
I. Supplementary Data 

1. Study Population  

1.1 Recorded demographics and clinical data 

Recorded demographics and clinical data included patients age, sex, body mass index (BMI, 

kg/m2), Eastern Cooperative Oncology Group (ECOG) performance status score, cause of hepatic 

disease, Child-Pugh class (A or B), nodular or infiltrative type of HCC, size of the HCC lesion 

chosen for CT texture analysis, presence or absence of proximal macroscopic vascular invasion 

(MVI, portal vein and/or right or left branches), presence or absence of extrahepatic spread, serum 

levels of alpha-fetoprotein, albumin, and total bilirubin, start date of apatinib plus TACE treatment, 

and date of pretreatment CT examination.  

1.2 Inclusion and exclusion criteria 

The inclusion criteria for our study were as follows: they were receiving apatinib plus TACE 

for advanced HCC (Barcelona Clinic Liver Cancer stage C) [1] and had undergone baseline 

contrast-enhanced CT within 2 months before treatment initiation. The exclusion criteria for our 

study were as follows: infiltrative HCC without any accurately delineable lesion; died during the 

first 15 days after apatinib plus TACE treatment initiation; and were without a regular documented 

follow-up during the 1st year after apatinib plus TACE initiation or until disease progression.  

Reference:1. Llovet, J.M., C. Bru, and J. Bruix, Prognosis of hepatocellular carcinoma: the 

BCLC staging classification. Semin Liver Dis, 1999. 19(3): p. 329-38. 

2. apatinib plus TACE protocol 

2.1 TACE procedure 



TACE was performed by an interventional radiologist with at least 8 years of TACE 

experience. Initially, a tip of 3-French microcatheter (Progreat, Terumo, Tokyo, Japan) or 5-French 

catheter (Cook, Bloomington, Indiana, USA) was advanced into the tumor-feeding arteries. Then, 

10-20 mL lipiodol (Lipiodol Ultrafluido, Guerbet, France) was mixed with 20-40 mg doxorubicin 

hydrochloride (Hisun Pharmaceutical Co. LTD, Zhejiang, China) to create an emulsion. 

Depending on the tumor size and liver function, 5-20 mL of the emulsion was injected into the 

tumor feeding arteries through the 5-French catheter or 3-French microcatheter. Lastly, gelatin 

sponge particles (300-700 um, Cook, USA) was used for embolization until the stasis of arteries 

flow was appeared. For patients with arterioportal shunt, polyvinyl alcohol particles (300-1000 um, 

Cook, USA) was used for occluding the shunt before infusion the emulsion of lipiodol and 

doxorubicin. 

The TACE was repeated at least 40 days after the first treatment in patients with survival 

lesions according to the mRECIST [1], TACE was not repeated until liver failure or tumor 

progression of the target lesions was observed. 

Reference :1. Lencioni, R. and J.M. Llovet, Modified RECIST (mRECIST) assessment for 

hepatocellular carcinoma. Semin Liver Dis, 2010. 30(1): p. 52-60. 

2.2 Apatinib administration 

Upon agreeing to participate in the study, apatinib was orally taken at 3-5 days after each 

TACE procedure, and the initial dose was 500 mg/day. When the patients encountered grade 3-4 

drug-related AEs according to the Common Terminology Criteria for Adverse Events version 4.0, 

the drug dose was adjusted to 250 mg/day or stopped for several days. After the adverse events 



were relieved, the patients were recommended to resume daily intake of 500 mg/day apatinib. 

Treatment continued until patient death, significant disease progression, drug intolerance, or 

withdrawal of consent from the study. 

3. Patient Follow-up 

All patients underwent clinical and radiologic follow-up according to institutions protocol. 

Radiological follow-up consisted of multiphase contrast-enhanced CT scans including at least 

arterial and portal-venous phases, scheduled every 3 months. Additional CT scan was performed 

in case of clinical suspicion of disease progression or acute complication. Any tumor progression 

described during follow-up was reviewed for validation at local regular multidisciplinary HCC 

meeting. 

4. The radiomics procedure  

4.1 CT image acquisition and retrieving procedure 

All patients underwent contrast-enhanced abdominal CT with a 64-slice spiral CT scanner 

(Somatom Sensation 64, Siemens Healthineers Ltd., Forcheim, Germany). The CT scan 

parameters were as follows: 120 kV, CARE Dose 4D, 200 effective mAs, beam collimation of 64 

x 0.6 mm, a matrix of 512 x 512, a pitch of 0.8, and a gantry rotation time of 0.5 s. After 

nonenhanced CT scanning, a dynamic contrast-enhanced CT scan was performed after intravenous 

administration of 80-100 mL nonionic contrast material (Iopamidol, 370 mg I/mL, Bracco) using 

power injection at a rate of 3.5 mL/second followed by saline flush (20 mL).Arterial-phase and 

vein-phase images were obtained at 25 and 60 seconds, respectively. The slice thickness of the 

reconstructed image was 5.0 mm, and the kernel was B30f. The arterial phase and the portal venous 



phase CT images (thickness: 5mm) were retrieved from the picture archiving and communication 

system (PACS) (Carestream, Canada) for image feature extraction. 

4.2 Texture analysis methodology 

Texture analysis was applied to the CT images using in-house texture analysis 

software(Analysis Kit, version 3.1.5.R, GE Healthcare). A region of interest (ROI) was delineated 

initially around the tumor outline for the 3D ROI area. In total, 396 imaging texture features from 

the category of histogram, the Grey level co-occurrence matrix (GLCM), the gray level size zone 

matrix (GLSZM), the gray level Run-length matrix (RLM), and Shape and size based features 

were finally extracted from one single image Table S1. 

Table S1:Summary of radiomic features used in this study 

Feature classes No. of features 3 representative features 

Histogram 42 FrequencySize, MaxIntensity, MeanValue,… 

GLCM 144 ClusterProminence, ClusterShade, Correlation,… 

GLSZM 11 SizeZoneVariability, HighIntensityEmphasis, 

IntensityVariability,… 

RLM 180 GreyLevelNonuniformity, HighGreyLevelRunEmphasis, 

LongRunEmphasis,… 

Formfactor 9 Compactness1, Maximum3DDiameter, Sphericity,… 

Haralick 10 HaraEntroy, contrast, differenceEntropy,… 

Total 396  



GLCM= the Grey level co-occurrence matrix, GLSZM =the gray level size zone matrix, RLM= 

the gray level Run-length matrix 

⑴ The Grey level co-occurrence matrix (GLCM) 

𝐏 (𝐢, 𝐣|𝛉, 𝐝) represents the joint probability of certain sets of pixels having certain grey-

level values. It calculates how many times a pixel with grey-level i occurs jointly with another 

pixel having a grey value j. By varying the displacement vector d between each pair of pixels.  

The rotation angle of an offset: 0°,45°,90°,135° and displacement vectors (distance to the 

neighbor pixel: 1, 2, 3 ...), different co-occurrence distributions from the same image of 

reference. GLCM of an image is computed using displacement vector d defined by its radius, 

(distance or count to the next adjacent neighbor preferably is equal to one) and rotational angles. 

1) Energy of GLCM 

Formula 

∑ 𝑔(𝑖, 𝑗)2

𝑖,𝑗

 

*g is a GLCM, Where i,j are the spatial coordinates of g (i,j). 

This feature Returns the sum of squared elements in the GLCM. Range = [0 1].Energy is 1 

for a constant image. Is high when image has very good homogeneity or when pixels are very 

similar The Property Energy is also known as uniformity, uniformity of energy, and angular second 

moment.  

In AK Software we have 18 parameters related to the GLCM Energy :  

GLCMEnergy_AllDirection_offset1,  GLCMEnergy_AllDirection_offset1_SD,  



GLCMEnergy_angle0_offset1, GLCMEnergy_angle45_offset1,  

GLCMEnergy_angle90_offset1, GLCMEnergy_angle135_offset1,  

GLCMEnergy_AllDirection_offset4, GLCMEnergy_angle0_offset4,  

GLCMEnergy_angle45_offset4, GLCMEnergy_angle90_offset4,  

GLCMEnergy_angle135_offset4, GLCMEnergy_AllDirection_offset4_SD,  

GLCMEnergy_AllDirection_offset7, GLCMEnergy_angle0_offset7,  

GLCMEnergy_angle45_offset7, GLCMEnergy_angle90_offset7,  

GLCMEnergy_angle135_offset7, GLCMEnergy_AllDirection_offset7_SD 

2) Entropy of GLCM 

Formula 

− ∑ 𝑔(𝑖, 𝑗) log2 𝑔(𝑖, 𝑗)

𝑖,𝑗

 

Entropy is a measure of randomness of intensity image. 

Entropy shows the amount of information of the image that is needed for the image 

compression. Entropy measures the loss of information or message in a transmitted signal and also 

measures the image information.  

In AK Software we have the 18 parameters related to the GLCM Entropy 

GLCMEntropy_AllDirection_offset1, GLCMEntropy_AllDirection_offset1_SD, 

GLCMEntropy_angle0_offset1, GLCMEntropy_angle45_offset1,  

GLCMEntropy_angle90_offset1, GLCMEntropy_angle135_offset1,  

GLCMEntropy_AllDirection_offset4, GLCMEntropy_AllDirection_offset4_SD,  



GLCMEntropy_angle0_offset4, GLCMEntropy_angle45_offset4,  

GLCMEntropy_angle90_offset4, GLCMEntropy_angle135_offset4,  

GLCMEntropy_AllDirection_offset7, GLCMEntropy_AllDirection_offset7_SD, 

GLCMEntropy_angle0_offset7, GLCMEntropy_angle45_offset7,  

GLCMEntropy_angle90_offset7, GLCMEntropy_angle135_offset7 

3) Inertia of GLCM 

Formula 

∑((𝑖 − 𝑗)2𝑔(𝑖, 𝑗))

𝑖,𝑗

 

It reflects the clarity of the image and texture groove depth. The contrast is proportional to 

the texture groove, high values of the groove produces more clarity, in contrast small values of the 

groove will result in small contrast and fuzzy image. 

In AK Software we have the 18 parameters related to the Inertia. 

Inertia_AllDirection_offset1, Inertia _AllDirection_offset1_SD,   

Inertia _angle0_offset1, Inertia _angle45_offset1,   

Inertia _angle90_offset1, Inertia _angle135_offset1,   

Inertia _AllDirection_offset4, Inertia _AllDirection_offset4_SD,   

Inertia _angle0_offset4, Inertia _angle45_offset4,   

Inertia _angle90_offset4, Inertia _angle135_offset4,  

Inertia _AllDirection_offset7, Inertia _AllDirection_offset7_SD,   

Inertia _angle0_offset7, Inertia _angle45_offset7,   



Inertia _angle90_offset7, Inertia _angle135_offset7 

4) Correlation 

Formula 

2
,

( )( ) ( , )

i j

i j g i j 



 
  

    Image-based Correlation measures the similarity of the grey levels in neighboring pixels, tells 

how correlated a pixel is to its neighbor over the whole image. Range = [-1 1]. Correlation is 1 or 

-1 for a perfectly positively or negatively correlated image.  

In AK Software we have the 18 parameters related to the Inertia. 

Correlation_AllDirection_offset1, Correlation _AllDirection_offset1_SD,   

Correlation _angle0_offset1, Correlation _angle45_offset1,  

Correlation _angle90_offset1, Correlation _angle135_offset1,   

Correlation _AllDirection_offset4, Correlation _AllDirection_offset4_SD,  

Correlation _angle0_offset4, Correlation _angle45_offset4,   

Correlation _angle90_offset4, Correlation _angle135_offset4,  

Correlation _AllDirection_offset7, Correlation _AllDirection_offset7_SD,   

Correlation _angle0_offset7, Correlation _angle45_offset7,   

Correlation _angle90_offset7, Correlation _angle135_offset7. 

5) Inverse Difference Moment 

Formula 



∑
1

1 + （𝑖 − 𝑗）
2 𝑔(𝑖, 𝑗)

𝑖,𝑗

 

Inverse Difference Moment (IDM) is the local homogeneity. It is high when local gray level 

is uniform. IDM weight value is the inverse of the Contrast weight. 

In AK Software we have the 18 parameters related to the Inertia. 

InverseDifferenceMoment_AllDirection_offset1, 

InverseDifferenceMoment_AllDirection_offset1_SD 

InverseDifferenceMoment_AllDirection_offset4, 

InverseDifferenceMoment_AllDirection_offset4_SD 

InverseDifferenceMoment_AllDirection_offset7, 

InverseDifferenceMoment_AllDirection_offset7_SD 

InverseDifferenceMoment_angle0_offset1, InverseDifferenceMoment_angle0_offset4 

InverseDifferenceMoment_angle0_offset7, InverseDifferenceMoment_angle135_offset1 

InverseDifferenceMoment_angle135_offset4, InverseDifferenceMoment_angle135_offset7 

InverseDifferenceMoment_angle45_offset1, InverseDifferenceMoment_angle45_offset4 

InverseDifferenceMoment_angle45_offset7, InverseDifferenceMoment_angle90_offset1 

InverseDifferenceMoment_angle90_offset4, InverseDifferenceMoment_angle90_offset7 

6) Cluster Shade 

Formula 

3

,

(( ) ( )) ( , )
i j

i j g i j     

Cluster Shade in clustered shading, we group similar view samples according to their position 



and, optionally, normal into clusters. In AK Software, we have the 36 parameters related to Cluster 

analysis, first we describe the 18 related to Cluster Shade. 

ClusterShade_AllDirection_offset1, ClusterShade_AllDirection_offset1_SD, 

ClusterShade_angle0_offset1, ClusterShade_angle45_offset1,  

ClusterShade_angle90_offset1, ClusterShade_angle135_offset1,  

ClusterShade_AllDirection_offset4, ClusterShade_AllDirection_offset4_SD,  

ClusterShade_angle0_offset4, ClusterShade_angle45_offset4,  

ClusterShade_angle90_offset4, ClusterShade_angle135_offset4, 

ClusterShade_AllDirection_offset7, ClusterShade_AllDirection_offset7_SD,  

ClusterShade_angle0_offset7, ClusterShade_angle45_offset7,  

ClusterShade_angle90_offset7, ClusterShade_angle135_offset7 

7) Cluster Prominence 

Formula 

4

,

(( ) ( )) ( , )
i j
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Cluster Prominence is a measure of asymmetry of a given distribution, high values of this 

feature indicate that the symmetry of the image is low, in medical imaging low values of cluster 

prominence represent a smaller peak for the image grey level value and usually the grey level 

difference between the forms is small. 

ClusterProminence_AllDirection_offset1, ClusterProminence_AllDirection_offset1_SD, 

ClusterProminence_angle0_offset1, ClusterProminence_angle45_offset1,  

ClusterProminence_angle90_offset1, ClusterProminence_angle135_offset1,  



ClusterProminence_AllDirection_offset4, ClusterProminence_AllDirection_offset4_SD,  

ClusterProminence_angle0_offset4, ClusterProminence_angle45_offset4,  

ClusterProminence_angle90_offset4, ClusterProminence_angle135_offset4, 

ClusterProminence_AllDirection_offset7, ClusterProminence_AllDirection_offset7_SD,  

ClusterProminence_angle0_offset7, ClusterProminence_angle45_offset7,  

ClusterProminence_angle90_offset7, ClusterProminence_angle135_offset7 

8) Haralick Correlation 

Formula 
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* where t and t are the mean and standard deviation of the row (or column, due to 

symmetry) sums. 

HaralickCorrelation_AllDirection_offset1, HaralickCorrelation_AllDirection_offset1_SD, 

HaralickCorrelation_angle0_offset1, HaralickCorrelation_angle45_offset1,  

HaralickCorrelation_angle90_offset1, HaralickCorrelation_angle135_offset1,  

HaralickCorrelation_AllDirection_offset4, HaralickCorrelation_AllDirection_offset4_SD,  

HaralickCorrelation_angle0_offset4, HaralickCorrelation_angle45_offset4,  

HaralickCorrelation_angle90_offset4, HaralickCorrelation_angle135_offset4, 

HaralickCorrelation_AllDirection_offset7, HaralickCorrelation_AllDirection_offset7_SD,  

HaralickCorrelation_angle0_offset7, HaralickCorrelation_angle45_offset7,  

HaralickCorrelation_angle90_offset7, HaralickCorrelation_angle135_offset7 



⑵ Haralick texture features 

Measures the degree of similarity of the gray level of the image in the row or column direction. 

Represents the local grey level correlation, the greater its value, the greater the correlation; 

1) Angular Second Moment 

𝑓1 = ∑ ∑ (
𝑃(𝑖, 𝑗)

𝑅
)

2

= ∑ ∑ 𝑝(𝑖, 𝑗)2

𝑗
𝑖

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

2) Contrast 

The contrast feature is a difference moment of the P matrix and is a measure of the contrast 

or the amount of local variations present in the image. 
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3) Haralick Entropy 
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4) HaraVariance 
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7) sumEntropy 
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8) differenceVariance 
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9) differenceEntropy 
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10) inverseDifferenceMoment 
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⑶  Form Factor Parameters   

These group of features includes descriptors of the three-dimensional size and shape of the 

tumor region. Let in the following definitions 𝑉 denote the volume and 𝐴 the surface area of the 

volume of interest. We determined the following shape and size-based features: 

1) Sphericity 

𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =
𝜋

1
3(6𝑉)

2
3

𝐴
 

2) Surface area 

The surface area is calculated by triangulation (i.e. dividing the surface into connected 

triangles) and is defined as: 

𝐴 = ∑
1

2
|𝑎𝑖𝑏𝑖 × 𝑎𝑖𝑐𝑖|

𝑁

𝑖=1

 



3) Compactness 1: 

𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 1 =
𝑉

√𝜋𝐴
2
3

 

4) Compactness 2: 

𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 2 = 36𝜋
𝑉2

𝐴3
 

5) Maximum 3D diameter: 

The maximum three-dimensional tumor diameter is measured as the largest pairwise 

Euclidean distance, between voxels on the surface of the tumor volume 

6) Spherical disproportion: 

𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =
𝐴

4𝜋𝑅2
 

Where 𝑅 is the radius of a sphere with the same volume as the tumor. Where 𝑁 is the total number 

of triangles covering the surface and 𝑎, 𝑏 and 𝑐 are edge vectors of the triangles. 

7) Surfacetovolumeratio: 

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑜 𝑣𝑜𝑙𝑢𝑚𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝐴

𝑉
 

8) VolumeCC 

The volume (V) of the tumor is determined by counting the number of pixels in the tumor 

region and multiplying this value by the voxel size 

9) VolumeMM 

The maximum 3D diameter, surface area and volume provide information on the size of the 

lesion. Measures of compactness, spherical disproportion, sphericity and the surface to volume 

ratio describe how spherical, rounded, or elongated the shape of the tumor is. 



⑷ Histogram Parameters 

First-order statistics are concerned with properties of individual pixels. 

They describe the distribution of voxel intensities within the CT image through commonly 

used and basic metrics. Let X denote the three-dimensional image matrix with N voxels and P the 

first order histogram divided by N_l discrete intensity levels. The following first order statistics 

were extracted: 

1) Energy 

𝑒𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑋(𝑖)2

𝑁

𝑖

 

2) Entropy 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑃(𝑖) log2 𝑃(𝑖)

𝑁𝑙

𝑖=1

 

3) Kurtosis 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =

1
𝑁

∑ (𝑋(𝑖) − 𝑋̅)4𝑁
𝑖=1

(√1
𝑁

∑ (𝑋(𝑖) − 𝑋̅)2𝑁
𝑖=1 )

2 

where 𝑋̅ is the mean of 𝑋. 

4) MaxIntensity 

The maximum intensity value of X. 

5) MeanValue 

𝑚𝑒𝑎𝑛 =
1

𝑁
∑ 𝑋(𝑖)

𝑁

𝑖

 

6) Mean absolute deviation 



The mean of the absolute deviations of all voxel intensities around the mean intensity value. 

7) MedianIntensity 

The median intensity value of 𝑋 

8) MinIntensity 

The minimum intensity value of 𝑋 

9) Range: 

The range of intensity values of 𝑋. 

10) Root mean square (RMS): 

𝑅𝑀𝑆 = √
∑ 𝑋(𝑖)2𝑁

𝑖

𝑁
 

11) Skewness: 

Represents the degree of asymmetric distribution in the image histogram. High values of 

Skewness mean that the distribution is asymmetric otherwise the image is more symmetric; 

negative skew is when the numerical distribution is relatively long also called negative Skewness 

distribution, the opposite is referred as positive Skewness distribution (positive skew). It’s possible 

to use the positive and negative Skewness to draw comparisons between the uniform distribution 

curve. 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =

1
𝑁

∑ (𝑋(𝑖) − 𝑋̅)3𝑁
𝑖=1

(√1
𝑁

∑ (𝑋(𝑖) − 𝑋̅)2𝑁
𝑖=1 )

3 

where 𝑋̅ is the mean of 𝑋. 

12) Standard deviation: stdDeviation 



𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = (
1

𝑁 − 1
∑(𝑋(𝑖) − 𝑋̅)2

𝑁

𝑖=1

)

1 2⁄

 

where 𝑋̅ is the mean of 𝑋. 

13) Uniformity: 

𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 = ∑ 𝑃(𝑖)2

𝑁𝑙

𝑖=1

 

14) Variance: 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
1

𝑁 − 1
∑(𝑋(𝑖) − 𝑋̅)2

𝑁

𝑖=1

 

where 𝑋̅ is the mean of 𝑋. 

15) VolumeCount 

16) VoxelValueSum 

Represents the Sum calculations for voxels in the ROI. 

17) RelativeDeviation 

Let 𝑋̅ denote the mean of a set of quantities 𝑋𝑖 , then the relative deviation is defined by: 

∆Xi

X̅
=

|Xi − X̅|

X̅
 

18) FrequencySize 

According to each pixel values in the GLCM. 

19) Quantiles  

Quantile normalization is a global adjustment method that assumes the statistical distribution 

of each sample is the same. The normalization is achieved by forcing the observed distributions to 

be the same and the average distribution, obtained by taking the average of each quantile across 

http://mathworld.wolfram.com/Mean.html
http://mathworld.wolfram.com/Set.html


samples. They are cut points dividing the range of a probability distribution into contiguous 

intervals with equal probabilities or dividing the observations in a sample in the same way.  

For a finite population of N equally probable values indexed 1, …, N from lowest to highest, 

the k-th q-quantile of this population can equivalently be computed via the value of: 

Ip = N k/q 

In AK software, we have 5 Quantiles: 

 Quantile0.025, Quantile0.25, Quantile0.5, Quantile0.75, Quantile0.975. 

20) Percentile 

A percentile (or a centile) is a measure used in statistics indicating the value below which a 

given percentage of observations in a group of observations fall. 

The percentile, p%, of a distribution is defined as that value of the brightness a such that: P(a) 

= p%. or equivalently: ∫ P(α) = p%
a

−∞
 

The P-th percentile 0 < P ≤ 100 of a list of N ordered values (sorted from least to greatest) 

is the smallest value in the list such that P percent of the data is less than or equal to that value. 

This is obtained by first calculating the ordinal rank and then taking the value from the ordered list 

that corresponds to that rank. The ordinal rank n is calculated using this formula 

n =
P

100
∗ N 

AK Software have 19 Percentiles.  

Percentile5, Percentile10, Percentile15, Percentile20, Percentile25, Percentile30, Percentile35, 

Percentile40, Percentile45, Percentile50, Percentile55, Percentile60, Percentile65, Percentile70, 

Percentile75, Percentile80, Percentile85, Percentile90, Percentile95. 



⑸ Run-length matrices 

The grey level run-length matrix (RLM) P_r (i,j | θ ) is defined as the numbers of runs with 

pixels of gray level i and run length j for a given direction θ. RLMs is generated for each sample 

image segment having directions (0°,45°,90° &135°), then the following ten statistical features 

were derived: short run emphasis, long run emphasis, grey level non-uniformity, run length non-

uniformity, Low Grey Level Run Emphasis, High Grey Level Run Emphasis, Short Run Low Grey 

Level Emphasis, Short Run High Grey Level Emphasis, Long Run Low Grey Level Emphasis and 

Long Run High Grey Level Emphasis. 

1) Short Run Emphasis (18 Parameters) 

Formula 

2
1 1

1 ( , , )
( )

M N

i jr

p i j
SRE

n j




 

   

ShortRunEmphasis_AllDirection_offset1, ShortRunEmphasis_AllDirection_offset1_SD, 

ShortRunEmphasis_angle0_offset1, ShortRunEmphasis_angle45_offset1,  

ShortRunEmphasis_angle90_offset1, ShortRunEmphasis_angle135_offset1,  

ShortRunEmphasis_AllDirection_offset4, ShortRunEmphasis_AllDirection_offset4_SD,  

ShortRunEmphasis_angle0_offset4, ShortRunEmphasis_angle45_offset4,  

ShortRunEmphasis_angle90_offset4, ShortRunEmphasis_angle135_offset4, 

ShortRunEmphasis_AllDirection_offset7, ShortRunEmphasis_AllDirection_offset7_SD,  

ShortRunEmphasis_angle0_offset7, ShortRunEmphasis_angle45_offset7,  

ShortRunEmphasis_angle90_offset7, ShortRunEmphasis_angle135_offset7. 



2) Long Run Emphasis (18Parameters) 

Formula 

2

1 1

1
( ) ( , , )

M N

i jr

LRE p i j j
n

 
 

   

3) Grey Level Non-uniformity(18Parameters) 

Formula 

1

2

1

1
( ) ( ( , , ))

M N

i jr

GLN p i j
n

 
 

    

4) Run Length Non-uniformity(18Parameters) 

Formula 

2

1

1
( ) ( ( , , ))

N M

j i ir

RLN p i j
n

 
 

    

5) Low Grey Level Run Emphasis(18Parameters) 

Formula 

2
1

1 ( , , )
( )

N M

j i ir

p i j
LGRE

n i




 

   

6) High Grey Level Run Emphasis(18Parameters) 

Formula 

2

1

1
( ) ( , , )

N M

j i ir

HGRE p i j i
n

 
 

   

7) Short Run Low Grey Level Emphasis(18Parameters) 

Formula 



2 2
1

1 ( , , )
( )

N M

j i ir

p i j
SRLGE

n i j




 

   

8) Short Run High Grey Level Emphasis(18Parameters) 

Formula 

2

2
1

1 ( , , )
( )

N M

j i ir

p i j i
SRHGE

n j




 

   

9) Long Run Low Grey Level Emphasis(18Parameters) 

Formula 

2

2
1

1 ( , , )
( )

N M

j i ir

p i j j
LRLGE

n i




 

   

10) Long Run High Grey Level Emphasis(18Parameters) 

Formula 

2 2

1

1
( ) ( , , )

N M

j i ir

LRHGE p i j i j
n

 
 

   

where rn  is the total number of runs and pn  is the number of pixels in the image. 

⑹ The gray level size zone matrix(GLSZM) 

A GLSZM describes the amount of homogeneous connected areas within the volume, of a 

certain size and intensity, thereby describing tumor heterogeneity at a regional scale. A voxel is 

considered connected if the distance is 1 according to the infinity norm. In a GLSZM P(i,j)th 

element equals the number of zones with gray level I and size j appear in image. 

Ng be the number of discreet intensity values in the image 

Ns be the number of discreet zone sizes in the image 

Np be the number of voxels in the image 



Nz be the number of zones in the ROI, which is equal to ∑Ng
i=1∑

Ns
j=1P(i,j) and 1≤Nz≤Np 

P(i,j) be the size zone matrix 

p(i,j) be the normalized size zone matrix, defined as p(i,j)=P(i,j)/Nz 

1) SizeZoneVariability 

Formula 

2

1 1

( ( , ))
gs

NN

j i

z

P i j

SZV
N

 


 
 

2) HighIntensityEmphasis 

Formula 

2

1 1

( , )
g s

N N

i j

z

P i j i

HIE
N

 



 

3) HighIntensityLargeAreaEmphasis 

Formula 

2 2

1 1

( , )
g s

N N

i j

z

P i j i j
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N

 

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4) HighIntensitySmallAreaEmphasis 

Formula 

2

2
1 1

( , )g s
N N

i j

z

P i j i

j
HISAE

N

 

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5) IntensityVariability 

Formula 



2

1 1

( ( , ))
g s

N N

i j

z

P i j
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N

 


 
 

6) LargeAreaEmphasis 

Formula 

2

1 1

( , )
g s

N N

i j

z

P i j j

LAE
N

 



 

7) LowIntensityEmphasis 

Formula 

2
1 1

( , )g s
N N

i j

z

P i j

i
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N

 
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8) LowIntensityLargeAreaEmphasis 

Formula 

2

2
1 1

( , )g s
N N

i j

z
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i
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N

 
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9) LowIntensitySmallAreaEmphasis 

Formula 

2 2
1 1

( , )g s
N N

i j

z

P i j

i j
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N

 
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10) SmallAreaEmphasis 

Formula 



2
1 1

( , )g s
N N

i j

z

P i j

j
SAE

N

 



 

11) ZonePercentage 

ZP measures the coarseness of the texture by taking the ratio of number of zones and number 

of voxels in the ROI. 

Formula 

z

p

N
ZP

N
  

 

4. Detailed descriptions of the statistical methodology 

4.1 Decision curve analysis (DCA)  

In our study, DCA was used to evaluate the clinical utility of the presented nomogram. DCA 

assesses prediction models by calculating the range of threshold probabilities in which a prediction 

or prognostic model was clinically useful. DCA is a compositive method for evaluating and 

comparing different diagnostic and prognostic models. The theory of DCA can be illustrated by 

the equation below:  

1 t

t

Pa c

d b P





 

where d – b represents the influence of unnecessary treatment. If treatment is directed by a 

prediction model, d – b is the harm related to a false-positive result compared with a true-negative 

result. Inversely, a – c represents the consequence of rejecting beneficial treatment, in other words, 

the harm from a false-negative result compared with a true-positive result. Pt represents where the 



expected benefit of treatment is equal to the expected benefit of refraining from treatment. 

Reference: Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating 

prediction models. Med Decis Making. 2006 Nov-Dec;26(6):565-74. 

4.2 Statistical analysis  

The variables were assessed for normal distribution by using the Shapiro-Wilk test. 

Comparisons of proportions and ranks of variables between training and validation cohorts were 

performed with the 2 or Mann-Whitney U test as appropriate. Median OS and Median TTP was 

calculated by performing Kaplan-Meier survival analysis, respectively. The potential survival 

predictors among clinical variables were identified by using a univariate Cox proportional hazards 

regression analysis approach. The LASSO cox regression algorithm was used with penalty 

parameter tuning with 10-fold cross-validation, then the multivariate Cox proportional hazards 

regression model was built. Detailed DCA was provided above. 

Statistical analyses were conducted with R software (version 3.5.3, http://www.Rproject.org) 

and Python3.7. We used the R package "hdnom" to perform the LASSO cox regression analysis 

and build the multivariate Cox proportional hazards regression model. With these selected 

predictive features, C-index bootstrapping validation were performed by using the python package 

"lifeline" to build a Cox regression model. Nomogram construction and calibration curve 

generation were performed by using the R package "rms". DCA was performed according to its 

definition using R language. 

5. Radiomics score (Rad Score) calculation formula 

TTP Rad Score= 0.8456758*ShortRunEmphasis_AllDirection_offset1_SD(art) 

file:///C:/Users/LiLingli/AppData/Local/youdao/dict/Application/7.5.2.0/resultui/dict/
file:///C:/Users/LiLingli/AppData/Local/youdao/dict/Application/7.5.2.0/resultui/dict/


-0.6413945*ShortRunHighGreyLevelEmphasis_AllDirection_offset1_SD(art) 

-0.4203876*Compactness1(art) 

-0.3171338*LowGreyLevelRunEmphasis_AllDirection_offset4_SD(art) 

+0.4677059*LargeAreaEmphasis(art) 

OS Rad Score= -0.3294247*InverseDifferenceMoment_AllDirection_offset4_SD  (art)  

-0.4322321*Compactness1(art) 

+0.9269416*ClusterShade_AllDirection_offset1(por) 

+0.5456392*ZonePercentage(por) 

II. Supplementary Tables 

Table S2: Univariate Cox proportional hazards regression analysis of clinical parameters for 

predicting overall survival (OS) and time to progression (TTP) in the training set 

 OS TTP 

Clinical parameter Hazard 

Ratio(95% CI) 

P value Hazard 

Ratio(95% CI) 

P value 

Sex 1.93(0.58-6.35) 0.28 1.45(0.50-2.51) 0.79 

Age (y) 0.96(0.92-1.00) 0.06 0.97(0.95-1.02) 0.36 

BMI (kg/m2) 1.00(0.88-1.14) 1.00 0.98(0.88-1.08) 0.67 

Cause of disease 1.92(0.45-8.08) 0.38 1.12(0.43-2.80) 0.85 

Child-Pugh class 1.74(0.74-4.10) 0.21 1.39(0.51-2.59) 0.73 

ECOG status 1.52(0.76-3.06) 0.24 0.61(0.52-1.67) 0.82 

ɑ-fetoprotein level 1.000021

（1.000007 

-1.000035） 

<0.005* 1.00002(1.00001 

-1.00003) 

<0.005* 

Total bilirubin 1.04(1.00-1.09) 0.08 1.02(0.88-1.08) 0.22 

Albumin 0.94(0.86-1.03)  0.17 0.98(0.50-2.51) 0.73 

Macroscopic  

vascular invasion 

1.30(0.62-2.72) 0.49 1.18(0.43-2.80) 0.82 

Extrahepatic spread 0.71(0.34-1.45) 0.34 1.06(0.51-2.59) 0.47 

HCC type 0.57(0.28-1.19) 0.13 0.67(0.52-1.67) 0.10 

tumor size  1.01(1.00-1.02) 0.09 1.00(1.00-1.02) 0.10 



* Indicates a significant difference. 

Table S3A: The features with nonzero coefficients in the least absolute shrinkage and selection 

operator (LASSO) Cox regression analysis of advanced HCC radiomics features for predicting OS in the 

training set. 

radiomics features nonzero coefficients 

ClusterProminence_AllDirection_offset1_SD(art) -0.195 

Compactness1 (art) -0.240 

InverseDifferenceMoment_AllDirection_ offset4_ 

SD(art) 

-0.275 

LongRunEmphasis_angle135_offset1(art) 0.078 

ZonePercentage(art) 0.040 

ClusterShade_AllDirection_offset1(por) 0.642 

ShortRunEmphasis_AllDirection_offset1_SD(por) 0.136 

ZonePercentage(por) 0.320 

Note.-HCC = hepatocellular carcinoma, art = late arterial phase, por = portal venous phase. 

Table S3B: The features with nonzero coefficients in the least absolute shrinkage and selection 

operator (LASSO) Cox regression analysis of advanced HCC radiomics features for predicting TTP in 

the training set. 

radiomics features nonzero coefficients 

ClusterShade_AllDirection_offset1(art) 0.150 

Variance(art) -0.110 

HaralickCorrelation_AllDirection_offset1 (art) -0.259 

ShortRunEmphasis_AllDirection_offset1_SD(art) 0.656 

InverseDifferenceMoment_AllDirection_offset7_SD (art) -0.045 

Compactness1(art) -0.376 

ShortRunHighGreyLevelEmphasis_AllDirection_ 

offset1_SD(art) 

-0.386 

LargeAreaEmphasis(art) 0.326 

LowGreyLevelRunEmphasis_AllDirection_offset4_SD(art) -0.373 

ZonePercentage(art) 0.073 

ClusterShade_AllDirection_offset1D (por) 0.152 

GreyLevelNonuniformity_AllDirection_offset1_SD(por) -0.281 



Note.-HCC = hepatocellular carcinoma, art = late arterial phase, por = portal venous phase. 

Table S4A: Multivariate Cox proportional hazards regression analyses of advanced HCC radiomics 

signature for predicting OS in the training set 

radiomics signature Hazard Ratio* P-value 

InverseDifferenceMoment_AllDirection_ 

offset4_SD (art) 

0.58(0.38-0.90) 0.02† 

Compactness1(art) 0.68(0.46-1.02) 0.06 

ClusterProminence_AllDirection_offset1_ 

SD(art) 

0.55(0.31-0.95) 0.03† 

ZonePercentage(por) 1.45(0.98-2.14) 0.06 

ClusterShade_AllDirection_offset1(por) 2.62(1.57-4.39) <0.005† 

Note.-HCC = hepatocellular carcinoma, art = late arterial phase, por = portal venous phase. 

* Numbers in parentheses are 95% confidence intervals. 

† Statistically significant. 

Table S4B: Multivariate Cox proportional hazards regression analyses of advanced HCC radiomics 

signature for predicting TTP in the training set 

radiomics signature Hazard Ratio* P-value 

ShortRunEmphasis_AllDirection_offset1_SD(art) 3.30(1.30-8.33) 0.01† 

Compactness1 (art) 0.62(0.44-0.87) 0.01† 

ShortRunHighGreyLevelEmphasis_AllDirection_ 

offset1_SD (art) 

0.46(0.21-1.01) 0.05 

LargeAreaEmphasis (art) 1.71(1.19-2.48) <0.005† 

LowGreyLevelRunEmphasis_AllDirection_ 

offset4_SD (art) 

0.44(0.24-0.79) 0.01† 

HaralickCorrelation_AllDirection_offset1 (art) 0.68(0.36-1.28) 0.24 

GreyLevelNonuniformity_AllDirection_offset1_ 

SD (por) 

0.55(0.29-1.05) 0.07 

Note.-HCC = hepatocellular carcinoma, art = late arterial phase, por = portal venous phase. 

* Numbers in parentheses are 95% confidence intervals. 

† Statistically significant. 



III. Supplementary Figure 

Figure S1. Recruitment pathways for patients in this study   

 

Archive data of patients who underwent 

apatinib plus TACE for advanced HCC 

from January 2014 and June 2018

n =206

 

Exclusion of patients without baseline 

contrast-enhanced CT within 2 months 

before treatment initiation

n =123

 

Exclusion of patients with only 

extrahepatic metastatic disease

n =105

 

Exclusion of patients with infiltrative 

HCC without any accurately delineable 

lesion

n =89

 

Exclusion of patients who died during 

the first 15 days after apatinib plus 

TACE treatment initiation 

n =76

 

Exclusion of patients without a regular 

documented follow-up during the 1st 

year after apatinib plus TACE 

initiation or until disease progression.  

n =60
 


