
#### 1 Figure S1



2

Figure S1. PTX induces G2/M phase cell cycle arrest at 48 h in TPC-1 and BCPAP cells.
TPC-1 and BCPAP cells were treated with different concentrations of PTX (1, 5, and 10 μM) for 48 h. Control cells were treated with 0.1% DMSO. Flow cytometry analysis of
PI-stained cells was performed to determine the cell cycle distribution. \*P<0.05,</li>
\*\*P<0.01. PTX, paclitaxel; PI, propidium iodide.</li>

#### 9 Figure S2

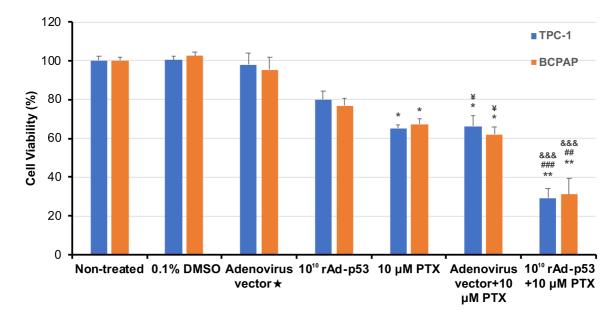
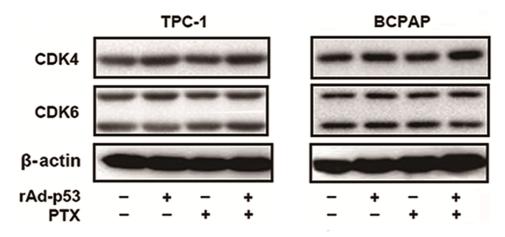




Figure S2. The inhibitory rate of different treatments in PTC cells.  $\bigstar$ : The volume of Adenovirus vector which was added into medium was as some as 10<sup>10</sup>VP rAd-p53. \*P<0.05 and \*\*P<0.01: compared with non-treated group; \*P<0.05: compared with Adenovirus vector-treated group; ##P<0.01 and ###P<0.001: compared with rAd-p53-treated group; &&&P<0.001: compared with 10 µM PTX-treated group. DMSO, dimethyl sulfoxide; PTX, paclitaxel; rAd-p53, recombinant adenovirus-p53.

17

### 18 Figure S3



19

Figure S3. rAd-p53 combined with PTX has no effect on the expression levels of CDK4

and CDK6 proteins in TPC-1 and BCPAP cells. PTX, paclitaxel; rAd-p53, recombinant

22 adenovirus-p53.

### 24 Table S1

# 25 Table S1 The inhibitory rate of different concentrations of rAd-p53 combined

### 26 with/without 10 µM PTX in PTC cells.

| Cell Line              |                           |           | TPC-1                 | BCPAP                  |
|------------------------|---------------------------|-----------|-----------------------|------------------------|
| Inhibitory<br>Rate (%) | Concentrations of rAd-p53 | 109       | $4.97 \pm 1.85$       | $12.84\pm2.39$         |
|                        |                           | $10^{10}$ | $22.76\pm5.42$        | $19.48\pm3.28$         |
|                        | 10 µM PTX combined        | 0         | $34.36\pm3.45$        | $31.98\pm6.97$         |
|                        | with different            | $10^{9}$  | $38.93 \pm 4.98$      | $36.05\pm3.31$         |
|                        | concentrations of rAd-p53 | $10^{10}$ | $67.93 \pm 7.06^{**}$ | $65.51 \pm 5.95^{***}$ |

27 \*\*P < 0.01 and \*\*\*P < 0.001;  $10^{10}$ VP rAd-p53 combined with 10  $\mu$ M PTX compared

with 10<sup>10</sup>VP rAd-p53. PTX, paclitaxel; rAd-p53, recombinant adenovirus-p53.

#### **30 Table S2**

# 31 Table S2 The inhibitory rate of different concentrations of PTX combined

# 32 with/without 10<sup>10</sup>VPrAd-p53 in PTC cells.

| Cell Line              |                                                                                |    | TPC-1                 | BCPAP                     |
|------------------------|--------------------------------------------------------------------------------|----|-----------------------|---------------------------|
| Inhibitory<br>Rate (%) | Concentrations of PTX<br>(µM)                                                  | 1  | $17.95 \pm 2.41$      | $16.96\pm3.29$            |
|                        |                                                                                | 5  | $34.38\pm8.72$        | $34.09\pm3.83$            |
|                        |                                                                                | 10 | $38.04\pm9.35$        | $33.98\pm8.43$            |
|                        | 10 <sup>10</sup> VP rAd-p53combined<br>with different<br>concentrations of PTX | 0  | $26.05\pm2.71$        | $15.48\pm2.59$            |
|                        |                                                                                | 1  | $20.90\pm3.98$        | $26.37\pm0.91$            |
|                        |                                                                                | 5  | $59.09 \pm 9.83^{**}$ | $61.13 \pm 8.97^{*}$      |
|                        |                                                                                | 10 | $62.87 \pm 7.77^{\#}$ | $67.75 \pm 9.39^{\#\!\#}$ |

33

| 33 | * $P < 0.05$ and ** $P < 0.01$ ; 10 | $0^{10}$ VP rAd-p53 co | Solution of the second state of the second st | 1 PTX compared with 5 |
|----|-------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|    |                                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |

34  $~~\mu M$  PTX; "P < 0.05 and ""P < 0.01; 10^{10}VP rAd-p53 combined with 10  $\mu M$  PTX

compared with 10 μM PTX. PTX, paclitaxel; rAd-p53, recombinant adenovirus-p53.