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Abstract 

Objective: This study aimed to develop a machine learning algorithm to identify key clinical measures to triage 
patients more effectively to general admission versus intensive care unit (ICU) admission and to predict 
mortality in COVID-19 pandemic. 
Materials and methods: This retrospective study consisted of 1874 persons-under-investigation for 
COVID-19 between February 7, 2020, and May 27, 2020 at Stony Brook University Hospital, New York. Two 
primary outcomes were ICU admission and mortality compared to COVID-19 positive patients in general 
hospital admission. Demographic, vitals, symptoms, imaging findings, comorbidities, and laboratory tests at 
presentation were collected. Predictions of mortality and ICU admission were made using machine learning 
with 80% training and 20% testing. Performance was evaluated using receiver operating characteristic (ROC) 
area under the curve (AUC). 
Results: A total of 635 patients were included in the analysis (age 60±11, 40.2% female). The top 6 mortality 
predictors were age, procalcitonin, C-creative protein, lactate dehydrogenase, D-dimer and lymphocytes. The 
top 6 ICU admission predictors are procalcitonin, lactate dehydrogenase, C-creative protein, pulse oxygen 
saturation, temperature and ferritin. The best machine learning algorithms predicted mortality with 89% AUC 
and ICU admission with 79% AUC. 
Conclusion: This study identifies key independent clinical parameters that predict ICU admission and 
mortality associated with COVID-19 infection. The predictive model is practical, readily enhanced and 
retrained using additional data. This approach has immediate translation and may prove useful for frontline 
physicians in clinical decision making under time-sensitive and resource-constrained environment. 
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Introduction 
Coronavirus Disease 2019 (COVID-19) [1-3], first 

reported in Wuhan, China in December 2019, was 
declared a pandemic on March 11, 2020 by the World 
Health Organization [4]. As of June 26, 2020, 
COVID-19 has already infected 10 million and killed 
over 500,000 individuals worldwide [5]. The actual 
numbers are likely to be much higher due to testing 
kit shortages and potential under-reporting. The 
sudden outbreak and rapid spread of COVID-19 have 
strained hospital resources, such as personal 
protective equipment, intensive care unit beds and 
mechanical ventilators. There will likely be a second 
wave and recurrence [6]. There are currently no 

established prognostic biomarkers to accurately 
predict which patients are at imminent risk of death 
or require immediate escalated care, making resource 
allocation difficult. This challenge is further 
magnified by the large number of clinical lab markers 
being affected by COVID-19 infection (see reviews 
[7-9]), the incompletely understood disease course, 
and the heterogeneous presentations. For example, 
some patients have mild or asymptomatic infections, 
while others exhibit severe symptoms. Some patients 
exhibit a mild disease course, while others deteriorate 
rapidly with multi-organ failure. Together, these 
challenges underscore the need to effectively triage 
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and manage the care of COVID-19 patients, 
particularly in resource-constrained environments. 
There is currently no consensus as to which clinical 
variables are predictive of mortality and the needs for 
escalated care. 

A few studies have attempted to develop models 
to predict mortality and disease severity based on a 
large array of clinical variables associated with 
COVID-19 infection [10-14]. Most of these prediction 
studies investigated patients from China, used logistic 
regression, and had small sample size and small 
number of clinical variables. Machine learning (ML) is 
increasingly being used in medicine, because of its 
ability to analyze large number of variables [15-17]. 
ML uses computer algorithms to learn relationships 
amongst different data elements to inform outcomes 
without the need to explicitly specify the exact 
relationship, in contrast to conventional analysis 
methods. Many studies have shown that machine 
learning methods outperform humans in many tasks 
in medicine [18]. With increasing computing power 
and growing relevance of big data in medicine, ML is 
expected to play an important role in clinical practice. 

The goal of this study was to develop and 
compare different machine learning algorithms to 
predict the likelihood of ICU admission and mortality 
in COVID-19 patients. We identified the top few 
variables amongst the large array of clinical variables 
that were most predictive of the likelihood of ICU 
admission and mortality. 

Methods 
Patient population and data description 

The retrospective study was approved by the 
Human Subjects Committee with an exemption for 

informed consent and HIPAA waiver. The data were 
collected from Electronic Medical Record and 
REDCAP database of the COVID-19 Patient under 
Investigation (PUI) registry of Stony Brook Hospital 
from March 9, 2020 to May 27, 2020. A subset of this 
dataset has been analyzed for a different purpose 
previously [19]. The inclusion criteria were patients 
tested positive for severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) and admitted to the 
hospital. Exclusion criteria were patients younger 
than 21 years old, patients still in the hospital, and 
missing data. 

Figure 1 shows the flowchart. There were 1874 
patients tested positive for COVID-19. After applying 
the inclusion and exclusion criteria, 635 COVID-19 
positive patients were used in our analysis. In the 
alive versus dead comparison, there were 553 alive 
and 82 dead. In the general floor versus ICU 
comparison, patients treated for comfort care were 
excluded (n=42) because these patients would have 
been sent to ICU if they were full code. There were 
195 admitted to ICU and 398 to general floor. This 
ICU group included direct ICU admission and 
upgraded from general floor to ICU. 

The input variables included demographic 
information (age, gender, ethnicity and race), chronic 
comorbidities (smoking, diabetes, hypertension, 
asthma, chronic obstructive pulmonary disease 
(COPD), coronary artery disease, heart failure, cancer, 
immunosuppression and chronic kidney disease), 
vital signs (heart rate, respiratory rate, pulse oxygen 
saturation (SpO2), systolic blood pressure and 
temperature), and laboratory tests at admission 
(alanine aminotransferase (ALT), brain natriuretic 
peptide, C-creative protein (CRP), D-dimer, ferritin, 
lactate dehydrogenase (LDH), leukocytes, 

 

 
Figure 1. Flowchart of patient selection. 
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lymphocytes, procalcitonin and troponin). 
Demographic information and chronic comorbidities 
were collected at admission to the Emergency 
Department. 

Machine learning model building 
Two separate models were constructed for 

evaluation using different machine learning 
algorithms: 1) death vs discharged alive; 2) ICU vs 
general admission. Categorical predictors (e.g. 
ethnicity and race) were coded as dummy variables 
and continuous predictor (e.g. age, vital signs and 
laboratory tests) were standardized before machine 
learning. Multiple imputation with predictive mean 
matching method was used to impute missing values 
in vital signs and laboratory tests using the 
Multivariate Imputation by Chained Equations in R 
(statistical analysis software 4.0) [20]. No imputation 
was performed for a predictor with missing more 
than 15%. Brain natriuretic peptide and troponin had 
more than 30% missing and were excluded from the 
analyses. As a result, 24 predictors were included as 
input features for machine learning models. 

Logistic regression and four machine learning 
algorithms were considered for prediction models: 
random forest, Xgboost, kernel support vector 
machine (SVM) and neural network (packages 
“randomForest”, “xgboost”, “caret”, and “h2o” in R 
Statistical Analysis software, v4.0). Breiman’s 
algorithm was performed for the random forest 
model. The number of trees to grow was set at a large 
number of 500. The minimum node size is set as 1 for 
the dichotomous classification and the maximum 
node size is not limited. In Xgboost models, gbtree 
was used for gradient boosting and the logistic 
regression objective function was used for 
classification. The learning rate parameter eta was set 
at 0.2 since the typical range for eta is from 0.01 to 0.3 
as a lower value requires more computation and more 
iterations. The maximum number of iterations for 
gradient descent converge was set 100. Linear, 
polynomial and radial kernel were explored for SVM 
and the optimal kernel method was selected based on 
the prediction performance. As a result, the linear 
kernel achieved the highest AUC under ROC curves 
among the three kernel methods and were used for 
both mortality and ICU models. For neural network 
model, rectifier activation function for deep learning 
was used for classification. Two layers and ten nodes 
for each layer were set for the initiative model and the 
number of data iteration was set at 100 times. 

Feature importance was determined using 
different methods in different machine learning 
algorithms. Random forest ranks predictors by mean 
decrease in Gini index [21]. The corrected 

permutation approach was performed in the 
following two steps. First, the outcome was permuted 
50 times and a nonparametric null distribution of 
feature importance was obtained, and second, the 
random forests with selected significant features were 
obtained. In Xgboost, mean decrease in Gini index 
and gain in the improvement in accuracy is used to 
evaluate the contribution of each predictor and neural 
network uses the Gedeon method for feature 
importance [22]. To select top important predictors, 
1000 rounds of permutation tests was performed. In 
each round, the original dataset was randomly split 
into training and testing sets with a ratio of 80%:20%. 
Predictors were then ranked by their importance in 
each of the four machine learning models. 
Percentages of times ranked on top 5 over 1000 
permutation tests for each predictor were then 
calculated and used to determine the final rank of 
feature importance. Prediction performance was 
evaluated by area under the curve (AUC) of the 
receiver operating characteristic (ROC) curve for the 
test data set, sensitivity, and specificity. The average 
prediction performance was obtained with 1000 runs. 

Results 
There were 635 COVID-19 positive hospitalized 

patients in our analysis. Descriptive statistics of 
demographics, chronic comorbidities, vital signs, and 
laboratory tests are presented. Table 1 shows the 
comparison between the discharged alive versus dead 
group. Age, race, Hispanic were significantly different 
(p<0.05) between groups. Coronary artery disease, 
COPD, CKD, hypertension, heart failure, and 
smoking were significantly different between group 
(p<0.05), except asthma, carcinoma, diabetes and 
immunosuppression (p>0.05). CRP, D-dimer, LDH, 
leukocytes, lymphocytes, procalcitonin, SpO2, 
respiration rates and temperature were statistically 
different between groups (p<0.05), but not ALT, 
ferritin, heart rate, and SBP (p>0.05). 

Table 2 shows the comparison ICU vs general 
floor admission group. Patients treated for comfort 
care were excluded from this group (n=42) because 
these patients would have been sent to ICU if they 
were full code. Coronary artery disease, COPD, 
carcinoma, CKD, hypertension, heart failure, and 
smoking were significantly different between group 
(p<0.05), but not asthma, diabetes and 
immunosuppression (p>0.05). CRP, D-dimer, ferritin, 
LDH, leukocytes, lymphocytes, procalcitonin, SpO2, 
respiration rates, and temperature were statistically 
different between groups (p<0.05), but not ALT, heart 
rate, and SBP (p>0.05). 
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Figure 2. Feature rank of random forest models. 

 

Table 1. Demographic, comorbidity, laboratory findings by 
survived and non-survived group 

 Survived 
(n=553) 

Non-Survived 
(n=82) 

P value 

Demographics    
Age, mean (std), y 57.71 (16.76) 73.62 (13.53) <0.0001 
Male 327 (59.1%) 53 (64.6%) 0.343 
Race   0.002 
Caucasian 251 (45.4%) 53 (64.6%)  
African American 38 (6.87%) 7 (8.5%)  
Other 264 (47.7%) 22 (26.8%)  
Hispanic 169 (30.6%) 8 (9.8%) <0.0001 
Comorbidity    
Asthma 38 (6.9%) 3 (3.7%) 0.269 
Coronary artery disease 59 (10.7%) 25 (30.5%) <0.0001 
Chronic obstructive pulmonary 
disease 

31 (5.6%) 15 (18.3%) <0.0001 

Carcinoma 32 (5.8%) 7 (8.5%) 0.333 
Chronic kidney disease 37 (6.7%) 14 (17.1%) 0.001 
Diabetes 148 (26.8%) 25 (30.5%) 0.48 
Hypertension 243 (43.9%) 52 (63.4%) 0.001 
Heart failure 12 (2.2%) 22 (26.8%) <0.0001 
Immunosuppression 31 (5.6%) 8 (9.8%) 0.144 
Smoking 118 (21.3%) 36 (43.9%) <0.0001 
Laboratory test and vital sign    
Alanine aminotransferase, U/L 45.05 (48.22) 44.81 (54.07) 0.967 
C-reactive protein, mg/L 10.22 (8.74) 15.69 (10.53) <0.0001 
D-dimer, nmol/L 835.89 (3519.6) 3037.9 (7692.1) <0.0001 
Ferritin, μg/L 1130.7 (1425.3) 1350.0 (1877.6) 0.255 
Lactate dehydrogenase, U/L 381.24 (170.30) 489.38 (242.88) <0.0001 
Leukocytes×109 /liter 7.86 (4.21) 9.22 (5.41) 0.009 
Lymphocytes % 15.35 (9.21) 11.72 (10.21) 0.001 
Procalcitonin, ng/mL 0.80 (4.75) 4.18 (22.28) 0.002 
Heart Rate, bpm 101.58 (66.72) 98.94 (21.39) 0.722 
Pulse oxygen saturation, % 92.88 (7.01) 90.32 (8.63) 0.003 
Respiratory rate, rate/min 21.95 (6.76) 24.67 (8.29) 0.001 
SBP, mmHg 127.61 (24.43) 129.30 (29.83) 0.57 
Temperature, °C 37.68 (0.90) 37.33 (0.78) 0.002 
P values are based on Chi-square test or two-sample t-test. 

Predictive performance 
Predictive performance of each machine learning 

algorithms is shown in Table 3. The AUC of the 
mortality model ranged from 84% to 89%. The AUC of 
the ICU model ranged from 72% to 78%. Specificity 
was generally better than sensitivity. Random forest 
and Xgboost achieved better prediction AUC both in 
mortality and ICU models than the support vector 
machine and neural network. Random forest has the 
highest AUC for mortality (89%) and Xgboost has 
high AUC for ICU (79%). 

Feature importance 
To evaluate the contribution of each predictor, 

predictors were ranked by their importance through 
1000 the permutation tests. Table 4 shows the feature 
ranking of all clinical variables based on individual 
AUCs and the permutation tests using logistic 
regression and machine learning algorithms. For all 
predictive models of mortality, the top common 
predictors were consistent across model and they 
were age, procalcitonin, C-creative protein, lactate 
dehydrogenase, and D-dimer. For all predictive 
models of ICU admission, the top common predictors 
were comparatively less consistent across models and 
they were procalcitonin, lactate dehydrogenase, 
C-creative protein, pulse oxygen saturation, ferritin 
and temperature. The common top predictors of 
mortality and ICU admission were procalcitonin, 
LDH, CRP, and SpO2. 
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Table 2. Demographic, comorbidity, laboratory findings by 
general floor and ICU group 

 General floor 
(n=398) 

ICU (n=195) P value 

Demographics    
Age, mean (std), y 57.68 (17.57) 59.70 (14.82) 0.168 
Male 222 (55.8%) 136 (67.9%) 0.001 
Race   0.080 
Caucasian 190 (47.7%) 81 (41.5%)  
African American 32 (8%) 10 (5.1%)  
Other 176 (44.2%) 104 (53.3%)  
Hispanic 118 (29.6%) 56 (28.7%) 0.220 
Comorbidity    
Asthma 25 (6.3%) 16 (8.2%) 0.386 
Coronary artery disease 46 (11.6%) 22 (11.3%) 0.921 
Chronic obstructive pulmonary 
disease 

25 (6.3%) 11 (5.6%) 0.759 

Carcinoma 25 (6.3%) 9 (4.6%) 0.412 
Chronic kidney disease 28 (7.0%) 16 (8.2%) 0.610 
Diabetes 104 (26.1%) 58 (29.7%) 0.354 
Hypertension 170 (42.7%) 96 (49.2%) 0.134 
Heart failure 10 (2.5%) 10 (5.1%) 0.097 
Immunosuppression 22 (5.5%) 12 (6.2%) 0.758 
Smoking 56 (14.1%) 49 (25.1%) 0.0009 
Laboratory test and vital sign    
Alanine aminotransferase, U/L 44.01 (48.97) 48.19 (46.74) 0.321 
C-reactive protein, mg/L 8.21 (7.54) 15.44 (10.29) <0.0001 
D-dimer, nmol/L 864.91 (3863.9) 939.58 (2103.2) 0.801 
Ferritin, μg/L 882.11 (1275.8) 1469.2 (1401.1) <0.0001 
Lactate dehydrogenase, U/L 340.30 (148.89) 481.81 (191.99) <0.0001 
Leukocytes×109 /liter 7.57 (4.06) 8.73 (4.57) 0.002 
Lymphocytes % 16.73 (9.57) 12.25 (8.37) <0.0001 
Procalcitonin, ng/mL 0.59 (2.61) 2.66 (15.76) 0.011 
Heart Rate, bpm 99.23 (48.71) 107.09 (87.96) 0.163 
Pulse oxygen saturation, % 94.43 (3.68) 88.92 (10.52) <0.0001 
Respiratory rate, rate/min 20.81 (5.78) 25.03 (8.45) <0.0001 
SBP, mmHg 128.58 (23.44) 126.46 (29.25) 0.342 
Temperature, °C 37.80 (3.34) 37.75 (0.95) 0.839 
P values are based on Chi-square test or two-sample t-test. 

 
 

Table 3. Predictive performance of machine learning algorithms 

Algorithms Mortality ICU 
AUC 
(SD) 

Sensitivity Specificity AUC 
(SD) 

Sensitivity Specificity 

Random 
Forests 

89.0% 
(1.3%) 

76.4% 89.5% 78.1% 
(3.1%) 

73.4% 79.6% 

Xgboost 88.4% 
(1.9%) 

30.3% 96.8% 78.9% 
(2.9%) 

54.2% 86.0% 

Kernel SVM 87.8% 
(4.3%) 

20.8% 99.5% 76.1% 
(2.2%) 

43.3% 92.3% 

Neural 
network 

84.4% 
(2.6%) 

36.8% 90.3% 71.8% 
(4.4%) 

56.7% 77.8% 

Logistic 81.7% 26.2% 90.1% 66.9% 55.3% 78.5% 
 

Discussion 
This study investigated different machine 

learning algorithms to predict the likelihood of ICU 
admission and mortality in COVID-19 patients using 
clinical characteristics and laboratory results at 
admissions. The top 6 mortality predictors were age, 
procalcitonin, C-creative protein, lactate 
dehydrogenase, D-dimer and lymphocytes. The top 6 
ICU admission predictors are procalcitonin, lactate 
dehydrogenase, C-creative protein, pulse oxygen 

saturation, ferritin and temperature. The best machine 
learning algorithms predicted mortality with 0.88 
AUC and ICU admission with 0.79 AUC. 

 

Table 4. Significant features of logistic regression (p<0.05) and 
top 6 features of machine learning algorithms for mortality and 
ICU models 

Logistic Random 
Forests 

Xgboost SVM Neural 
Network 

Mortality     
Age Age Age Age CKD 
Heart Failure D-Dimer D-Dimer D-Dimer  Ferritin 
LDH CRP COPD Procalcitonin  Age 
CRP LDH CRP CRP Respiratory 

Rate 
Hypertension Procalcitonin Procalcitonin Lymphocytes  ALT 
Immunosuppression  Lymphocytes LDH LDH LDH 
ICU     
CRP Procalcitonin LDH Procalcitonin SpO2 
LDH LDH Procalcitonin LDH Heart Rate 
SpO2 CRP CRP CRP Age 
Heart Failure SpO2 SpO2 Ferritin Ferritin 
Smoking Temperature Temperature SpO2 LDH 
SBP Ferritin Ferritin lymphocytes CRP 

ALT: Alanine aminotransferase, LDH: lactate dehydrogenase, CRP: C-reactive 
protein, SBP: systolic blood pressure. COPD: chronic obstructive pulmonary. 

 
 
Most of the top predictors of mortality and ICU 

admission overlapped and they were procalcitonin, 
LDH, CRP, and SpO2. Procalcitonin is usually found 
to be elevated during bacterial infections, and less so 
during viral infection. Its elevation in critically ill 
COVID-19 patients could suggest the occurrence of 
potential bacterial co-infections or a decreased host 
immune response, both leading to worse outcome in 
these patients [23]. LDH reflects tissue damage and 
has been known to be elevated in COVID-19 infection 
and other lung infections [2, 3]. Elevated CRP, a blood 
marker of inflammation, suggests inflammatory 
response and tissue damage in the body [24]. The 
surge of inflammation and the associated cytokine 
storm as a consequence have been associated with 
worse outcomes in COVID-19. Low SpO2 indicates 
failure of the lungs to oxygenate blood effectively, 
leading to hypoxia and respiratory failures that lead 
to mortality. 

Some top predictors also differed for mortality 
and ICU admission. Age and D-dimer were uniquely 
associated with mortality whereas temperature and 
ferritin were uniquely associated with ICU admission. 
It is not surprising that old age is associated with a 
higher mortality. D-dimer, a small fragment protein 
by-product from breaking down blood clot, is 
indicative of a hyper-coagulability as a result of severe 
inflammatory reaction [25]. These findings could 
explain why elevated D-dimer is associated with high 
mortality rate. On the other hand, high temperature 
might result in higher likelihood of ICU admission 
but not mortality. Similarly, elevated ferritin is a 
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marker of aberrant iron metabolism that could render 
the lungs susceptible to oxidative damage [26]. These 
findings suggest that abnormal temperature and 
ferritin are likely to cause severe disease requiring 
ICU care, but might be “treatable” or reversible as 
they are not significant predictors of mortality. 
Further research is needed to elucidate effective 
treatments. 

It is also interesting to note that symptoms, 
comorbidities, and race/ethnicity were not amongst 
the 6 top predictors of mortality and ICU admission, 
although some of these variables have been associated 
with mortality or critical illness previously [27-30]. 
Symptoms are subjective and highly variable, thus it 
is not surprising they were not highly ranked [31]. A 
few studies have previously reported that patients 
with multiple comorbidities [27, 29] and certain 
race/ethnicity [28, 30] showed higher mortality rate 
or more likely to need escalated care. Comorbidity did 
not rank high on our cohort relative to other variables, 
likely because of the small sample sizes or that the 
clinical variables were indeed more predictive. Note 
that previous studies did not directly compare 
comorbidities and other clinical variables, and thus it 
is not known or not well established whether 
comorbidities are more predictive of mortality or of 
the need for escalated care relative to other clinical 
variables. Our sample sizes on the race and ethnicity 
cohorts were likely insufficient to reach meaningful 
conclusion. Further studies are warranted. 

Another novelty of our study is that we 
performed analysis using 5 different predictive 
models. Random forests and Xgboost showed higher 
prediction accuracy than SVM and neural network. 
The random forests algorithms performed better than 
the neural networks likely due to small sample size. 
Overall, we found that all models predicted mortality 
better than ICU admission. Top common predictors 
were more consistent across different 
machine-learning models for predicting mortality 
than ICU admission. This is not unexpected as ICU 
admission decision were likely more variable because 
of how each physician practices and of how the 
pandemic has progressed temporally. 

Although all these top predictors have been 
previously associated with COVID-19 infection [1-3], 
only a few studies have attempted to develop 
methods to predict mortality and disease severity. Lu 
et al. created a three-tiered risk score based on only 
two variables, age and CRP thresholds, to determine 
mortality [10], Xie et al. reported age, lymphocyte 
count, LDH and SpO2 to be independent predictors of 
mortality [11]. Ji et al. predicted stable versus 
progressive COVID-19 patients based on whether 
their conditions worsened during hospitalization [12]. 

They reported comorbidity, older age, lower 
lymphocyte and higher LDH at presentation to be 
independent high-risk factors for COVID-19 
progression. A nomogram of these 4 factors yielded a 
concordance index of 0.86. Jiang et al. found mildly 
elevated alanine aminotransferase, myalgias, and 
hemoglobin at presentation to be predictive of severe 
acute respiratory distress syndrome (ARDS) of 
COVID-19 with 70% to 80% accuracy [14]. However, 
this study had small and non-uniform clinical 
variables from different hospitals. Although some of 
the predictors of mortality were shared amongst these 
and our studies, there is currently no consensus as to 
which clinical variables are most predictive of 
mortality or the needs for escalated care. These 
differences in findings could be due to different 
outcome measures (mortality, ARDS, and disease 
severity), patient cohorts, different disease severity at 
admission, hospital environment, and analysis 
methods employed, among other factors. Our study 
differed from previously studies in several ways. We 
employed ML, in contrast to the majority of previous 
studies which used logistic regression. Our models 
identified top 6 predictors that accurately predicted 
both the needs for escalated care and mortality. We 
also compared different ML methods. Our study 
included comparatively large sample size and is 
amongst the few that described a patient cohort in the 
United States to date. 

This study has several limitations. Although our 
study had a reasonably large sample size from a major 
academic hospital in New York, a temporal epicenter 
of the COVID-19 pandemic, it is a retrospective study 
carried out in a single hospital. These findings need to 
be replicated in large and multi-institutional settings 
for generalizability. We only analyzed clinical 
variables at admission. Longitudinal changes of these 
clinical variables need to be studied. It is important to 
note that the COVID-19 pandemic circumstance is 
unusual and evolving. ICU admission of COVID-19 
patients may depend on individual hospital’s patient 
load, practice, and available resources, which also 
differ amongst countries. Our institution to date has 
not been constrained by number of ICU beds nor 
mechanical ventilators in this study time frame. As in 
all observational studies, other residual confounders 
may exist that were not accounted for in our analysis. 
Future prospective studies validating our predictive 
models are warranted. 

Conclusion 
 We implemented and compared different 

machine learning algorithms to predict the likelihood 
of ICU admission and mortality in COVID-19 
patients. This approach has the potential to provide 
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frontline physicians with an objective tool to manage 
COVID-19 patients more effectively in time-sensitive, 
stressful and potentially resource-constrained 
environments. 

Key points 
• Question: What are the top clinical parameters 

that predict ICU admission and mortality 
associated with COVID-19 infection? 

• Findings: The top 6 mortality predictors were 
age, procalcitonin, C-creative protein, lactate 
dehydrogenase, D-dimer and lymphocytes. The 
top 6 ICU admission predictors are procalcitonin, 
lactate dehydrogenase, C-creative protein, pulse 
oxygen saturation, temperature and ferritin. The 
best machine learning algorithms predicted 
mortality with 0.88 AUC and ICU admission 
with 0.79 AUC. 

• Meaning: This predictive model accurately 
predicts ICU admission and mortality in 
COVID-19 infection. It may prove useful for 
frontline physicians in clinical decision making. 
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