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Abstract 

Background: Macrosomic birth weight has been implicated as a significant risk factor for developing 
various adult metabolic diseases such as diabetes mellitus and coronary heart diseases; it has also been 
associated with higher incidences of complicated births. This study aimed to examine the predictability of 
macrosomic births in hyperglycemic pregnant women using maternal clinical characteristics and serum 
biomarkers of aneuploidy screening performed in the first half of pregnancy. 
Methods: A retrospective observational study was performed on a cohort of 1,668 pregnant women 
who 1) had positive outcomes after undergoing 50-g oral glucose challenge test (OGCT) at two 
university-based hospitals and 2) underwent any one of the following maternal biomarker screening tests 
for fetal aneuploidy: triple test, quadruple test, and integrated test. Logistic regression-based models for 
predicting macrosomic births using maternal characteristics and serum biomarkers were developed and 
evaluated for prediction power. A nomogram, which is a graphical display of the best predictable model, 
was then generated. 
Results: The study cohort included 157 macrosomic birth cases defined as birth weight ≥3,820 g, which 
was equivalent to the top 10 percentile of the modeling cohort. Three primary models solely based on 
serum biomarkers achieved area under curves (AUCs) of 0.55-0.62. Expanded models, including maternal 
demographic and clinical factors, demonstrated an improved performance by 25% (AUCs, 0.69-0.73). 
Conclusion: Our prediction models will help to identify pregnancies with an elevated risk of 
macrosomic births in hyperglycemic mothers using maternal clinical factors and serum markers from 
routine antenatal screening tests. Prediction of macrosomic birth at mid-pregnancy may allow 
customized antenatal care to reduce the risk of macrosomic births. 
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Introduction 
The prevalence of gestational diabetes mellitus 

(GDM) is steadily increasing worldwide [1, 2]. GDM, 
defined as any degree of glucose intolerance of 
variable severity with onset or first recognition 
occurring during pregnancy [3], is a common 

complication of pregnancy and affects 5%-9% of 
pregnant women [3, 4]. Pre-pregnancy body mass 
index (BMI) is a known significant risk factor of GDM, 
and it is highly associated with several adverse 
pregnancy outcomes, including large for gestational 
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age (LGA), preeclampsia, and cesarean delivery [1, 5]. 
In developing countries, the prevalence of diabetes 
and obesity in women of reproductive age has rapidly 
increased over the past decades, and a parallel 
increase in macrosomia is also expected. 

A typical pregnancy is physiologically 
characterized by weight gain and insulin resistance, 
with 50%-70% decreased insulin sensitivity in 
pregnant women compared with that in non-pregnant 
women [6, 7]. However, severe maternal 
hyperglycemia significantly contributes to abnormal 
fetal hyperinsulinemia and overgrowth, resulting in 
LGA and macrosomia. The prevalence of macrosomia 
in developed countries is between 5% and 20%; 
however, an increase of 15%-25% has been reported in 
the past two to three decades. This has mainly been 
driven by an increase in maternal diabetes, increased 
gestational BMI, and higher parity [4, 8]. Macrosomic 
birth weight has been implicated as a significant risk 
factor for developing various adult metabolic diseases 
such as diabetes mellitus and coronary heart diseases 
[9-11]; it is also associated with higher incidences of 
complicated delivery such as perinatal asphyxia, 
shoulder dystocia, cesarean section, prolonged labor, 
abnormal hemorrhage, perineal trauma, and death 
[12, 13]. 

Predicting birth weight is an obstetrically 
important but difficult challenge. A reference birth 
weight curve has been constructed based on birth 
weights per gestational age (GA) [14]. However, a 
birth weight curve cannot predict the exact size; it can 
just assume that the birth weight is above the 10th 
percentile [15]. Additionally, growth velocity might 
be associated with perinatal morbidity independent of 
birth weight, especially with diminished growth or 
excessive fetal growth. A few available risk prediction 
models have been developed to assist the 
decision-making process regarding the management 
of macrosomia. Fetal overgrowth during pregnancy 
has been measured using only obstetrical 
ultrasonography based on fetal structural dimensions 
within one week prior to delivery. Quantitative 
assessments using various maternal factors to 
accurately predict term birth weight have also been 
developed for evaluation near term. 

Some studies have reported the potential 
usability of maternal biomarkers from fetal 
aneuploidy screening tests in predicting adverse 
pregnancy outcomes [16, 17]. Particularly, one such 
biomarker estrogen produced in the placenta has been 
suggested to have a normal endocrine effect during 
pregnancy and maternal estrogen levels at delivery 
were found to be significantly and positively 
correlated with neonatal birth weight [18, 19]. Our 
previous study [20] also showed that high levels of 

unconjugated estriol in the maternal serum during the 
early second trimester of pregnancy are a useful 
predictor of gestational diabetes development 
through routinely measurement results of early 
second-trimester biochemical marker for fetal 
aneuploidy [21]. Considering the availability of these 
biomarkers, a predictive model using these 
biomarkers would be useful in clinics to detect 
macrosomic births earlier than the term pregnancy. 

Therefore, we investigated the first- and second- 
trimester maternal biomarkers for fetal aneuploidy as 
well as the maternal clinical factors for their 
predictability of macrosomic birth hyperglycemic 
pregnant women. For clinical application, we used a 
combination of fetal and maternal data available at 
two antenatal visits and developed a graphical 
display of the best predictable model of macrosomic 
births. 

Methods 
Study participants 

This study was a retrospective observational 
study. The data were obtained from pregnant women 
who delivered between July 1, 2007 and December 31, 
2015 at two university-based hospitals in Korea, 
Kangnam CHA Medical Centre and Ewha Womans 
University Mokdong Hospital. The participants were 
pregnant women who had positive outcomes of 
1-hour 50-g OGCT, which is equivalent to a glucose 
level >140 mg/dL at around 24-28 weeks’ gestation. 
Participants were excluded if they were missing any 
of the early pregnancy aneuploidy screening test 
results and had twin pregnancy, fetal anomaly, 
hypertensive disorder before pregnancy, pre-existing 
diabetes, and missing pre-pregnancy or delivery 
weights. GDM was defined as two or more positive 
results in a 3-hour 100-g oral glucose tolerance test 
(OGTT): fasting ≥95 mg/dL, 1 hour ≥180 mg/dL, 2 
hours ≥155 mg/dL, and 3 hours ≥140 mg/dL, or one 
or more positive results in a 2-hour 75-g oral glucose 
tolerance test (OGTT): fasting ≥92 mg/dL, 1 hour ≥180 
mg/dL, and 2 hours ≥153 mg/dL. Based on the 
delivery date, the eligible subjects were divided into 
two groups: training set (delivery date on or before 
December 31, 2009) and testing set (delivery date on 
or after January 1, 2010). 

Variables 
All participants underwent either of the 

maternal biomarker screening tests for fetal 
aneuploidy: triple test, quadruple test, or integrated 
test, comprising of pregnancy-associated plasma 
protein-A (PAPP-A), alpha-fetoprotein (AFP), free 
beta-human chorionic gonadotropin (hCG), 
unconjugated estriol (uE3), and inhibin A. 
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Biochemical indices at sampling were adjusted for 
maternal weight and GA and reported as multiple of 
the median (MoM) values of these parameters. Study 
participants’ demographic characteristics and risk 
factors, including age, pre-pregnancy BMI, parity, 
systolic/diastolic blood pressure (SBP/DBP), glucose, 
and lipid levels were obtained during their clinic visit 
for 50-g OGTT. GA in days was measured from the 
first day of the last menstrual period. If uncertain or 
the last menstrual period was unknown, GA was 
determined using sonography. 

Macrosomic birth 
Typical macrosomia is defined as a birth weight 

of ≥4,000 g [8], whereas LGA is defined as birth 
weight ≥90 percentiles based on GA, as first 
introduced in Williams et al.’s fetal growth table [22]. 
In this study, instead of using the “typical” 
macrosomia, we defined “macrosomic birth” as birth 
weight ≥90 percentiles (3,820 g) of our modeling 
dataset, irrespective of GA. 

Construction of prediction models and 
internal validation 

Binary logistic regression analysis was 
performed to analyze the effects of each potential 
predictor of macrosomic birth. For constructing 
best-fit prediction models, multivariable binary 
logistic regression analysis was performed using a 
backward stepwise procedure as a variable selection 
method to minimize Akaike information criterion. 
Three primary models were constructed using sets of 
biomarkers (PAPP-A, AFP, hCG, uE3, and inhibin A), 
routine prenatal triple, quadruple, and integrated 
screen tests. The primary models were expanded with 
significant demographic and clinical factors from the 
univariate analysis. 

The discrimination power and calibration power 
of the constructed models were estimated using area 
under the curve (AUC) and Hosmer-Lemeshow test, 
respectively. For internal validation, leave-one-out 
cross-validation was performed to estimate the 
reliability of the constructed model. Receiver 
operating characteristic (ROC) curve analysis was 
performed to analyze potential variables to predict 
macrosomic birth. The cut-off values were selected to 
maximize the sum of sensitivity and specificity, which 
were used to transform potential variables to binary 
predictors. The prediction performance was 
compared among the constructed models using net 
reclassification improvement (NRI) and integrated 
discrimination improvement (IDI) analyses. For the 
practical application of the prediction model in 
clinical settings, we also developed a nomogram, 
which is a graphical display of the best performing 

model for the prediction of macrosomic births. 

Software and basic statistics 
R language version 3.3.3 (R Foundation for 

Statistical Computing, Vienna, Austria), T&F program 
ver. 2.9 (YooJin BioSoft, Goyang, Korea), and IBM 
SPSS Statistics for Windows, Version 22 (IBM Corp., 
Armonk, New York, USA) were used for all statistical 
analyses and prediction modeling. Data are expressed 
as mean ± standard deviation for continuous 
variables. When variables were normally distributed, 
we performed a mean difference test between 
two-sample groups defined by macrosomia using a 
Student’s t-test or Welch’s t-test as appropriate. For 
non-normally-distributed variables, the Mann- 
Whitney U test was used. For categorical variables, 
data are expressed as simple number and percentage, 
N (%). Chi-square test or Fisher’s exact test was 
performed using a contingency table to assess the 
association between macrosomic birth and other 
categorical variables as appropriate. 

Ethics statement 
The Institutional Review Boards of CHA 

Kangnam Medical Centre (IRB No: KNC 10-025) and 
Ewha Womans University Mokdong Hospital (IRB 
No: 2020-01-012) approved the protocol of this study. 

Results 
Characteristics of the study participants 

Figure 1 illustrates the flow diagram of the study 
participants. Initially, we collected data from 1,668 
women who delivered with a record of positive 50-g 
OGCT between July 1, 2007 and December 31, 2015 at 
Kangnam CHA Medical Centre and Ewha Womans 
University Mokdong Hospital. Subjects were 
excluded if they had any missing data in any of the 
maternal serum markers, resulting in a total of 1,466 
subjects. Participants were divided into two groups 
based on birth weight: normal with a birth weight 
<90th percentile (3,820 g) and macrosomic birth with a 
birth weight ≥90th percentile. 

Table 1 summarizes the demographic and 
clinical characteristics of the study subjects, who were 
included in the building prediction models. The ages 
of the normal and macrosomic birth groups were 
32.89 ± 3.90 and 33.32 ± 3.54 years, respectively, which 
were not significantly different. Higher parity was 
more likely in the macrosomic birth group than the 
normal group; however, the difference was not 
significant. Pre-pregnancy BMI was significantly 
higher in the macrosomic birth group (22.71 ± 3.73 
kg/m2) than in the normal group (21.02 ± 2.89 kg/m2). 
Obesity was also significantly associated with 
macrosomic birth, with approximately three times 
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more obese subjects in the macrosomic birth group 
(25.5%) than in the normal group (9.0%). The levels of 
biomarkers (PAPP-A, AFP, uE3, hCG, inhibin A, 
white blood cell [WBC], hemoglobin [Hb], cholesterol, 
and glucose levels) and apart from weight gain, other 
clinical factors (nuchal translucency, systolic blood 
pressure, and diastolic blood pressure) were not 
significantly different between the two groups until 
they underwent 50-g OGCT. GDM was significantly 
associated with macrosomic birth (P=0.039). The 
demographic and clinical characteristics of the 
subjects used for model performance evaluation are 
available in Table S1. 

 

Table 1. Demographic and clinical characteristics of the study 
subjects 

Variable Normal Macrosomic birth 
(90%) 

P value 

Number of subjects (%) 981 (89.9) 110 (10.1)   
Age (years) 32.88 ± 3.89 33.32 ± 3.54 0.188 
Family history of diabetes mellitus   0.955 
No 787 (80.2) 88 (80.0)   
Yes 194 (19.8) 22 (20.0)   
Family history of hypertension     0.982 
No 775 (79.0) 87 (79.1)   
Yes 206 (21.0) 23 (20.9)   
Pre-pregnancy BMI (kg/m2) 21.02 ± 2.89 22.71 ± 3.73 < 0.001** 
Parity     0.075 
0 651 (66.4) 72 (65.5)   
1 262 (26.7) 25 (22.7)   
2 62 (6.3) 10 (9.1)   
3 5 (0.5) 3 (2.7)   
4 1 (0.1) 0 (0.0)   
Obesity     < 0.001** 
Normal (18.5 ≤ BMI < 23.0 kg/m2) 602 (61.4) 61 (55.5)   
Underweight (BMI <18.5 kg/m2) 173 (17.6) 8 (7.3)   
Overweight (23.0 ≤ BMI < 25.0 
kg/m2) 

118 (12.0) 13 (11.8)   

Obese (BMI ≥25.0 kg/m2) 88 (9.0) 28 (25.5)   
GDM group     0.039* 
Normal 746 (76.4) 72 (67.3)   
GDM 231 (23.6) 35 (32.7)   
Gestational age (weeks)       
First-trimester screening 11.91 ± 0.68 11.91 ± 0.67 0.848 
Second-trimester screening 16.37 ± 0.76 16.29 ± 0.64 0.378 
50g OGCT 26.81 ± 1.47 26.8 ± 1.51 0.871 
Delivery 38.92 ± 1.51 39.76 ± 1.02 < 0.001** 
Nuchal translucency (cm) $ 0.12 (0.10 - 0.15) 0.14 (0.10 - 0.16) 0.129 
Pregnancy associated plasma 
protein A (MoM) $ 

1.00 (0.63 - 1.56) 1.02 (0.54 - 1.8) 0.768 

Alpha fetoprotein (MoM) 1.10 ± 0.36 1.12 ± 0.33 0.461 
Unconjugated estriol (MoM) 1.08 ± 0.33 1.20 ± 0.49 0.095 
Human Chorionic gonadotropin 
(MoM) $ 

1.04 (0.74 - 1.40) 1.03 (0.80 - 1.36) 0.969 

Inhibin A (MoM) $ 1.09 (0.83 - 1.43) 1.08 (0.86 - 1.48) 0.721 
Systolic blood pressure (mmHg) 113.69 ± 11.98 114.91 ± 10.66 0.231 
Diastolic blood pressure (mmHg) 67.48 ± 8.29 67.09 ± 7.45 0.707 
White blood cells (count/mL) 9213.56 ± 1936.17 9617.8 ± 2276.92 0.082 
Hemoglobin (g/dL) 11.38 ± 0.9 11.28 ± 0.82 0.212 
Total cholesterol (mg/dL) 234.08 ± 39.76 229.63 ± 39.08 0.201 
Glucose (mg/dL) $ 152 (145 - 164) 154 (145 - 166) 0.268 
Weight gain until 50g OGCT (kg) 7.89 ± 3.74 8.60 ± 3.61 0.016* 

Statistical significance was calculated using T-test, Mann-Whitney U test$, or 
Fisher’s exact test depending on the data type. Continuous variables are expressed 
as mean ± standard deviation or median with inter-quartile range$, considering 
skewness of the data distribution. *: P<0.05; **: P<0.001; BMI: body mass index; 
MoM: multiple of the median; OGCT: oral glucose challenge test. 

 
Figure 1. Flow diagram for study participants. OGCT: oral glucose challenge 
test. 

 
Variables were selected as potential predictors in 

building macrosomic birth predictive models (Tables 
S2 and S3): six aneuploidy blood marker variables 
(AFP, hCG, uE3, inhibin A, PAPP-A, and NT), eight 
other continuous variables (age, WBC, SBP, DBP, Hb, 
cholesterol, glucose, and weight gain until 50-g 
OGCT), and five categorical variables (family history 
of diabetes, family history of hypertension, obesity 
group by pre-pregnancy BMI, GDM group, and parity 
from these tests). None of the variables that are only 
available at delivery was included in the models. 
Among the included variables, only obesity, GDM 
groups, and uE3 levels were statistically significant 
with respect to macrosomic birth (Table S4). 

Macrosomic birth prediction models using 
multiple maternal serum indices 

The models were evaluated for their prediction 
performance on a testing set, consisting of 328 normal 
birth and 47 macrosomic birth cases. Three primary 
models, which were constructed using sets of 
biomarkers (M1: triple screen test set; M2: quadruple 
screen test set; M3: integrated screen test set), 
achieved marginally significant discrimination ability 
(Figure S1). The M3 model with five biomarkers 
demonstrated the highest performance (AUC=0.62) 
among the primary models (Table 2). 

Refinement of prediction models using 
demographic and clinical factors 

The biomarker-based models were refined with 
maternal demographic and clinical factors that 
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showed a significant association with the macrosomic 
birth group in Table 1. These additional factors were 
obesity, hemoblogin, and weight gain until 50-g 
OGCT. Three expanded models (Table 3), namely 
M1-E, M2-E, and M3-E, demonstrated improved 
prediction performance for macrosomic birth 
compared with the primary models by a maximum of 
25%, achieving AUCs of 0.69-0.73 compared with 
0.55-0.62 of the primary models. The M3-E achieved 
the best performance (AUC=0.73), suggesting a 73% 
chance that the model could distinguish between 
normal and macrosomic birth classes. A receiver 
operating characteristic (ROC) curve, illustrating the 
trade-off between sensitivity and specificity, was 
generated to visualize the classification performance 
(Figure 2). However, no significant performance 
difference was observed among the three models 
according to NRI and IDI analyses (Table S5). An 
additional model only with the above clinical factors, 
named M-Env, was created. This M-Env model 
achieved an AUC value of 0.70, slightly lower than 
that of integrative M3-E; however, the difference was 
not significantly different according to DeLong’s test 
comparing the two AUCs (P-value = 0.249). Although 
the overall AUC difference was not significant, the 
addition of serum markers significantly improved the 
sensitivity and specificity of our integrative model 
(M3-E). Both NRI and IDI demonstrated that M3-E 
significantly improved specificity and sensitivity 
compared to M-Env (Table S6). 

Nomogram 
Finally, nomograms using the variables included 

in the expanded models were constructed after 
converting all numeric continuous variables into 
binary variables. Figure 3 illustrates the nomogram 
based on the M3-E model, which includes AFP, hCG, 
estriol, inhibin, obesity group, Hb, and weight gain 
before 50-g OGTT. Examples of the nomogram’s 
predictive capability are illustrated by calculating 
macrosomic birth at the midpoint of pregnancy. 

Discussion 
This study demonstrated that the prediction of 

macrosomic birth is possible before the second half of 
pregnancy or around the time when the OGCT is 
performed. This was done using a combination of 

biomarkers from the fetal aneuploidy screening test 
and maternal demographic characteristics, including 
biochemical indices that are routinely measured 
during the first- and second-trimester screening tests 
for chromosomal abnormalities in hyperglycemic 
pregnant women. 

Our study provides further evidence that 
macrosomic fetal growth may be predetermined by 
maternal and fetal parameters already identifiable in 
the first half of pregnancy. So far, obstetricians have 
relied on estimated body weight with fetal biometry 
using sonography to counsel a woman about having a 
macrosomic birth. Because the sonography is 
performed right before the end of pregnancy, it has 
not been possible for clinicians to detect pregnancies 
with a high risk of macrosomic birth, which is an 
adverse pregnancy outcome; they have also been 
unable to intervene at the earlier stages of pregnancy. 
Our nomogram includes a significant modifiable 
maternal factor, which is maternal weight gain up to 
the time of undergoing 50-g OGTT. Therefore, the 
prediction of a high risk of macrosomic birth can be 
used to recommend lifestyle changes to women 
during pregnancy. The earlier the risk prediction is 
performed, the better the chances of successful risk 
management during pregnancy. 

 

 
Figure 2. ROC curve of the expanded prediction models. The prediction 
performance of the expanded models was evaluated. Sensitivity, also known as true 
positive rate, was calculated as (true positive)/(true positive + false positive). 
Specificity, also known as true negative rate, was calculated as (true negative)/(false 
negative + true negative). ROC: receiver operating characteristic. 

 

Table 2. Comparison of area under curve among the three primary prediction models 

Predictor AUC (95% CIs) P value Sensitivity Specificity Cut-off P value for AUC comparison 
M1 0.55 (0.49, 0.62) 0.097 0.701 0.431 0.085 Reference 
M2 0.61 (0.54, 0.68) 0.003 0.754 0.43 0.078 0.171 
M3 0.62 (0.54, 0.69) 0.002 0.698 0.514 0.087 0.235 
Cut-off was selected to maximize the sum of sensitivity and specificity. AUC: area under curve; CIs: confidence intervals; M1: prediction model consisting of Alpha 
fetoprotein (MoM), Human Chorionic gonadotropin (MoM), and Unconjugated estriol (MoM); M2: prediction model consisting of M1 + Inhibin A (MoM); M3: prediction 
model consisting of M2 + Pregnancy associated plasma protein A (MoM). P value for AUC comparison was computed using DeLong’s test. 
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Figure 3. Nomogram to predict the probability of macrosomic birth. This nomogram was generated based on the best performing expanded model M3-E. 

 

Table 3. Expanded prediction models for macrosomic birth 

Predictor AUC (95% CIs) P value Sensitivity Specificity Cut-off P value for AUC comparison 
M1-E 0.69 (0.63, 0.76) < 0.001 0.612 0.705 0.100 Reference 
M2-E 0.72 (0.65, 0.78) < 0.001 0.688 0.688 0.094 0.495 
M3-E 0.73 (0.66, 0.79) < 0.001 0.817 0.610 0.087 0.266 
Cut-off was selected to maximize the sum of sensitivity and specificity. AUC: area under curve; CIs: confidence intervals; M1-E: prediction model consisting of M1, Obesity 
group, Hemoglobin (g/dL), and Weight gain until 50g OGCT (kg); M2-E: prediction model consisting of M2, Obesity group, Hemoglobin (g/dL), and Weight gain until 50g 
OGCT (kg); M3-E: prediction model consisting of M3, Obesity group, Hemoglobin (g/dL), and Weight gain until 50g OGCT (kg). P value for AUC comparison was 
computed using DeLong’s test. 

 
The benefits of early intervention during 

pregnancy are well represented in the Barker 
hypothesis [23]. According to the hypothesis, the 
health of newborns is heavily affected by various 
maternal conditions, including but not limited to 
nutrition, maternal obesity, and GDM. The fetus 
develops rapidly at the later stages of pregnancy. 
Therefore, the early detection of macrosomia at an 
early stage will enable an intervention during or after 
mid-pregnancy via lifestyle education or instructions 
such as eating habits and physical activities for 
optimization of healthy weight gain in pregnant 
women. Though limited, lifestyle interventions in 
early pregnancy have been shown to be beneficial in 
preventing GDM [24, 25]. 

The current study attempted to predict birth 
weight using factors obtained in the first half of 
pregnancy. Our predictive models based only on the 
sets of maternal biomarkers used in the triple, 
quadruple, and integrated fetal aneuploidy screening 
tests demonstrated positive predictive performance. 
The inclusion of maternal characteristics obtained 
when the OGCT was performed during mid- 
pregnancy significantly improved the performance of 
these models. When we built and evaluated the M3-E 
model on the complete data set, the same performance 
was achieved with an AUC value of 0.73 (data not 
shown). This suggests that the model developed using 

relatively old data (2007-2009) would still be valid for 
applying to more recent data. 

The prediction performance of our model is 
comparable to others’ models. One study used 
maternal serum markers of the 11-14 week screening 
and sonogram-based fetal size measurement to 
predict LGA cases [26]. The study reported that 
hyperglycemia was a causal factor of LGA, and their 
predictive model for LGA achieved an AUC of 0.6901 
(p<0.0001) [26]. Our predictive model achieved better 
predictive performance without requiring a 
sonogram; hence, it has better potential to be clinically 
applied to prevent poor pregnancy outcomes. 

Pregnancies often result in adverse outcomes, 
and it is crucial to identify pregnancies at an elevated 
risk of developing adverse outcomes as early as 
possible. We previously reported that uE3, one of the 
pregnancy blood biomarkers, was highly associated 
with the development of GDM but not with 
macrosomia in a cohort from Korea [27]. However, in 
this study, uE3 was found to be the most significant 
factor for building a logistic regression-based 
predictive model of macrosomic birth using maternal 
serum markers that are routinely measured during 
early or mid-pregnancy. This discrepancy can be 
attributed to the different birth weight cut-offs for 
defining macrosomic birth in this study (fetal birth 
weight of ≥3,820 g equivalent to the 90th percentile of 
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hyperglycemic mothers) compared with other studies 
(fetal birth weight of ≥4,000 g in the general 
population). A cohort-specific cut-off was used in this 
study because different levels of metabolic risks are 
observed at the same BMI across different ethnic 
groups [28], and different ranges of BMI for defining 
obesity are recommended for different ethnicities [29, 
30]. 

Although no direct association was noted 
between macrosomia and uE3 level, a recent study of 
Chinese women reported significantly lower uE3 and 
AFP levels in women with GDM than in women 
without pregnancy-related complications; there was 
also a significantly over-represented proportion of 
macrosomia (14.29% of the GDM group) and LGA 
(25.82% of the GDM group) [31]. Our previous study 
also reported a statistically significant association 
between uE3 and GDM (OR=0.41; 95% CI 1.85-9.11) 
and positive trends with LGA (OR=2.35; 95% CI 
0.69-7.96) and macrosomia (OR=2.76; 95% CI 
0.81-9.41) [20]. These results suggest that uE3, GDM, 
and fetal growth are all closely associated. 

One possible mechanism is the decreased insulin 
sensitivities in pregnant women, which would 
contribute to the development of GDM [6, 7]. 
Compared with non-pregnant women, typical 
pregnant women have 50-70% lower insulin 
sensitivity. Although the role of the maternal 
hormone estrogen during the pregnancy adaptation 
process is largely unknown, E2 (estradiol also known 
as 17β-estradiol) has been shown to directly act on 
beta-cells of the pancreas to promote insulin synthesis 
and beta-cell survival [32]. Maternal progesterone and 
estrogen levels constantly increase throughout 
pregnancy until delivery [33]. Progesterone and E2 
are secreted by the corpus luteum during early 
pregnancy, and the developed placenta continues to 
secrete these hormones and E3 (which shows much 
higher levels than E2 in the serum) throughout 
normal pregnancy [33]. E3 has been shown to directly 
induce insulin resistance in adipocytes in cultures, 
possibly by reducing insulin-simulated glucose 
transport [34]. However, the detailed mechanisms are 
yet to be explored. 

There are multiple strengths in our study and the 
developed models. Our models primarily rely on 
biomarkers collected during routine aneuploidy tests; 
thus, there is no need to perform any additional tests. 
Other clinical factors used in the models are also 
routinely obtained during typical prenatal 
evaluations. Additionally, the nomograms developed 
in this study will allow the early estimation of 
macrosomic births by clinicians and consequently 
provide early interventions. 

This study had a few limitations. First, the study 

cohort was obtained from two hospitals between 2007 
and 2015 in Korea; therefore, there could be a selection 
bias that may not represent all pregnant women. The 
study cohort is relatively small, and the data used 
were not nationwide (n=1,468 with approximately 
10% cases of macrosomic births), requiring caution in 
interpreting the results. However, recent studies have 
shown significant increases in obesity and GDM, but 
no statistically significant increases in the incidence of 
macrosomia and LGA have been observed in 
longitudinal studies [35-37]. Second, the blood 
biomarker data were reported as MoM levels and 
adjusted for maternal age and weight, which may 
vary with respect to geographic region, ethnicity, and 
analytic method. Third, the individual points in the 
nomogram, contributing to the final score, may not 
completely represent the actual magnitude of the 
association between the patient characteristic and 
macrosomic birth. Because the range of points is 
limited, patients with very different risks may still 
appear to have the same probability of developing 
macrosomic birth. Finally, our models were not 
applicable during early pregnancy because they relied 
on markers available only during mid-pregnancy 
when fetal aneuploidy screenings and OGCT were 
performed. Further research is warranted to identify 
other biomarkers; this would improve the prediction 
performance and enable the development of other 
predictive models using only markers from early 
pregnancy, thereby allowing interventions as early as 
possible. 

In conclusion, our prediction models of 
macrosomic birth may help to identify a substantial 
proportion of hyperglycemic mothers with a high risk 
of developing macrosomic birth using early 
second-trimester routine screening biomarkers for 
chromosomal aneuploidy without requiring 
additional tests. Although our models cannot 
completely predict macrosomic births, the models and 
our nomograms may be useful for customizing 
antenatal care to reduce the risk of developing 
macrosomic births. 
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