, gamma delta T 
cells, M1 macrophages, resting mast cells, M0 
macrophages and activated CD4 memory T cells are 
positively correlated with AD. 

 

 
Figure 2. Immune Infiltration Analysis. (A) Heatmap showed the composition of 22 kinds of immune cells in each sample. The relative composition was higher from blue 
to red. Each row in the heatmap was a sample. (B) Boxplot of the composition of immune cells. (C) Correlation matrix of 14 immune cells and disease. Red represents positive 
correlation, and blue represents negative correlation. 
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Figure 3. WGCNA revealed gene co-expression networks and module-trait relationships. (A) Selecting the best soft threshold power β. (B) Dendrogram of top 
25% variance genes. (C) The heatmap of module-trait relationships. The black module had the strongest correlation with M1 macrophages. (D) The scatterplot of gene 
significance (GS) against module membership (MM) in the black module. 

 

M1 macrophages were highly associated with 
AD 

WGCNA was utilized to analyze the 
co-expression networks associated with immune cells 
in AD. We normalized the data of the GSE33000 
dataset and subsequently screened the genes with the 
top 25% variance, and 4142 genes which meet the 
requirement were obtained. Then we chose soft 
threshold power β = 14 to build a scale-free 
co-expression network, the scale-free R2 > 0.85 (Figure 
3A). Based on the similarity between genes, the 4142 
genes were clustered into 14 different color modules 
(Figure 3B, 3C). Correlation analysis was performed 
between modules, the 14 retained immune cell types 
and disease status. The module exhibiting highest 
positive correlation with AD was black module, 
which contain 336 co-expression genes, and the 
immune cell exhibiting highest positive correlation 
with black module was M1 macrophages (Figure 3C), 
suggesting M1 macrophages were highly associated 
with AD. 

Genes in black module were mainly affect 
nucleotide excision repair, ion transport and 
Hedgehog signaling pathway 

To further explore the potential biological 
pathways and processes about the black module 
genes, we performed KEGG and Reactome functional 
annotation analyses based on 336 black module genes 
(Figure 4A, 4B). The results of KEGG pathway 
analysis showed that black module genes were 
significantly enriched in nucleotide excision repair, 
Hepatitis B, Hedgehog signaling pathway and ABC 
transporters. The results of Reactome pathway 
analysis suggested that black module genes were 
mainly enriched in Transcription-Coupled Nucleotide 
Excision Repair (TC-NER), Synthesis of active 
ubiquitin: roles of E1 and E2 enzymes, Programmed 
Cell Death, Organic anion transporters, Intrinsic 
Pathway for Apoptosis, Hedgehog 'on' state, Cell 
death signaling via NRAGE, NRIF and NADE, 
Apoptosis. Based on the p-value and frequency of 
each term, these results suggested that the black 
module genes mainly affect nucleotide excision 
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repair, ion transport and Hedgehog signaling 
pathway. 

Identification and validation of 10 genes 
associated with M1 macrophages and AD in 
GEO datasets 

As the WGCNA results demonstrated, black 
module was the key module associated with M1 
macrophages and AD. Based on the cut-off criteria 
(|MM| > 0.8 and |GS| > 0.2), 242 genes with high 

connectivity in the black module were selected for the 
LASSO and RF analysis (Figure 3D). According to the 
relationship between mean square error of 
cross-validated and model size, we generated the 
LASSO regression model based on the 1-se criteria 
(Figure 5A). The 1-se gives a model with excellent 
performance and a minimum number of independent 
variables, at which point 31 non-zero variables are 
retained. Table 2 showed the estimated coefficients 
between the LASSO regressions of genes screened by 

 

 
Figure 4. Functional Enrichment Analysis. (A) KEGG enrichment analysis of black module genes. (B) Reactome enrichment analysis of black module genes. 

 
Figure 5. Identification and verification 31 genes in the LASSO model. (A) The partial likelihood deviance for the lasso regression. λ is the tuning parameter. (B) The 
LASSO model between AD samples and control samples in the test cohort. (C) ROC curve verified the effectiveness of LASSO model in the test cohort. 
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the black module and AD. As a result, 31 key genes 
were identified by LASSO analysis. What’s more, the 
LASSO model based on expression levels of these 
genes was also different in AD and control in the test 
cohort (Figure 5B). Then we performed ROC curve in 
the test cohort to evaluate the effectiveness of the 
LASSO regression model. The area under the curve 
(AUC) was 0.95 (Figure 5C). The top 30 genes based 
on the parameter of increase in node purity in RF 
analysis were used for subsequence analysis (Figure 
6A, Table 3). The RF model based on expression levels 
of the candidate genes was also different in AD and 
control samples in the test cohort (Figure 6B). The 
AUC of the RF model in the test cohort was 0.935 
(Figure 6C). These all proved that our models were 
reliable for identifying genes which affect the 
occurrence of AD. Therefore, we defined the common 
genes of the two gene lists identified by random forest 
and LASSO regression respectively, as the key genes 
associated with M1 macrophages and AD (Figure 7A). 
Then correlation analysis showed 10 genes were key 
genes associated with M1 macrophages and AD, of 
which ARMCX5, EDN3, GPR174, MRPL23, RAET1E, 
ROD1, TRAF1 and WNT7B were positively associated 
with M1 macrophages and AD, while OR4K2 and 
ZNF543 were negatively associated with M1 
macrophages and AD (Figure 7B). 

 

Table 2. The estimated coefficients for logistic least absolute 
shrinkage and selection operator (LASSO) regression between 
genes screened by the black module and AD 

Variables Coefficients 
AARS 0 
AASS 0 
ABCB10 0 
ABCC12 0 
ABHD1 0 
ABHD10 0 
ACBD7 0 
ADAM22 0 
ADAM9 0 
ADAMDEC1 0 
DCY7 0 
AMOTL1 0 
AMPD1 0 
AOC2 0 
APAF1 0 
APIP 0 
ARIH2 0 
ARMC7 0 
ARMCX5 0.111768 
C11orf40 0.13664 
C1orf170 0 
C21orf56 0 
C6orf27 0.031063 
C7orf21 0 
C9orf21 0 
C9orf52 0 
C9orf75 0 
CARD14 0 
CASP2 0 
CCDC15 0 
CCDC50 0 

Variables Coefficients 
CCDC8 -0.08756 
CCPG1 0 
CCRL1 0 
CD99 0 
CHRNA10 0 
CLEC2D 0 
COPS4 -0.18232 
CR1L 0 
CTAGE6 0 
CTBS 0 
CXCL9 0 
CXorf27 0 
CXorf36 0 
DAAM2 0 
DCT 0 
DDIT4 0 
DLEU1 0 
DMWD 0 
DNAH1 0 
DNAH17 0 
EDN3 0.069264 
EGR3 0 
ELK1 0 
ELOVL2 0.014796 
FAM20B 0 
GPC6 0 
GPR174 0.066463 
GSTK1 -0.0569 
GYG2 0 
HCFC2 0 
HCRTR2 0 
HIST3H2BB 0 
IRAK4 0 
ITIH1 0 
KCNH5 0.01496 
KCNJ5 0 
KLHDC8A 0 
KLHDC2 0 
KLHL17 0 
KRT23 0 
LASS3 0 
LENG3 0 
LIN7C 0 
LMAN2 0 
LMNB1 0 
LRP1 0 
LRP4 0 
LRPPRC 0 
MAPKAPK5 0 
MBTPS2 0 
MED28 0 
MGLL 0 
MGP 0 
MGRN1 0 
MRPL23 0.302214 
MRPL30 0 
MTHFD2 0 
NALP12 0.100183 
NDUFA3 0 
NDUFB2 0 
NLN 0 
NMBR 0 
NOS1AP 0.004739 
NT5E 0 
NTSR1 0 
NUCB2 0 
OR10AG1 0 
OR13C3 0 
OR2G2 0 
OR4K15 0 
OR4K2 -0.02666 
PCDHGA8 0 
PDRG1 -0.1436 
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Variables Coefficients 
PDXK 0 
PF4 0 
PKNOX2 0 
PMS2L11 0 
POLR2G 0 
POMT2 0 
POU6F2 0 
PPIL2 0 
PPP1R13B 0 
PPP4R1L 0 
PRR10 0 
PSMA5 0 
PTPLA 0 
PXDN 0 
PZP 0 
RAB12 0 
RAB17 0 
RABAC1 0 
RACGAP1P  
RAET1E 0.238109 
RAMP1 0 
RAPGEF1 0 
RER1 0 
RET 0 
RFC2 0 
RGS21 0 
RHBDD1 0.047236 
RIC8A 0 
RNF170 0 
ROD1 0.19671 
ROS1 0 
RSAD1 0 
RTP2 0 
STAT2 0 
SCP2 0 
SEC61B 0 
SEH1L 0 
SENP8 0 
SERPINA13  
SETD7 0 
SFTPA1 0 
SGTB 0 
SH3BGRL3  
0SHF -0.16311 
SLC17A5  
SLC23A2  
SLC25A22 0 
SLC30A4 0 
SLC35B4 0 
SLC39A3 0 
SLC3A1 0 
SLC4A11 0 
SLC6A14 0 
SLCO1A2 0 
SLCO2A1 0 
SLITRK4 0 
SMAD9 0 
SMCHD1 0 
SMCR2 0 
SMOC2 0 
SMPDL3B 0 
SOD3 0 
SORCS1 0 
SOX5 0 
SPIB 0 
STAMBP 0 
SUFU 0 
SULT1C1 0 
SYNPO -0.16448 
SYT10 0 
SYT15 0 
TAL1 0 
TAS1R1 0.20351 

Variables Coefficients 
TBC1D20 0 
TBC1D19 0 
TBCD 0 
TESC 0.304705 
THAP9 0 
TICAM1 0 
TLK1 0 
TMC4 0 
TMEM116 0 
TMEM131 0 
TMEM16K 0 
TMEM47 0 
TMEM80 0 
TMEM93 0 
TMPO 0 
TNFAIP3 0 
TNFRSF8 0 
TNFSF18 0 
TNK1 0 
TNRC18 0 
TP53I13 0 
TRAF1 0.414105 
TRAT1 0 
TRIM8 0 
TRO 0 
TRPS1 0 
TSPAN13 -0.15952 
TSPAN18 0 
TSSK6 0 
TSTA3 0 
TTC5 0 
TUBGCP5 0 
TUSC3 0 
TXK 0 
TXNIP 0 
UBAP2 0 
UBE2E4P 0 
UBE2G1 -0.13186 
UBE2W 0 
UCP1 0 
UNC119 0 
UPF2 0 
USP53 0 
WDR48 0 
WDR52 0 
WIPI1 0 
WNT7B 0.092085 
WSB1 0 
XPO4 0 
YWHAQ -0.01995 
ZBTB34 0 
ZCWPW2 0 
ZMYND15 -0.04248 
ZNF132 0 
ZNF157 0 
ZNF238 0 
ZNF253 0 
ZNF256 0 
ZNF30 0 
ZNF365 0 
ZNF45 -0.08238 
ZNF543 -0.09474 
ZNF584 0 
ZNF652 0 
ZPBP2 0.097042 

 

To validate the 10 genes associated with the 
occurrence of AD, we constructed logistic regression 
model based on the expression matrix of 10 key genes 
associated with AD in the training cohort, and 
validated them in the test cohort by ROC curve (AUC 
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= 0.961, 95% CI=0.933-0-990) (Figure 8A). In addition, 
we also validated the genes using 10-fold 
cross-validation, we evaluated the model in the test 
and training cohort by ROC curve. For the 10-fold 
cross-validation, both the test (AUC = 0.941, 95% CI = 
0.862-1) and training cohort (AUC = 0.875, 95% CI = 
0.840-0.910) showed relatively good performance 
(Figure 8B-C). We also evaluated the models by 
confusion matrix in the test and training cohort 
(Figure 8D-F), the accuracy and recall of the models 

based on the confusion matrix of the test cohort and 
training cohort were shown in Table 4. All of these 
results showed that these genes were the key genes 
associated with the occurrence of AD. GSE44770 
dataset was used as an independent dataset to verify 
the relative expression of 10 key genes in AD and 
healthy controls. We found that GPR174, TRAF1, 
ROD1, RAET1E, OR4K2, MRPL23, ARMCX5 and 
EDN3 were differentially expressed between the AD 
and healthy controls (p<0.05) (Figure 9A-J). 

 

 
Figure 6. Identification and verification 30 genes in the RF model. (A) Top 30 genes based on variable importance in RF analysis. (B) The RF model between AD 
samples and control samples in the test cohort. (C) ROC curve of RF model in the test cohort. 

 

 
Figure 7. Correlation analysis of key genes with M1 macrophage and AD. (A) Venn diagram of the 10 communal key genes between Lasso and RF analysis. (B) The 
correlations between the common genes respectively identified by LASSO and RF analysis and M1 macrophage and AD. Blue represents negative correlation, and red represents 
positive correlation. 
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Figure 8. ROC curve and confusion matrix of logistic model and k-fold cross-validation based on key genes. (A) ROC curve for distinguishing AD from control 
in the test cohort of logistic model. (B) ROC curve for distinguishing AD from control in the test cohort of the k-fold cross-validation. (C) ROC curve for differentiating AD 
from control in training cohort of the k-fold cross-validation. (D) Confusion matrix of the logistic regression model in test cohort. (E) Confusion matrix of the k-fold 
cross-validation in test cohort. (F) Confusion matrix of the k-fold cross-validation in training cohort. 

 

Table 3. The parameter of increase in node purity of top 30 gene 
based on RF analysis 

 IncNodePurity 
LRP1 11.36755 
SYT10 5.41367 
ROD1 5.029577 
MRPL23 4.94144 
TNFRSF8 4.006692 
TRAF1 3.594842 
WNT7B 3.361917 
SPIB 3.326772 
OR4K2 3.080312 
GPR174 2.533245 
SMCHD1 2.416868 
RAET1E 2.407908 
MED28 2.358533 
AMPD1 2.312181 
XPO4 1.717311 
EDN3 1.659224 
DMWD 1.470659 
ZNF543 1.461082 
ARMCX5 1.15924 
SOX5 1.110552 
HCFC2 1.031185 
USP53 0.814927 
RTP2 0.798482 
KLHL17 0.682118 
ITIH1 0.653343 
WIPI1 0.588846 
SLC35B4 0.584705 
SLC6A14 0.582928 
TNFAIP3 0.562013 
TMPO 0.554761 

 

Seven key homologous genes associated with 
human AD are differentially expressed 
between 5XFAD models and wild type mice 

In addition to validating our results in an 

independent dataset, we also validated the common 
gene list of LASSO and RF analysis in the 5XFAD 
model. Since ZNF543 and OR4K2 have no homologs 
in mice, we examined the relative mRNA levels of the 
remaining 8 genes in mice. As illustrated in Figure 10, 
compared to the control group, the relative mRNA 
levels of Traf1 and Raet1e were significantly increased 
compared to the control group (P < 0.05) and the AD 
group showed significantly decreased mRNA levels 
of Wnt7b, Gpr174, Ptbp3, Mrpl23 and Armcx5. Among 
them, the differential expression trends of Wnt7b, 
Gpr174, Ptbp3, Mrpl23, Armcx5 and Raet1e are 
consistent with the trends in GSE44770 dataset. 

 

Table 4. The confusion matrix index of logistic regression and 
k-fold cross-validation 

Index Logistic regression k-fold cross-validation 
test cohort test cohort training cohort 

Precision  0.8936 1 0.8519 
Recall 0.8400 0.8824 0.8241 

 

Discussion 
Microglia are tissue-resident macrophages in the 

central nervous system that have been shown to be 
activated in the ADs and close to the site of amyloid 
deposition [42]. The effects of overactivated microglia 
on neurons and synapses may be negative. It is now 
generally accepted that M1 macrophages are thought 
to actively recruit to inflamed tissues and trigger 
pro-inflammatory innate immune responses [43]. 
CD45hi Ly6C+ CCR2+ monocytes could enter the CNS 
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and modulate pathology in the context of disease [44]. 
It has also been shown that senescent macrophages 
display a significant reduction in glycolysis and 
mitochondrial oxidative phosphorylation, which can 
lead to immune dysfunction [45]. Moreover, curcumin 
can affect AD by enhancing macrophage-mediated 
clearance of Aβ [46]. In the present study, by 
analyzing the GSE dataset of the GEO database, we 
determined the putative composition of 22 immune 
cells in the prefrontal cortex of 310 AD samples and 
157 healthy samples. We constructed the 
co-expression network in that identified 14 different 
modules and found that the black module was highly 
associated with M1 macrophages and AD. 

Based on LASSO and RF, we identified 10 hub 
genes associated with M1 macrophages and AD, 
including ARMCX5, EDN3, GPR174, MRPL23, 
RAET1E, ROD1, TRAF1, WNT7B, OR4K2 and ZNF543. 
In an independent GSE44770 dataset, GPR174, TRAF1, 
ROD1, RAET1E, OR4K2, MRPL23, ARMCX5 and 
EDN3 were significantly different between the AD 
and healthy controls. We validated the results of 
bioinformatics analysis in 5XFAD transgenic mice, the 
relative mRNA levels of Wnt7b, Gpr174, Ptbp3, Mrpl23, 
Armcx5, Traf1 and Raet1e were significantly different 
in AD and control groups. And the differential 
expression trends of Wnt7b, Gpr174, Ptbp3, Mrpl23, 
Armcx5 and Raet1e are consistent with bioinformatics 

 

 
Figure 9. The relative expression levels of 10 key genes in GSE44770 dataset. (A-J) The boxplot showed the relative expression levels of 10 key genes in AD and 
healthy controls. 
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analysis. At the same time, these results also implied 
that the 5XFAD model has similarities but is not 
entirely consistent with human disease. WNT7B, a 
ligand of the Wnt signaling pathway, has been 
studied to demonstrate that dysregulation of the Wnt 
signaling pathway may be associated with synaptic 
failure and impaired cognitive function in 
neurodegenerative diseases [47]. Wnt-7b increases 
presynaptic protein aggregation and synaptic vesicle 
recycling [48]. It is suggested that alterations in 
common Wnt signaling pathways associated with 
early AD pathology and cognitive decline [49]. 
TRAF1, TNF receptor associated factor 1, plays a key 
role in the immune system. It is regarded as a key 
signal transducers of many receptor families, such as 
innate immune receptors and adaptive immune 
receptors [50]. SPRC (S-Propargyl-cysteine) has been 
shown to attenuate spatial learning and memory 
deficits via the TNF signaling and NF-κB signaling 
pathways in a rat model induced by 
lipopolysaccharide [51], but further studies are 
needed to elucidate the relationship between TRAF1 
and AD. ROD1, the gene encodes an RNA-binding 
protein that was initially thought to act as a 
differentiation inhibitor [52], and later found to be a 
member of the heterogeneous nuclear 
ribonucleoprotein family. It also found to be involved 
in selective splicing of mRNA precursors [53]. 
Recently, pyrophosphate sequencing analysis has 
shown that the methylation level of ROD1 is closely 
associated with aging in centenarians [54]. RAET1E, 
raet1e (encoding Raet1) is a novel atherosclerotic gene 
[55]. Both atherosclerosis and AD are thought to be 
associated with inflammation [56]. But the 

relationship between RAET1E and AD has not been 
much studied, which may also be a potential target for 
AD research. MRPL23, mitochondria ribosomal 
protein L23, mitochondrial ribosomal protein (MRP) 
is an important component of the structural and 
functional integrity of the mitochondrial complex and 
has a major impact on the translational function of 
mitochondria [57]. While the accumulation of 
damaged mitochondria is one of the causes of 
neurodegeneration in AD, and impaired 
mitochondrial autophagy has also been observed in 
the hippocampus of AD patients [58]. But the direct 
relationship between MPRL23 and AD remains to be 
determined by further studies. GPR174 (G 
protein-coupled receptor 174) could induce rapid 
degranulation of mast cells [59, 60], limit proliferation 
of regulatory T cells [61] and enhance phagocytosis of 
apoptotic neutrophils by macrophages [62, 63]. 
ZNF543 (zinc finger protein 543), this gene has a wide 
range of physiological functions in a variety of cellular 
processes, which including apoptosis, cell 
proliferation and differentiation [64]. OR4K2 
(olfactory receptor family 4 subfamily K member 2), 
olfactory receptor protein is a member of the large 
family of G protein-coupled receptors (GPCR) 
produced by a single coding exon gene. Olfactory 
receptors are responsible for recognition and G 
protein-mediated odor signaling. EDN3, Endothelin 3 
is a powerful vasoconstrictor peptide in the adult 
enteric nervous system. EDN3 controls differentiation 
of enteric nervous system progenitors under the 
regulation of sox10 and ZEB2 [65]. ARMCX5, located 
on chromosome Xq22.1, a region associated with 
epilepsy [66], but there was no study in AD. 

 

 
Figure 10. The relative mRNA levels of 8 genes in AD mouse models. (A-H) The relative mRNA levels of Wnt7b, Gpr174, Traf1, Ptbp3, Raet1e, Mrpl23, Armcx5 and 
Edn3 in control and 5XFAD samples compared with the control. ns P>0.05, *p < 0.05, **p < 0.01 and ***p < 0.001. 
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Of course, our study has some limitations. 
Firstly, the data we used was from a public database 
with a limited sample size, so it may not be a good 
representation of the true pathological state. Then, we 
did not validate the key genes in vivo and in vitro 
experiments. In addition, although we found that M1 
macrophage is associated with AD, but the origin of 
M1 macrophage and relationship with AD need 
further studies to determine. 

In conclusion, based on the expression matrix of 
AD and control, we initially explored the immune 
infiltration in the prefrontal cortex of AD patients and 
identified M1 macrophages and black module were 
associated with the occurrence of AD. We performed 
CIBERSORT and WGCNA to analyze the relationship 
between AD and immune cells for the first time. We 
identified 10 key genes associated with AD, which 
might be used as new targets for immunotherapy in 
AD patients. 
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