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Abstract 

Rationale: Since non-invasive tests for prediction of liver fibrosis have a poor diagnostic performance 
for detecting low levels of fibrosis, it is important to explore the diagnostic capabilities of other 
non-invasive tests to diagnose low levels of fibrosis. We aimed to evaluate the performance of radiomics 
based on 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in predicting any liver 
fibrosis in individuals with biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). 
Methods: A total of 22 adults with biopsy-confirmed MAFLD, who underwent 18F-FDG PET/CT, were 
enrolled in this study. Sixty radiomics features were extracted from whole liver region of interest in 
18F-FDG PET images. Subsequently, the minimum redundancy maximum relevance (mRMR) method was 
performed and a subset of two features mostly related to the output classes and low redundancy 
between them were selected according to an event per variable of 5. Logistic regression, Support Vector 
Machine, Naive Bayes, 5-Nearest Neighbor and linear discriminant analysis models were built based on 
selected features. The predictive performances were assessed by the receiver operator characteristic 
(ROC) curve analysis. 
Results: The mean (SD) age of the subjects was 38.5 (10.4) years and 17 subjects were men. 12 subjects 
had histological evidence of any liver fibrosis. The coarseness of neighborhood grey-level difference 
matrix (NGLDM) and long-run emphasis (LRE) of grey-level run length matrix (GLRLM) were selected to 
predict fibrosis. The logistic regression model performed best with an AUROC of 0.817 [95% confidence 
intervals, 0.595-0.947] for prediction of liver fibrosis. 
Conclusion: These preliminary data suggest that 18F-FDG PET radiomics may have clinical utility in 
assessing early liver fibrosis in MAFLD. 
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Introduction 
Metabolic dysfunction-associated fatty liver 

disease (MAFLD), formerly named non-alcoholic fatty 
liver disease (NAFLD), is becoming the most common 
chronic liver disease and threatening people's health 

seriously [1-3]. Disease severity of MAFLD should be 
best evaluated by the grade of activity and the stage of 
fibrosis [4]. In the progression of MAFLD, the stage of 
liver fibrosis plays a key role [5, 6]. Stage of liver 
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fibrosis is also a strong predictor for disease-specific 
mortality in MAFLD, rather than other histologic 
features, i.e., steatosis, hepatocellular ballooning or 
lobular inflammation [7-9]. Currently, liver biopsy is 
the gold standard to stage liver fibrosis [10]. However, 
due to the possible acute complications and sampling 
errors of liver biopsy, this invasive diagnostic method 
is not the optimal choice in routine clinical practice 
[11]. 

Positron emission tomography (PET) is a 
molecular imaging modality, which has shown an 
important role in diagnosis, staging, assessment of 
response to treatment, and detecting recurrence of 
various types of cancers. 18F-fluorodeoxyglucose 
(18F-FDG), which is the most commonly used 
radiotracers for PET examinations, allows a direct 
quantification of glucose metabolism in vivo [12]. The 
overall metabolic activity can be expressed 
semi-quantitatively as standardized uptake value 
(SUV). Recent studies showed that impaired hepatic 
glucose metabolism is associated with advanced 
fibrosis or cirrhosis [13, 14]. However, the mean SUV 
or maximum SUV used in those studies neglect the 
heterogeneous distribution of liver histology 
characteristics [11, 15]. 

Radiomics [16], which allows the extraction of 
numerous quantitative features from medical 
imaging, so then may possibly reflect histological 
characteristics. Although radiomics, based on 
magnetic resonance imaging (MRI) or computed 
tomography (CT), have already been applied for 
diagnosing and staging fibrosis in some chronic liver 
diseases [17, 18], to our knowledge, there is no study 
on the radiomics based on 18F-FDG PET in MAFLD. 
Although the routine 18F-FDG PET has shown a 
potential role in the diagnosis and evaluation of 
fibrosis/cirrhosis in MAFLD, radiomics may help to 
scrutinize imaging data deeply to improve the 
performance. Since non-invasive tests for prediction 
of liver fibrosis have a poor diagnostic performance 
for detecting low levels of fibrosis [19, 20], it is 
important to explore the diagnostic capabilities of 
other non-invasive tests to diagnose low levels of liver 
fibrosis. Thus, the aim of our pilot study was to 
evaluate the performance of radiomics based on 
18F-FDG PET in predicting liver fibrosis in individuals 
with MAFLD. 

Materials and Methods 
Study population and design 

Subjects with biopsy-proven MAFLD, who 
underwent 18F-FDG PET/CT, were consecutively 
enrolled in this study. MAFLD was diagnosed 
according to newly proposed diagnostic criteria, 

namely evidence of fatty liver (on liver histology) in 
addition to one of following three criteria: 1) 
overweight or obesity, 2) type 2 diabetes mellitus 
(T2DM), or 3) presence of metabolic dysregulation [3]. 
Individuals with a prior history of chronic hepatitis B 
or C, excessive alcohol consumption, or other chronic 
liver diseases were excluded from the study. The 
study protocol was approved by the local ethics 
committees. Written informed consent was obtained 
from each subject. 

Clinical and biochemical data 
Clinical and biochemical data were obtained 

from all participants on the same day of liver biopsies. 
Hypertension was diagnosed if the subject had 
systolic blood pressure ≥130 mmHg or diastolic blood 
pressure ≥85 mmHg and/or if she/he assumed 
anti-hypertensive drugs. T2DM was diagnosed if the 
subject had fasting glucose levels ≥7.0 mmol/L, or 
glycosylated hemoglobin (HbA1c) ≥6.5% (≥48 
mmol/mol), or a history of self-reported diabetes, 
and/or if she/he used any glucose-lowering drugs. 
Biochemical parameters, including serum levels of 
liver enzymes (alanine aminotransferase (ALT), 
aspartate aminotransferase (AST), and γ-glutamyl-
transpeptidase), total bilirubin, albumin, insulin, 
glucose, HbA1c, triglycerides, total cholesterol, low- 
density lipoprotein cholesterol and high-density 
lipoprotein cholesterol, were measured for each 
subject in the morning after an overnight fast. 

Liver histology 
Percutaneous liver biopsies were performed 

under the guidance of ultrasound and all liver 
histology specimens were examined by a single 
experienced histopathologist, who was blinded to all 
participant’s details. According to the NASH-Clinical 
Research Network Scoring System [10], liver biopsy 
specimens were assessed for steatosis (grades 0 to 3), 
ballooning (grades 0 to 2) and lobular inflammation 
(grades 0 to 3). Then, they were used to calculate the 
NAFLD activity score (NAS) by the unweighted sum 
[10]. Liver fibrosis was assessed (grades 0 to 4) 
according to the Brunt’s histologic criteria [21]. 

18F-FDG PET/CT scans 
All participants were required to fast for at least 

6 hours and the levels of serum glucose were less than 
110 mg/dL before the 18F-FDG PET/CT scan. PET/CT 
images were acquired by a hybrid PET/CT scanner 
(GEMINI TF 64, Philips). For attenuation correction, a 
low-dose plain CT scan was performed from the skull 
base to the middle of thigh, with the following 
parameters: tube voltage=120 kV, tube current=249 
mA, detector collimation=64 × 0.625 mm, pitch=0.829, 
tube rotation time=0.5 sec, slice thickness=5.0 mm. A 
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three-dimension mode PET scan was performed 
approximately 1 hour later, after intravenous injection 
of 18F-FDG with a dose of 3.7 MBq/kg. The PET scan 
parameters were as follows: field of view (FOV) of 576 
mm, matrix of 144 × 144, slice thickness and interval 
of 5.0 mm. The PET images were reconstructed using 
the ordered subset expectation maximization (OSEM) 
method (33 subsets per iteration). All collected data 
were transferred into Philips Extend Brilliance 
Workstation 3.0 to reconstruct PET, CT, and PET/CT 
fusion images, respectively. 

Radiomics features: extraction and selection 
The whole process of radiomics features 

extraction was performed by the LIFEx version 6.30 
software (http://www.lifexsoft.org) based on 
standardized practices [22]. The PET images were 
imported into the software in the DICOM format. A 
whole liver region of interest (ROI) was manually 
drawn at the level of porta hepatis for each subject, by 
two radiologists in consensus (ZWC and YFZ, both 
with more than 7 years of experience), who were 
blinded to the clinical data. If there was any 
distinguishable abnormal lesion on the plain CT or 
PET images that would affect the results of radiomics 
analysis, the ROI slice of PET was moved up or down 
until there was no distinguishable abnormal lesion. 
Then, the images were handled by spatial resampling 
(to a voxel size of 4×4×4mm), intensity discretization 
(with 64 of grey levels and 0.3125 of bins) and 
intensity rescaling (the absolute method with min 
bound of 0 and max bound of 20). Finally, the 
software program calculates and extracts 60 PET 2D 
radiomics features automatically, including 
conventional indices, discretized indices, first order 
features, grey-level zone length matrix (GLZLM), 
grey-level run length matrix (GLRLM), neighborhood 
grey-level difference matrix (NGLDM) and grey-level 
co-occurrence matrix (GLCM) (Table S1). Another 
radiologist (KT, with more than 15 years of 
experience), who was blinded to the results of the first 
two radiologists, repeated all ROI identifications and 
feature extractions, as described above, for the 
assessment of inter-observer agreement. 

Before feature selection, all of the extracted 
radiomics features were z-score standardized. The 
event per variable (EPV), defined by the ratio of the 
number of observations in the smaller of the two 
outcome groups relative to the number of variables, is 
a key factor for obtaining robust performance of 
prediction models. Lower EPV values in prediction 
model development are associated with poorer 
predictive performance [23, 24]. According to an 
acceptable event per variable (EPV) value of 5 
reported by previous studies [25], the method of 

max-relevance and min-redundancy (mRMR) [26] 
was used to select a subset of two features with 
mostly related to the output classes and low 
redundancy between them for further logistic 
regression. In addition, we also developed Support 
Vector Machine (SVM), Naive Bayes, 5-Nearest 
Neighbor and linear discriminant analysis models to 
classify each study participant based on the two 
selected features, respectively. 

Statistical analysis 
All the statistical tests were performed in SPSS 

version 22 (IBM Corp.) and R version 3.6.3 
(http://www.r-project.org/). Continuous variables 
were expressed as means ± standard deviation (SD) or 
medians with inter-quartile ranges. Categorical 
variables were expressed as numbers (and 
percentages). For all models, the prediction 
probability ≥0.5 was as a positive prediction outcome, 
otherwise was negative. The receiver operator 
characteristic (ROC) curve analysis was used for the 
binary classification and the area under ROC curve 
(AUROC), accuracy, sensitivity, specificity, as well as 
positive predictive value (PPV), negative predictive 
value (NPV), positive likelihood ratio (PLR), negative 
likelihood ratio (NLR) and diagnostic odds ratio were 
calculated to assess the predictive performance. The 
logistic regression model calibration was assessed by 
the Hosmer-Lemeshow goodness of fit test. Kappa 
statistics were generated to assess the inter-observer 
agreement. A two-sided p-value less than 0.05 was 
considered to be statistically significant for all 
statistical tests. 

Results 
Patients’ characteristics 

Table 1 summarizes the baseline characteristics 
of individuals with biopsy-proven MAFLD, stratified 
by presence or absence of any histological stage of 
liver fibrosis. The mean (SD) age of the subjects was 
38.5 (10.4) years and 17 of them were men. All the 
time-intervals between liver biopsy and PET/CT were 
less than 3 months. Among the 12 participants with 
liver fibrosis on liver biopsy, 10 subjects had F1 
fibrosis and 2 subjects had F2 fibrosis. None of them 
had F3 or F4 fibrosis. As shown in the table, no 
significant differences were found in age, sex, 
metabolic comorbidities, laboratory parameters, as 
well as liver histology features (steatosis grade, 
ballooning grade, and lobular inflammation grade) 
between MAFLD subjects with and without fibrosis. 

Development of radiomics models 
For predicting liver fibrosis in MAFLD, the 

coarseness of NGLDM and long-run emphasis (LRE) 
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of GLRLM were selected for logistic regression to 
build the predictive model. The logistic regression 
model showed a good dichotomous prediction for 
fibrosis of any stage with an AUROC of 0.817 [95% 
confidence interval (CI), 0.595-0.947], sensitivity of 
83.3%, specificity of 80%, and accuracy of 81.8%, 
respectively (Table 2). The ROC for predicting liver 
fibrosis is shown in Fig. 1. The Hosmer-Lemeshow 
goodness of fit showed a good calibration (p=0.472) 
(Fig. 2). The inter-observer agreement was excellent 
(Kappa coefficient=0.908). 

 

 
Figure 1. The performances of radiomics based on 18F-FDG PET models for 
predicting liver fibrosis (of any stage) presented as ROC curve. Note: The SVM, NB 
and 5-NN models had the same ROC performance. Abbreviations: LR: logistic 
regression; SVM: Support Vector Machine; NB: Naive Bayes; 5-NN: 5-Nearest 
Neighbor; LDA: linear discriminant analysis. 

 
Figure 2. Calibration curve of the model built by logistic regression for predicting 
fibrosis. Calibration curve depict the calibration of model in terms of the agreement 
between the predicted probability and observed probability. The black solid line 
represents the performance of the model, which was closer to the diagonal grey solid 
line represents a better prediction. The Hosmer-Lemeshow test yielded a 
non-significant statistics for the model (p= 0.472), which suggested that there was no 
departure from perfect fit. 

 
The SVM, Naive Bayes and 5-Nearest Neighbor 

models yielded the same performance, showing a 
slightly worse prediction for fibrosis than the logistic 
regression model with an AUROC of 0.758 [95% CI, 

0.531-0.913], sensitivity of 91.7%, specificity of 60.0%, 
and accuracy of 77.3%. The linear discriminant 
analysis model performed worst compared with the 
others. The linear discriminant analysis model 
AUROC, sensitivity, specificity and accuracy were 
0.717 (95%CI, 0.487-0.886), 83.3%, 60% and 72.7%, 
respectively (Fig. 1 and Table 2). Comparing the 
results obtained from the two sets of ROIs, the 
5-Nearest Neighbor and linear discriminant analysis 
models showed perfect inter-observer agreements 
(both Kappa coefficients=0.999), and the SVM and 
Naive Bayes models also showed excellent inter- 
observer agreements (both Kappa coefficients=0.908). 

Discussion 
In this pilot study, we found that radiomics 

based on 18F-FDG PET can be used with good 
diagnostic performance to diagnose the presence of 
early liver fibrosis in MAFLD. To our knowledge, this 
is the first study to use radiomics based on 18F-FDG 
PET to diagnose liver fibrosis in people with 
histologically proven MAFLD. 

 

Table 1. Baseline characteristics of individuals with MAFLD 
stratified by the presence of any histological stage of fibrosis 

 With fibrosis 
(n=12) 

Without fibrosis 
(n=10) 

p-value 

Demographics    
Age, years 37.7 ± 9.4 38.8 ± 11.4 0.794 
Male sex, n (%) 11 (91.7%) 6 (60.0%) 0.135 
Metabolic comorbidities    
Type 2 diabetes, n (%) 1 (8.3%) 2 (20.0%) 0.571 
Hypertension, n (%) 2 (16.7%) 1 (10.0%) 0.999 
BMI, kg/m2 27.1 ± 3.3 27.8 ± 2.4 0.576 
Laboratory parameters    
Alanine aminotransferase, IU/L 127.2 ± 71.4 88.1 ± 52.6 0.167 
Aspartate aminotransferase, IU/L 60.7 ± 26.8 48.8 ± 20.9 0.267 
γ-glutamyltranspeptidase, IU/L 89.5 ± 50.6 59.6 ± 38.3 0.140 
Albumin, g/L 48.2 ± 3.7 48.2 ± 4.0 0.994 
Total bilirubin, μmol/L 13.7 ± 3.23 12.2 ± 3.0 0.290 
Fasting glucose, mmol/L 5.1 (4.8-5.9) 5.3 (5.1-5.6) 0.628 
Fasting insulin, pmol/L 112.4 (71.7-211.1) 96.8 (78.4-325.5) 0.923 
Glycosylated hemoglobin, 
mmol/mol 

36 (33-46) 37 (32-42) 0.539 

Total cholesterol, mmol/L 5.0 ± 1.5 5.6 ± 1.6 0.384 
Triglycerides, mmol/L 2.0 ± 1.1 2.1 ± 1.1  0.868 
HDL-cholesterol, mmol/L 1.0 ± 0.2 1.1 ± 0.2 0.059 
LDL-cholesterol, mmol/L 3.2 ± 1.1 3.5 ± 1.2 0.567 
Liver histology features    
Steatosis grade, n (%)   0.091 
S1 2 (16.7%) 4 (40.0%)  
S2 8 (66.7%) 2 (20.0%)  
S3 2 (16.7%) 4 (40.0%)  
Ballooning grade, n (%)   0.065 
B0 0 (0.0%) 3 (30.0%)  
B1 7 (58.3%) 6 (60.0%)  
B2 5 (41.7%) 1 (10.0%)  
Lobular inflammation grade, n (%)   0.107 
L0 0 (0.0%) 3 (30.0%)  
L1 9 (75.0%) 4 (40.0%)  
L2 3 (25.0%) 3 (30.0%)  
L3 0 (0.0%) 0 (0.0%)  

Note: Continuous variables were expressed as means ± standard deviation or 
medians with interquartile ranges. Categorical variables were expressed as number 
(percentages). 
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Table 2. Performance of 18F-FDG PET radiomics for diagnosing any stage of liver fibrosis, in different models, in biopsy-proven MAFLD 

 LR SVM NB 5-NN LDA 
AUROC (95%CI) 0.817 (0.595-0.947) 0.758 (0.531-0.913) 0.758 (0.531-0.913) 0.758 (0.531-0.913) 0.717 (0.487-0.886) 
Sensitivity, % (n/N) 83.3 (10/12) 91.7 (11/12) 91.7 (11/12) 91.7 (11/12) 83.3 (10/12) 
Specificity, % (n/N) 80.0 (8/10) 60.0 (6/10) 60. 0 (6/10) 60.0 (6/10) 60.0 (6/10) 
Accuracy, % (n/N) 81.8 (18/22) 77.3 (17/22) 77.3 (17/22) 77.3 (17/22) 72.7 (16/22) 
PPV, % (n/N) 83.3 (10/12) 73.3 (11/15) 73.3 (11/15) 73.3 (11/15) 71.4 (10/14) 
NPV, % (n/N) 80.0 (8/10) 85.7 (6/7) 85.7 (6/7) 85.7 (6/7) 75.0 (6/8) 
PLR 4.17 2.29 2.29 2.29 2.08 
NLR 0.21 0.14 0.14 0.14 0.28 
Diagnostic odds ratio 19.9 16.4 16.4 16.4 7.4 
Abbreviations: 18F-FDG, fluorine-18-fluorodeoxyglucose; PET, positron emission tomography; MAFLD, metabolic dysfunction-associated fatty liver disease; LR: logistic 
regression; SVM: Support Vector Machine; NB: Naive Bayes; 5-NN: 5-Nearest Neighbor; LDA: linear discriminant analysis; AUROC, area under the receiver operating 
characteristic curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predict value; PLR, positive likelihood ratio; NLR, negative likelihood ratio. 

 
In contrast to other imaging techniques (CT, MRI 

and ultrasonography), PET can evaluate physiological 
and biochemical changes in cell metabolism in living 
tissues or organs in physiological states and diseases; 
noninvasively, dynamically and quantitatively at a 
molecular level. Previous small studies have shown 
the usefulness of 18F-FDG PET in some chronic liver 
diseases. In particular, the mean SUV was found to be 
significantly lower in patients with cirrhosis than in 
healthy controls [27], and collagen fiber deposition 
reduced the intrahepatic blood flow [28], thus leading 
to a decrease in 18F-FDG uptake. Experimentally, Pan 
et al. [29] combined 18F-FDG PET and 
gadolinium-ethoxybenzyl-diethylenetriamine-pentaa
cetic acid (Gd-EOB-DTPA) enhanced MRI to stage 
liver fibrosis in animal models by intraperitoneal 
injection of CCl4. These investigators found that the 
mean SUV value of 18F-FDG alone identified severe 
fibrosis, but did not distinguish between mild fibrosis 
and no fibrosis. Combining 18F-FDG PET and 
Gd-EOB-DTPA enhanced MRI had good accuracy for 
differentiating between fibrosis and no fibrosis, which 
was slightly lower than the performance of the model 
developed in this study (AUC ∼0.80 vs. 0.82) [29]. 
Unfortunately, due to the limited sample size of our 
pilot study, we did not develop a model to 
differentiate different fibrosis stages further as most of 
our MAFLD patients had F1 fibrosis. 

MAFLD shows some heterogeneity [11]. Mean 
SUV and maximum SUV are the most commonly used 
parameters with PET. However, mean SUV is 
influenced by hepatic fat content and the maximum 
SUV does not take into account the heterogeneity of 
the disease. Keramida et al. [30] suggested that the 
coefficient of variation of the regional ratio of 
maximum SUV to mean SUV may be a marker of 
hepatic fat distribution heterogeneity. Besides, it has 
also been established that radiomics is a powerful tool 
for the assessment of disease heterogeneity [31]. In 
our study, the coarseness of NGLDM and LRE of 
GLRLM were selected to build the best predictive 
model. All of the features can reflect the distribution 

or adjacent relationships of pixels in the images. By 
describing the heterogeneity of pixels on the image, 
we may be able to understand the heterogeneity of 
liver histological characteristics but further work in 
this area is needed. 

In this pilot study, whole liver ROIs were 
manually drawn by hand for analysis. Although 
manual delineation may be subjective, the liver is well 
circumscribed, which limits subjective differences 
between individuals and it is noteworthy that there 
was an excellent inter-observer agreement in our 
study. For a fixed size ROI, the size of the ROI will 
affect the extracted features, and the optimal size is 
not known. Thus, the size and placement of fixed 
ROIs may introduce more subjectivity and selection 
bias, due to the heterogeneity of liver histological 
characteristics in MAFLD. Nevertheless, it would 
have been preferable to have an accurate automatic 
segmentation method rather than the manual method 
used in our pilot study. 

The small sample size of the study is the most 
important limitation of our pilot study, which may 
introduce bias and limits power. However, to our 
knowledge, this study is the first study to date to 
assess the performance of 18FDG PET-based radiomics 
for predicting liver fibrosis in individuals with 
MAFLD. In contrast to some previous studies that 
used ultrasonography or other imaging techniques for 
diagnosing MAFLD [32, 33], the most important 
strength of our study is that the diagnosis and staging 
of MAFLD was based on liver biopsy and we have 
identified a substantial number of subjects with early 
liver fibrosis (stage F1). Our results suggest the 
feasibility of PET for predicting early liver fibrosis in 
MAFLD but further studies are needed in this 
research field. Due to the small sample size of the 
study, no validation was conducted. However, 
because of the influence of EPV, we limited the 
number of selected features to make our predictive 
model as stable as possible, although that needs to be 
verified in further studies. We chose the mRMR 
method in order to control the number of selected 



Int. J. Med. Sci. 2021, Vol. 18 

 
http://www.medsci.org 

3629 

features rather than other selection methods, e.g. the 
least absolute shrinkage and selection operator. 
Although the developed model in our pilot study may 
not be optimal, the results suggest that radiomics- 
based 18F-FDG PET may be a promising tool for the 
assessment of early liver fibrosis in MAFLD. 

In conclusion, the results of this pilot study 
suggest that 18F-FDG PET radiomics may offer a 
potential tool for the assessment of early liver fibrosis 
in individuals with biopsy-proven MAFLD, which is 
worthy to be further evaluation in larger multicenter 
studies in different ethnic groups. 
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