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Abstract 

Objectives: To develop and validate radiomics nomograms for the pretreatment predictions of overall 
survival (OS) and time to progression (TTP) in the patients with advanced hepatocellular carcinoma (HCC) 
treated with apatinib plus transarterial chemoembolization (TACE), and to assess the incremental value of the 
clinical-radiomics nomograms for estimating individual OS and TTP. 
Methods: A total of 60 patients with advanced HCC (BCLC stage C) treated with apatinib plus TACE were 
divided into a training set (n=48) and a validation set (n=12). The predictors identified from the clinical variables 
and the radiomics signature constructed from the computed tomography images, such as ɑ-fetoprotein level 
(AFP), formfactor, the grey level co-occurrence matrix, the gray level size zone matrix, and the gray level 
run-length matrix, were used to build the clinical-radiomics nomograms and the radiomics nomograms for the 
prediction of OS and TTP. 
Results: Apatinib plus TACE benefited the patients with advanced HCC, with a 579-day median OS and a 
270-day median TTP. The nomograms were built with the radiomics signature and AFP, and achieved favorable 
prediction efficacy with acceptable calibration curves. Decision curve analyses demonstrated that the 
clinical-radiomics nomograms outperformed the radiomics nomograms for the predictions of OS and TTP. 
Conclusions: Apatinib plus TACE may improve OS and prolonged TTP in the patients with advanced HCC. 
The clinical-radiomics nomograms, a noninvasive pretreatment prediction tool that incorporate radiomics 
signature and AFP, demonstrated good prediction accuracy for OS and TTP in these patients. These results 
indicate that the clinical-radiomics nomograms may provide novel insight for precise personalized medicine 
approaches in the patients with advanced HCC. 
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Introduction 
Hepatocellular carcinoma (HCC) is a complex 

disease most commonly related to chronic liver 
disease. Epidemiological studies of HCC have 
revealed that it is the fifth most common cancer and 
the second most frequent cause of cancer-related 
death [1], with a growing incidence worldwide [2]. 
HCC also represents about 90% of primary liver 
cancers [2], with a male to female ratio of 
approximately 2-2.5:1 [3]. The greatest HCC burden is 

in the developing world [4]. Approximately 25-70% of 
patients with HCC present with advanced disease at 
diagnosis, which is regarded as incurable [2, 4]. 
Treatment selection and survival prediction are 
critical steps in the management of advanced HCC 
(BCLC stage C). 

Targeted drug therapy is the most common 
treatment for advanced HCC. Sorafenib, which 
inhibits vascular endothelial growth factor receptors, 
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is regarded as the standard first-line systemic therapy 
for advanced HCC [2]. However, the incidence of 
drug-related adverse events is high, and these adverse 
events may reduce adherence to sorafenib and thus 
have a negative effect on patient prognosis [5]. 

In addition to its association with adverse events, 
the high cost of sorafenib also limits its long-term use 
in the treatment of advanced HCC patients. For these 
reasons, new targeted drugs for advanced HCC are 
currently being developed and tested. For instance, 
apatinib is a novel and highly selective inhibitor of 
VEGFR2 tyrosine kinase, with a binding affinity 10 
times greater than that of sorafenib [6]. Apatinib is 
currently available in mainland China. A series of 
studies [7-9] found that apatinib has encouraging 
antitumor properties and is toxicologically tolerable 
in several malignant tumor cases. Furthermore, 
another study [10] found that apatinib has similar 
antitumorigenic and antiangiogenic efficacy to 
sorafenib in HCC with less toxicity in vitro and in vivo. 
These findings provide preclinical evidence 
supporting the potential application of apatinib to the 
treatment of HCC. What’s more, apatinib has 
potential survival benefits for patients with advance 
HCC, as demonstrated by a phase II randomized, 
open-label trial [11]. 

In recent years, the combined use of transarterial 
chemoembolization (TACE) with anti-angiogenic 
agents in advanced HCC patients has attracted much 
interest [12-16]. Our previous study [17] also showed 
the median time to progression (TTP) and overall 
survival (OS) in the TACE-apatinib group was also 
significantly greater than that of the TACE-alone 
group after the propensity score matching analysis, 
which agreed with those of a series of previous 
studies [12-14]. Apatinib plus TACE had certain 
survival benefits for advanced HCC in patients who 
experienced progression following TACE, revealing a 
potentially promising strategy for the treatment of 
advanced HCC [12]. Given this, determining 
biomarkers predictive of the efficacy of apatinib plus 
TACE is needed. 

Radiomics is an emerging field in which high- 
dimensional features are mathematically extracted 
from medical images. This extraction results in the 
conversion of images into mineable data and the 
subsequent analysis of these data for support of 
medical decision-making [18]. Such prognostic 
prediction models may be built from noninvasively 
extracted radiomics features of tumors and relevant 
clinical indicators. Recently, radiomics analyses of 
HCC using computed tomography (CT) and magnetic 
resonance images have been shown to have high 
prediction accuracy [19-21], such as Kim et al. [20] 
found that gadoxetic acid-enhanced magnetic 

resonance imaging radiomics could be used for the 
prediction of postoperative early and late recurrence 
of single HCC. These radiomic analysis of 
contrast-enhanced CT predictors have mainly based 
on advanced HCC patients who were treated with 
sorafenib [21] or microvascular invasion and outcome 
in hepatocellular carcinoma [19]. However, the use of 
texture analysis as a therapeutic decision-making 
biomarker or predictive biomarker for treatment 
efficacy in cases of advanced HCC treated with 
apatinib plus TACE has never been investigated. 

The aim of present study was to develop and 
validate radiomics nomograms for the pretreatment 
predictions of OS and TTP in patients with advanced 
HCC who were treated with apatinib plus TACE, and 
to assess the incremental value of such 
clinical-radiomics nomograms in individual OS and 
TTP estimation. 

Materials and methods 
Subjects 

Ethical approval by the institutional review 
board was obtained for this retrospective analysis and 
the requirement for informed consent was waived. 
This study was conducted in accordance with the 
Declaration of Helsinki. 

Between January 2014 and June 2018, a total of 60 
consecutive patients with advanced HCC (BCLC stage 
C) who received apatinib plus TACE were enrolled in 
the present study. Patient recruitment (Figure S1) and 
inclusion and exclusion criteria are depicted in the 
Supplementary Data. A detailed version of the 
apatinib plus TACE administration protocol used 
here is also given in the Supplementary Data. 
Computer-generated random numbers were used to 
assign a training set to validation set ratio of about 4:1. 
Recorded demographic characteristics and clinical 
data are detailed in the Supplementary Data. 

End Points 
End points were chosen according to the 

guidelines of the American Association for the Study 
of Liver Diseases [22]. The primary end point was OS, 
defined as the time from the first TACE procedure to 
the patient’s death. TTP (the time from the start of the 
first TACE procedure to the time of tumor 
progression as defined by modified Response 
Evaluation Criteria in Solid Tumors [23]) was defined 
as the secondary end point. Patient follow-up is 
detailed in the Supplementary Data. Patients alive or 
those without radiologic progression at the end of the 
follow-up period were removed. 
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Median OS and median TTP 
Median OS and median TTP of the full cohort 

(all 60 patients) were calculated using Kaplan-Meier 
analyses. 

CT image acquisition, region-of-interest 
segmentation, and radiomics features 
extraction 

The radiomics workflow used in the present 
study is depicted in Figure 1. A detailed CT protocol 
is also given in the Supplementary Data. Tumor 
regions of interest (ROIs) were hand-drawn on both 
the late arterial phase and the portal venous phase of 
pretreatment contrast-enhanced CT images on each 
slice by two radiologists with more than 10 years of 
experience. Itk-SNAP software (www.itk-snap.org) 
was used for manual segmentation. Radiomics 
features for each patient were extracted using 
Artificial Intelligence Kit version 1.0.3 (GE Healthcare, 
Boston USA). In total, 396 texture parameters from the 
late arterial phase and 396 texture parameters from 
the portal venous phase were extracted from a single 
CT image of each patient. The radiomics features were 
classified into six categories (Supplementary Table 

S1): histogram, the grey level co-occurrence matrix 
(GLCM), the gray level size zone matrix (GLSZM), the 
gray level run-length matrix (RLM), and shape- and 
size-based features. More detailed information about 
the radiomics features can be found in the 
Supplementary Data. 

Intra- and inter-reader agreement for the texture 
parameters were assessed using intraclass correlation 
coefficients (ICCs) for each pair of variables in the 
whole sample. To assess intra-observer 
reproducibility, reader 1 then repeated the same 
manual procedure one week later. An ICC greater 
than 0.7 was considered good feature extraction 
agreement [21, 24]. Correlations between texture 
parameters were assessed using Spearman 
correlations, with correlation coefficients more than 
0.9 considered significant. 

Feature selection and radiomics signature 
construction 

The least absolute shrinkage and selection 
operator (LASSO) Cox regression algorithm was used 
to analyze all high-dimensional data. A LASSO Cox 
regression was applied to select OS- and TTP-related 

 

 
Figure 1. Radiomics workflow and study flowchart. 
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features with nonzero coefficients from a subset of 
features out of the 792 texture parameters in the 
training set after performing the spearman correlation 
analysis. Penalty parameter tuning was conducted 
with 10-fold cross-validation. Additional details on 
feature processing and selection can be found in our 
prior work [25]. A radiomics score (Rad-score) was 
generated using a linear combination of selected 
features that were weighted by their respective 
LASSO Cox regression coefficients. The potential 
survival predictors among clinical variables, such as 
AFP, total bilirubin, and Child-Pugh class, were 
identified using a univariate Cox proportional 
hazards regression analysis approach. 

Construction of the radiomics nomogram 
The radiomics signature and clinical predictors 

were tested via a multivariate Cox proportional 
hazards regression model to predict OS and TTP in 
the training set. To provide the clinician with a 
quantitative tool to predict individual probability of 
OS and TTP, we built the clinical-radiomics 
nomograms and radiomics nomograms on the basis of 
multivariate Cox proportional hazards regression 
analysis with the training set. 

Assessment of nomogram performance 
Nomogram calibration was assessed with a 

calibration curve. Harrell’s C-index was calculated, 
which was applied to quantify the discrimination 
performance of the radiomics nomogram. The 
clinical-radiomics nomograms and radiomics 
nomograms were subjected to bootstrapping 
validation (1,000 bootstrap resamples) to calculate a 
relatively corrected C-index [26]. 

Internal validation of the radiomics nomogram 
The performance of the internally-validated 

radiomics nomogram was assessed with the 
validation set. Using the formula constructed in the 
training set, a Rad-score was calculated for each 
patient in the validation set. Harrell’s C-index and the 
relatively corrected C-index were calculated, and the 
resultant calibration curves were obtained. 

Clinical utility of the radiomics nomogram 
Decision curve analysis (DCA) was conducted to 

determine the clinical usefulness of the clinical- 
radiomics nomograms by calculating the net benefits 
for a range of threshold probabilities on the full cohort 
with 5-fold cross-validation [27]. 

Statistical analyses 
Statistical analyses were conducted with R 

software (version 3.5.3, http://www.Rproject.org) 
and Python3.7. Package details are available in the 

Data Supplement. A two-sided P <0.05 was 
considered significant. 

Results 
Patient characteristics and univariate analyses 
of training set outcomes 

The study flowchart is presented in Figure 1. The 
main clinical characteristics of patients in the training 
and validation sets are shown in Table 1. The median 
OS in the whole cohort was 579 days (range, 90-1975) 
and the median TTP was 270 days (range, 30-1006). 
Demographic and pretreatment clinical characteristics 
did not significantly differ between the training and 
validation sets, except for a significantly lower 
pretreatment serum albumin level and tumor size in 
the validation set (P = 0.017, P=0.018). The median OS 
was 480 days (range, 90-1975) in the training set and 
570 days (range, 180-1468) in the validation set (P = 
0.496). The median TTP in the training and validation 
sets were 240 (range, 30-1006) and 275 (range, 60-458) 
days, respectively (P = 0.28). 

 

Table 1. Main baseline demographic and clinical characteristics of 
patients in the training set and validation set 
Characteristic Training set  

(n = 48) 
Validation set 
(n = 12) 

P-value 

Sex   0.998 
Male 41 (85) 10 (83)  
Female 7 (15) 2 (17)  
Median age (y)* 49 (31-66) 49 (36-59) 0.318 
Median BMI (kg/m2)* 21.9 (18.3-28.7) 23.5 (18.4-27.9) 0.134 
Cause of disease   0.997  
Chronic hepatitis B only 43 (90) 11 (92)  
Unknown 5 (10) 1 (8)  
Child-Pugh class    
A 41 (85) 9 (75) 0.861 
B 7 (15) 3 (25)  
ECOG performance status   0.862 
0 7 (15) 1 (8)  
1 36 (75) 8 (67)  
2 5 (10) 3 (25)  
HCC type   0.717 
Nodular 23 (48) 8 (67)  
massive 25 (52) 4 (33)  
Median tumor size (mm) 79 (32-160) 60 (35-121) 0.018# 

Macroscopic vascular invasion 28 (58) 6 (50) 0.965 
Extrahepatic spread 30 (63) 7 (58) 0.995 
Biochemical analysis*    
Median albumin level (g/dL) 37 (25-45) 34 (31-39) 0.017# 

Median total bilirubin level (mg/dL) 16 (6-41) 19 (10-101) 0.216 
Median ɑ-fetoprotein level (ng/mL) 760 (1-84500) 336 (3-72814) 0.419 
Median survival end points (d)*    
Overall survival 480 (90-1975) 570 (180-1468) 0.496 
Time to progression 240 (30-1006) 275 (60-458) 0.280 

Note: Except where indicated, data are numbers of patients, with percentages in 
parentheses. BMI: body mass index, ECOG: Eastern Cooperative Oncology Group, 
HCC: hepatocellular carcinoma; 
*Numbers in parentheses are ranges; 
#Statistically significant. 

 
 
Supplementary Table S2 contains the results of a 

univariate cox proportional hazards regression 
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analyses of pretreatment clinical characteristics, for 
predicting OS and TTP in the training set. Among the 
pretreatment demographic and clinical parameters, 
ɑ-fetoprotein (AFP) level (hazard ratio [HR], 1.000021; 
95% confidence interval [CI]: 1.000007, 1.000035; 
P<0.005) was significantly associated with OS. AFP 
level (HR, 1.00002; 95% CI: 1.00001, 1.00003; P<0.005) 
was also significantly associated with TTP. 

Feature selection and radiomics signature 
construction 

The inter- (ICC, range 0.70-0.98) and intra- 
observer (ICC, 0.70-0.96) ratings were high, indicating 
favorable intra- and inter-observer feature extraction 
reproducibility. Given this, all outcomes were based 
on the measurements obtained by the first radiologist. 
All features with spearman correlation coefficients 
greater than 0.9 were removed. A total of 57 radiomics 
features for each patient were reserved from the late 
arterial (29 features) and portal venous phases (28 
features). 

The 57 radiomics features of advanced HCC 
from the late arterial and venous phases of 
pretreatment contrast-enhanced CT images were 
reduced to 8 potential predictors of OS on the basis of 
48 patients in the training set (Supplementary Table 
S3A). These features are of nonzero coefficients in the 
LASSO logistic regression algorithm. Similarly, 12 
potential predictors of TTP were reserved 
(Supplementary Table S3B). These radiomics features 
were included in the Rad-score calculation formula 
(Supplementary Data). 

Construction of the radiomics nomogram 
A multivariate Cox proportional hazards 

regression analysis identified the radiomics signature 
and AFP as independent predictors (Table 2, Table 3, 
Supplementary Table S4A-Table S4B). The models 
that incorporated these independent predictors were 
developed and presented as the nomograms (Figure 
2A-B, Figure 3A-B). 

 

Table 2. Multivariate Cox proportional hazards regression 
analyses of the advanced HCC radiomics signature and clinical 
features for predicting overall survival in the training set 

Radiomics signature and clinical feature Hazard Ratio* P-value 
ɑ-fetoprotein level 1.67 (1.11-2.53) 0.01# 
InverseDifferenceMoment_AllDirection_offset4_SD 
(art) 

0.72 (0.47-1.09) 0.12 

Compactness1 (art) 0.65 (0.43-0.97) 0.04# 
ClusterShade_AllDirection_offset1 (por) 2.53 (1.58-4.48) <0.005# 
ZonePercentage (por) 1.73 (1.20-2.48) <0.005# 

Note.-HCC: hepatocellular carcinoma, art: late arterial phase, por: portal venous 
phase; 
*Numbers in parentheses are 95% confidence intervals; 
#Statistically significant. 

Table 3. Multivariate Cox proportional hazards regression 
analyses of the advanced HCC radiomics signature and clinical 
features for predicting time to progression in the training set 

Radiomics signature and clinical feature Hazard Ratio* P-value 
ɑ-fetoprotein level 1.54 (1.05-2.27) 0.03# 
ShortRunEmphasis_AllDirection_offset1_SD (art) 2.33 (1.20-4.53) 0.01# 
Compactness1 (art) 0.66 (0.46-0.93) 0.02# 
ShortRunHighGreyLevelEmphasis_AllDirection_
offset1_SD (art) 

0.53 (0.30-0.92) 0.03# 

LargeAreaEmphasis (art) 1.60 (1.13-2.27) 0.01# 
LowGreyLevelRunEmphasis_AllDirection_ 
offset4_SD (art) 

0.73 (0.48-1.11) 0.13 

Note.-HCC: hepatocellular carcinoma, art: late arterial phase, por: portal venous 
phase; 
*Numbers in parentheses are 95% confidence intervals; 
#Statistically significant. 

 

Apparent performance of the radiomics 
nomogram in the training set and validation in 
the validation set 

The calibration curves of the radiomics 
nomograms and the clinical-radiomics nomograms 
for OS and TTP demonstrated good agreement 
between prediction and observation in the training set 
(Figure 2C-D, Figure 3C-D). The C-index for the 
clinical-radiomics nomogram-based prediction of OS 
and TTP for the training set were 0.833 (95% CI, 0.793 
to 0.873) and 0.739 (95% CI, 0.692 to 0.786), then 
confirmed to be 0.792 (95% CI, 0.715 to 0.870) and 
0.701 (95% CI, 0.635 to 0.767) via bootstrapping 
validation in the validation set, respectively. While 
the C-index for the radiomics nomogram-based 
prediction of OS and TTP for the training set were 
0.828 (95% CI, 0.787 to 0.869) and 0.732 (95% CI, 0.685 
to 0.779), then confirmed to be 0.745 (95% CI, 0.695 to 
0.795) and 0.586 (95% CI, 0.543 to 0.628) via 
bootstrapping validation in the validation set, 
respectively. 

Clinical utility of the radiomics nomogram 
A decision curve analysis revealed that the 

clinical-radiomics nomograms developed here had 
higher overall net benefit than the radiomics 
nomograms across most of the range of reasonable 
threshold probabilities for both OS and TPP (Figure 
4). 

Discussion 
This study presents a retrospective analysis to 

develop and validate radiomics nomograms for the 
pretreatment predictions of OS and TTP in patients 
with advanced HCC who were treated with apatinib 
plus TACE, and to assess the incremental value of 
such clinical-radiomics nomograms in individual OS 
and TTP estimation, which is an important 
complement to these previous studies [19-21]. 
Collectively, the results of present study suggest that 
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apatinib plus TACE may improve OS and prolong 
TTP in patients with advanced HCC. These results 
agree with those of a series of previous studies [12-14, 
17]. When compared to a median survival time of 6–8 
months or 25% at one year in patients with advanced 
HCC (BCLC stage C), as described by the EASL 
clinical practice guidelines [2], the results of the 
present study indicate that apatinib plus TACE may 
improve OS in patients with advanced HCC. 
Similarly, when compared to a median TTP of 2.8 
months in sorafenib-treated patients [28], the results 
of the present study reveal that apatinib plus TACE 
may prolong TTP in patients with advanced HCC. 
Though the present study found that apatinib plus 
TACE may be a promising strategy for the treatment 
of advanced HCC, the present study’s sample size 
was relatively small. Future investigations should 
utilize a larger sample size and multicenter validation 

approaches to establish stronger evidence for the 
broad clinical application of these treatments. 

A multi-feature-based radiomics signature was 
identified in present study to be an independent 
biomarker for OS and TTP in patients with advanced 
HCC treated with apatinib plus TACE. The combined 
use of a radiomics signature and AFP in the 
clinical-radiomics nomograms performed better than 
the radiomics nomograms alone. Prior studies [21, 29, 
30] have also shown that several clinical parameters, 
including macroscopic vascular invasion, AFP, serum 
albumin levels, and Child-Pugh class, are associated 
with clinical outcomes in patients with HCC. Our 
results show that AFP is associated with OS and TTP, 
a finding which is consistent with prior work [21, 29, 
30]. Macroscopic vascular invasion, Child-Pugh class, 
and serum albumin levels have been previously 
significantly associated with OS [21, 29, 31], though 

they were not in the present 
study. 

The radiomics features 
were derived from CT images 
both in the late arterial and 
portal venous phases of the 
patients. The radiomics signature 
identified from these features 
included those both in the late 
arterial and portal venous phases 
when building clinical-radiomics 
and radiomics nomograms for 
OS, as well as the radiomics 
nomogram for TTP. However, 
the radiomics signature only 
included radiomic features in the 
late arterial phase for building 
clinical-radiomics nomogram for 
TTP. Tumor heterogeneity is 
closely related to tumor 
prognosis, most notably in HCC 
lesions [32]. Heterogeneous 
arterial phase enhancement 
seems to be predictive of high 
tumor grade and recurrence after 
treatment in HCC. However, 
advanced HCC often appears to 
be hypovascular, with decreased 
arterial flow [33]. This may 
explain the prognostic 
significance of radiomics 
signature, which reflect 
physiological heterogeneity and 
can be estimated at the portal 
venous phase. Our results 
collectively demonstrate that 
increased pretreatment tumor 

 

 
Figure 2. Use of the constructed clinical-radiomics nomogram and radiomics nomogram to predict 
overall survival (OS) in patients with advanced HCC, along with the assessment of the model 
calibration. Clinical-radiomics nomogram (A) and radiomics nomogram (B). Locate the patient’s Rad-score on the 
Rad-score axis. Draw a line straight upward to the points’ axis to determine how many points toward the probability of 
OS the patient receives for his or her Rad-score. Repeat the process for each variable. Sum the points achieved for each 
of the risk factors. Locate the final sum on the Total Point axis. Draw a line straight down to find the patient’s probability 
of OS. Calibration curves for the clinical-radiomics nomogram (C) and radiomics nomogram (D) show the calibration of 
each model in terms of the agreement between the predicted and the observed 1-and 2-year outcomes. Nomogram 
predicted OS is plotted on the x-axis; the observed fraction OS is plotted on the y-axis. Diagonal dotted line = a perfect 
prediction by an ideal model, in which the predicted outcome perfectly corresponds to the actual outcome. Solid line = 
performance of the nomogram, a closer lining of which with the diagonal dotted line represents a better prediction. 
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inhomogeneity is associated with poor clinical 
outcomes in patients with advanced HCC. These 

findings are consistent with those of previous HCC 
studies [19, 21]. 

 

 
Figure 3. Use of the constructed clinical-radiomics nomogram and radiomics nomogram to predict time to progression (TTP) in patients with advanced 
HCC, along with the assessment of the model calibration. Clinical-radiomics nomogram (A) and radiomics nomogram (B). Locate the patient’s Rad-score on the 
Rad-score axis. Draw a line straight upward to the points’ axis to determine how many points toward the probability of TTP the patient receives for his or her Rad-score. Repeat 
the process for each variable. Sum the points achieved for each of the risk factors. Locate the final sum on the Total Point axis. Draw a line straight down to find the patient’s 
probability of TTP. Calibration curves for the clinical-radiomics nomogram (C) and radiomics nomogram (D) show the calibration of each model in terms of the agreement 
between the predicted and the observed 3-month outcomes. Nomogram predicted TTP is plotted on the x-axis; the observed fraction TTP is plotted on the y-axis. Diagonal 
dotted line = a perfect prediction by an ideal model, in which the predicted outcome perfectly corresponds to the actual outcome. Solid line = performance of the nomogram, 
a closer lining of which with the diagonal dotted line represents a better prediction. 

 
Figure 4. Decision curve analysis for each model. Decision curve for the models of prediction overall survival (OS) with 1-year survival probability. (B) Decision curve for 
the models of prediction time to progression (TTP) with 3-month survival probability. The y-axis measures the net benefit. The net benefit was calculated by summing the benefits 
(true-positive results) and subtracting the harms (false-positive results), weighting the latter by a factor related to the relative harm of an undetected cancer compared with the 
harm of unnecessary treatment. The clinical-radiomics model had the highest net benefit compared with radiomics model and simple strategies such as follow-up of all patients 
(blue line) or no patients (red line) across the full range of threshold probabilities at which a patient would choose to undergo imaging follow-up. 
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As demonstrated in present study, the radiomics 
signature may predict survival outcomes, supporting 
the conclusion that radiomics signature can obtain 
intratumoural heterogeneity in a noninvasive way 
that is relevant to patient prognosis. Furthermore, the 
radiomics signature and clinical-radiomics nomogram 
used here was demonstrated to accurately estimate 
OS and TTP. When compared with long-term OS 
outcomes, TTP was defined as a secondary end point 
associated with less extended follow-up and thus 
more effective therapeutic adjustment [23]. Thus, the 
present study proposes an efficient and noninvasive 
pretreatment prediction tool that enables earlier 
development of personalized treatment approaches. 

The radiomics nomogram, as a statistical model, 
accounts for multiple risk factors by assigning a total 
number of points to each patient. A series of studies 
[26, 34-36] have shown that the radiomics nomogram 
can effectively and comprehensively predict the 
post-operative outcomes of individual patients. 
Furthermore, pretreatment portal venous phase- 
derived tumor entropy may be a predictor of survival 
in patients with advanced HCC treated with sorafenib 
[21]. As the first study of a radiomics signature for 
prediction of OS and TTP in patients with advanced 
HCC treated with apatinib plus TACE, the present 
study demonstrated that the use of a clinical- 
radiomics nomogram achieved superior prognostic 
performance than a radiomics nomogram alone, with 
a higher C-index and better calibration. The utility of 
this proposed nomogram was confirmed in a 
validation set. A decision curve analysis also revealed 
that a clinical-radiomics nomogram was superior to a 
radiomics nomogram across most of the range of 
reasonable threshold probabilities tested here. 

Limitations of present study include its 
retrospective design, a limited sample size, lack of a 
control group, and lack of an external model 
validation. A large-scale independent prospective 
multicenter validation cohort is thus needed to 
acquire high-level evidence for broader clinical 
application. In addition, no gene-expression signature 
has been incorporated into the nomogram used here. 
Tumor gene expression patterns can provide insights 
into patient prognosis [37]. However, intratumor 
heterogeneity has also led to an underestimation of 
the tumor genomics landscape, as revealed by single 
tumor-biopsy samples. This may contribute to 
treatment failure and drug resistance [38]. 

Conclusions 
Apatinib plus TACE may improve OS and 

prolong TTP in the patients with advanced HCC. The 
clinical-radiomics nomograms, a noninvasive 
pretreatment prediction tool that incorporate 

radiomics signature and AFP, demonstrated good 
prediction accuracy for OS and TTP in these patients. 
These results indicate that the clinical-radiomics 
nomograms may provide novel insight for precise 
personalized medicine approaches in the patients 
with advanced HCC. 
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