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Abstract 

Background: Illustrating the pathogenesis of hepatocellular carcinoma (HCC) pathogenesis as well as 
identifying specific biomarkers are of great significance. 
Methods: The original CEL files were obtain from Gene Expression Omnibus, then affymetrix package 
was used to preprocess the CEL files, the function of DEGs were investigated by multiple bioinformatics 
approach. Finally, typical HCC cell lines and tissue samples were using to validate the role of CDC6 in 
vitro. Bioinformatics software was used to predict potential microRNA of CDC6. Luciferase assay was 
used to verify the interactions between CDC6 and microRNA. 
Results: A total of 445 DEGs were identified in HCC tissues based on two GEO datasets. GSEA results 
showed that the significant enriched gene sets were only associated with cell cycle signaling pathway. In 
the co-expression analysis, there were 370 hub genes from the blue modules were screened. We 
integrated DEGs, hub genes, TCGA cohort and GSEA analyses to further obtain 10 upregulated genes for 
validation. These genes were overexpressed in HCC tissues and negatively associated with overall and 
disease-free survival in HCC patients and related to immune cell infiltration in HCC microenvironments. 
Finally, Cell Division Cycle 6 (CDC6) was highlighted as one of the most probable genes among the 10 
candidates participating in cancer process. The expression of CDC6 either in public datasets and HCC 
tissues sample were commonly high than the non-cancerous counterpart. Furthermore, we recognized 
that miR-215-5p, could directly bind to the 3’UTR of CDC6. In addition, CDC6 promoted proliferation 
via regulation of G1 phase checkpoint and was negative regulated by miR-215-5p to involve in the 
proliferation of HCC. 
Conclusion: Our study suggested that CDC6 served as a potential therapeutic target for HCC. 
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Introduction 
Hepatocellular carcinoma (HCC) ranked the 

fourth leading cause of mortality in patients suffering 
from malignant tumors in 2018 [1]. Mortality from 
HCC is generally due to metastasis and postsurgical 
recurrence [2-3]. In these tumors, it is well known that 
there is dysregulation of gene transcription including 
gene mutations, the activation of oncogenes or the 

inactivation of tumor suppressor genes that work to 
promote tumor metastases. Thus, numerous 
biomarkers involved in HCC genesis have been 
discovered. However, the identification of key genes 
associated with HCC have not been completely 
identified and the molecular mechanisms behind 
HCC initiation, progression and specific targets for 
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HCC diagnosis and therapy are still needed to be 
illustrated.  

Numerous gene sequencing data have been 
stored in public databases and widely used with the 
development of genomics, which provide clues for 
bioinformatic mining of gene expression profiles 
involved in cancer. Though there are numerous 
HCC-associated mRNA microarray data, small 
sample sizes in individual studies and the diversity of 
bioinformatic technology platforms have led to 
substantial discrepancies between research studies. 
By using integrative analysis of datasets from GEO 
and TCGA, we successfully produced a cohort of 
differential expression genes (DEGs) that were 
focused on the upregulation or downregulation of 
gene expression between samples that potentially 
participate in tumorigenesis of HCC.  

In this study, the two GEO datasets GSE33006 
and GSE84402 were obtained from GEO, containing a 
total of 16 HCC cases and 16 normal liver cases after 
quality control. A combined analysis was completed 
for the two microarray datasets [4-5]. The screening of 
DEGs was analyzed using the limma package [6]. The 
functional pathway analysis including Gene Ontology 
(GO) term enrichment analysis, and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis were performed using the cluster 
profiler package and the Database for Annotation 
Visualization and Integrated Discovery (DAVID) 
[7-9]. Protein-protein Interaction (PPI) analysis was 
conducted using the STRING browser and Cytoscape 
software with cytoHubba app [10-11]. Weighted 
Correlation Network Analysis (WGCNA), a systems 
biology method for identifying co-expression 
networks of DEGs was performed using the WGCNA 
package [12]. GSEA was used to detect whether there 
were priori defined biological processes enriched in 
the gene rank derived from DEGs [13]. Finally, cell 
division cycle 6 (CDC6) was observed to be a key 
candidate gene that may be involved in HCC 
progression. 

Cell Division Cycle 6 (CDC6) is one of ten key 
candidate genes that play an important role in the 
assembly of pre-replicative complexes during the G1 
phase of the cell cycle, and is a critical determinant of 
checkpoint mechanisms that coordinate S phase and 
mitosis [14-15]. Repression of CDC6 leads to DNA 
hyper replication and genomic instability, which 
results in cell senescence similar to what is caused by 
oncogene activation [15]. The deregulation of CDC6 
expression had been reported to be involved in many 
cancers, such as para-small cell lung carcinomas [16], 
mantle cell lymphomas [17], prostate cancer [18], 
Nasopharyngeal carcinoma [19] and breast cancer 
[20]. The full role of CDC6 in HCC remains to be 

determined. 
It had been demonstrated that miRNAs are 

involved in the occurrence and development of 
tumors as oncogenes or tumor suppressor genes, and 
the functions of miRNAs were mediated by binding to 
the 3’UTR of a target gene, leading to suppression of 
mRNA translation or degradation of miRNA-bound 
mRNAs or lncRNAs [21-22]. It had been reported that 
miRNA-215-5p suppresses the progression of 
papillary thyroid cancer [23] and multiple myeloma 
[24]. To further investigate the role of miRNA-215-5p 
in the development of HCC, bioinformatics 
(TargetScanHuman, miRanda database) analysis was 
used to predict target genes of miRNA-215-5p and 
uncovered that CDC6 may be a potential target gene 
of miRNA-215-5p. Despite these findings, evidence 
for the association between CDC6 and miRNA in 
HCC remains inconclusive. 

Using an integrated analysis of HCC based on 
DEGs, WGCNA, GSEA as well as the interaction 
between CDC6 and miRNA-215-5p, the work 
presented here provides new insights into the 
mechanisms behind HCC. 

Materials & Methods 
Microarray data collection 

The GSE33006 and GSE84402 microarray 
expression profile of hepatocellular cancer and 
normal liver tissue, based on the platforms of the 
GPL570 [HG U133_Plus_2] Affymetrix Human 
Genome U133 Plus 2.0 Array, were obtained from the 
GEO (http://www.ncbi.nlm.nih.gov/geo/) database. 
These two series consists of 17 hepatocellular cancer 
tissues and 17 adjacent normal liver tissues. 
Moreover, as for GSE89377 and GSE98383, there 
contained 40 tumor tissues, 13 para-cancerous tissues, 
12 cirrhosis tissues and 11 tumor tissues, 24 
para-cancerous tissues, 29 cirrhosis tissues, 
respectively. Another dataset of hepatocellular cancer 
profile were obtained from TCGA database 
containing 374 HCC tumor samples and 50 
para-cancerous samples (https://tcga-data.nci.nih 
.gov/tcga/) and oncomine database to further verify 
our results. 

Data preprocessing 
Raw data for the GSE33006 and GSE84402 

datasets were integrated for analysis. Original CEL 
files were preprocessed by the RMA function in the 
Affymetrix package of R language [R version 3.3.5] 
[25]. All probe level data in each sample were reduced 
to a single value using the aggregate function method 
to determine mean expression values [26]. Missing 
data were assigned by the k-nearest neighbor method 
[27]. The average values of the probes were 
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eliminated as the true level of the gene when 
numerous probes were mapped to one gene. Quantile 
normalization and background correction for 
complete data were performed using the Core 
package in Bioconductor and the limma R package 
[28-29]. One sample (GSM2233086) was detected as an 
outlier and removed from subsequent analysis with 
its adjacent normal tissues.  

Data combining 
It is very crucial for combining data from 

different datasets. The GSE33006 and GSE84402 were 
chosen to combine for integrated analysis after the 
raw data were preprocessed due to have the same 
platform. The combat function in the sva package of R 
language was use to remove the batch effect of these 
two datasets [30]. 

Screening of DEGs 
DEGs between HCC tissues and para-cancerous 

tissues were identified using the limma package, the 
statistically DEGs were defined as p<0.01, |logFC| 
≥1.6 and the false discovery rate (FDA) < 0.05. Funrich 
Software (Version 3.1.3, http://funrich.org/ 
index.html) was utilized to detect the DEGs 
overlapping characteristic among different datasets.  

Functional network establishment of DEGs 
To further investigate the function of these 

DEGs, enrichment of the functions and pathways was 
analyzed using both online tools of the Database for 
Annotation Visualization and Integrated Discovery 
(https://david.ncifcrf.gov/) and cluster profiler, a R 
package with an analysis and visualization function to 
extract significant information on the GO and KEGG 
analyses [31]. A p-value <0.05 was set as a significant 
enrichment. The STRING database (http://string- 
db.org), an online tool for functional protein- 
association analyses, was recruited to predict the 
potential regulatory network to elucidate the key 
protein in carcinogenesis. Cytoscape software 
(http://www.cytoscape.org) was employed to 
construct the graphical network of PPI. The 
cytoHubba, a plugin of cytoscape used to score and 
analysis to obtain the optimized parameters to 
produce the best results for the network. Timer 
software (https://cistrome.shinyapps.io/ timer/), 
which includes different types of cancer samples 
accessible in the TCGA cohort, was used to examine 
the correlation between expression of the genes and 
tumor-infiltrating immune cells (TIICs; B cells, CD4+ 
T cells, CD8+ T cells, neutrophils, macrophages, and 
dendritic cells). Timer applies a deconvolution 
method to infer the abundance of TIICs from gene 
expression profiles. 

Principal component analysis (PCA) 
We performed PCA using GEPIA2 websites to 

distinguish HCC patients from healthy controls based 
on levels of the key genes. PCA is used to reduce the 
noisy information and dimensionality of redundant 
from complex massive datasets. We transformed the 
original variables into three new orthogonal variables 
called principal components (PCs). A PC score plot 
was obtained to represent clear clustering of the target 
points. 

Gene set enrichment analysis (GSEA) 
To identify the potential function of the DEGs, 

GSEA (http://software.Broadin-stitute.org/gsea/ 
index.jsp) was utilized to analysis whether a series of 
biological processes which priori defined were 
enriched in the gene rank between the tumor and 
para-cancerous groups. The collection of annotated 
gene sets of c2.cp.kegg.v5.2.symbols.gmt in Molecular 
Signatures Database (MSigDB) was defined as the 
reference gene sets.  

Co-expression network  
Co-expression network analysis for the DEGs 

was performed with WGCNA package to construct 
the correlation of DEGs and to search for the mostly 
significant correlated gene modules [32-33]. The soft 
thresholding power was set as 14. Gene significance 
(GS) and module membership (MM) were used to 
analyze the correlation between module and tumor, 
the module highly correlated with tumor was selected 
for further analysis. 

Cell lines and Cell culture 
Human HCC cell lines and the normal human 

hepatic cell line were maintained with 5% CO2 at 37ºC 
in Dulbecco modified Eagle medium and RPMI 1640 
(GIBCO USA), supplemented with 10% fetal bovine 
serum. All cells were not cultured for more than two 
months. 

Quantitative real-time PCR 
Gene mRNA level were determined by real-time 

PCR. Total RNA of HCC cells and surgical specimens 
were extracted by using Trizol reagent (Invitrogen, 
CA, USA), the reverse-transcribed of mRNA and 
miRNA using a RevertAid First Strand cDNA 
Synthesis Kit (Thermo, K1622) and Bulge-LoopTM 
miRNA qRT-PCR Starter Kit (RiboBio, C10211-1) 
respectively. β-actin was used as the normalization 
genes, miR-215-5p expression was normalized to U6. 
The sequences of PCR primer are listed as follows:  

CDC6-forward primer: GGAGATGTTCGCAAA 
GCACTGG. 

CDC6-reverse primer: GGAATCAGAGGCTCA 
GAAGGTG. 
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Immunoblotting analysis  
Western blotting was conducted according to the 

previously described standard methods [34]. The 
primary antibodies included anti-CDC6 (proteintech, 
11640-1-AP), Cell Cycle Antibody Sampler Panel 
(ab228528, abcam), GAPDH (proteintech, 60004-1-Ig). 

Immunohistochemistry analysis 
Patient cancer tissues were retrieved from the 

Chaoxing Biotechnology, China. Immunohisto-
chemical staining of the HCC tissue was carried out 
following the manufacturer’s protocol. 

Prediction and validation of direct interaction 
between CDC6 and microRNAs 

By using online database starBase and 
TargetScanHuman, we suspected several molecular 
interactions with CDC6. As analyzed, miR-215-5p 
showed a potential direct binding site with 3'UTR of 
CDC6 mRNA. A 500 bp sequence from the 3’UTR of 
CDC6 mRNA including the putative miR-215-5p 
binding site was selected as follow:  

5’-cacagtaggatcctgcccaataaggagcagcctccccacctcat
tgtgtttgaggcttggcgccttcctcttaactgtagggcttgagtcaggaaca
tggcttgactcgcagtggggctgctatgtatcctccctggcttccagccaaa
atcacattggtagattcaaaggggccaaatttctttcccctctatctttccctttc
ccctggttttggaaatagagttttctgtctactgatttgttagtttccttttcttct
cccctcactgtcaatttctaggtcattgctgctcttaagactttagcagttgga
acagggttggttctgtcaatgatgcatgaagcagacttagtgtccctgcttg
gcttctgctgcccttgtgggagcaaaagctgatatatgtttgtcagtaaagtc
ttaagtgtaattcagactgctgaggaagaaagccctttccttgctggcttttct
ccctgaagctgagagcttcaggaag- 3’. 

The corresponding mutant sequence were: 
5'-cacagtaggatcctgcccaataaggagc 

agcctccccacctcattgtgtttgaggcttggcgccttcctcttaactg
tagggcttgagtcaggaacatggcttgactcgcagtggggctgctatgtat
cctccctggcttccagccaaaatcacattggtagattcaaaggggccaaatt
tctttcccctctatctttccctttcccctggttttggaaatagagttttctgtctact
gatttgttagtttccttttcttctcccctcagacagttaaagatccagtttgctgc
tcttaagactttagcagttggaacagggttggttctgtcaatgatgcatgaa
gcagacttagtgtccctgcttggcttctgctgcccttgtgggagcaaaagct
gatatatgtttgtcagtaaagtcttaagtgtaattcagactgctgaggaaga
aagccctttccttgctggcttttctccctgaagctgagagcttcaggaag-3’. 
Sequences above were cloned into pEZX-MT06 
luciferase vectors (GeneCopoeia), containing firefly 
luciferase, and vectors containg renilla luciferase were 
used for control. SMCC-7721 and Hep3B cells 
over-expressing miR-215-5p or the negative control 
were co-transfected with vectors above, and luciferase 
activity were measured by Dual-Glo Luciferase assay 
system (Promega, USA) 24h post-transfection. 

Luciferase assay 
The duo-luciferase vector pEZX-MT06 

(GeneCopoeia) was used to generate luciferase 

reporter constructs. A 500 bp sequence from the 
3-UTR of CDC6 mRNA with wildtype (WT)and 
mutant type (Mut) putative miRNA binding site were 
obtain from GeneCopoeia. Cells were seeded in 
96-well plates and cotransfected with wild-type or 
mutated 3’UTR of CDC6 constructs and miR-215-5p 
mimic for 48h. Luciferase activity was performed by 
using the Luc-Pair™ Duo-Luciferase HS Assay kit 
(GeneCopoeia, LF004) according to the 
manufacturer’s protocol.  

Cell cycle assay 
Cells were fixed with 70% ethanol at −4°C for 

24h. After 24h of fixation and wash with cold 1X PBS 
twice. Cells were then stained with propidium iodide 
and RNase A (Beyotime) for 30min at 37°C. 
Subsequently, cells were analyzed for DNA content 
using BD FACSCalibur™ flow cytometer (BD 
Biosciences). 

Cell proliferation assays 
Colorimetric MTS assays (Promega; G3580) were 

performed to determine the viability of HCC cells, as 
previously reported [34] Briefly, 800 cells/ well were 
treated in 96-well plate. After various times 
post-seeding, added 20 μL MTS solution to each well 
for 3h and the optical density value was calculated at 
490 nm. 

Statistical analysis 
Statistical analyses were conducted using SPSS 

(version 17). A Student’s test was utilized to assess 
significance of data from two groups, and one-way 
analysis of variance (ANOVA) followed by Dunnett’
s multiple comparison was performed to evaluate 
differences between multiple groups.The correlations 
between the CDC6 level and OS and DFS were 
analyzed with Kaplan Meier survival. All data 
analysis are represented as the means±S.D., p<0.05 
was considered statistically significant difference. 

Results 
Sample preprocessing and DEGs identified in 
HCC  

Raw data of 34 samples including 16 tumor 
tissues and 16 adjacent normal tissues were 
preprocessed and integrated for analysis. One sample 
(GSM2233086) was detected as an outlier according to 
the RNA degradation rate and the normalized 
unscaled standard error values of all probe sets and 
removed with its adjacent normal tissues from 
subsequent analysis (Figure 1A and 1B). Thus, there 
were a total 32 samples used in subsequent analysis. 
The GSE33006 and GSE84402 datasets were combined 
by removing batch effects for these two datasets due 
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to having the same platform. Based on the Limma R 
package, microarray data for a total of 21654 genes 
from 32 samples were obtained after data 
preprocessing. Based on cut‑off criteria, a total of 445 
DEGs were identified, including 284 upregulated 
genes and 161 downregulated genes in HCC 
compared to normal liver tissues (Figure 1C). The top 
100 significant DEGs were also visualized on a 
heatmap based on the level of |logFC| (Figure 1D). 

 

Functional enrichment analysis and PPI 
network construction 

Results of the GO analysis represented that cell 
division, mitotic nuclear division, G1/S transition of 
mitotic cell cycle were the top 3 significant biological 
processes assigned to DGEs (Figure 2A). In the KEGG 
analysis, DEGs gathered in the cell cycle, DNA 
replication and mineral absorption (Figure 2B). In 
addition, part of the DEGs were filtered into the PPI 
network complex to analyze the interactive 

 

 
Figure 1. Sample preprocessing and DEGs identified in GSE33006 and GSE84402. (A) The RNA degradation of all probe sets were detected using the affy package. The 
horizontal axis represents fragments of RNA from 5’end to 3’end, while the vertical axis represents the mean fluorescence intensity. GSM2233086 outliers were marked by a red 
arrow. (B) Normalized Unscaled Standard Errors of all probe sets in the datasets were displayed as bar charts through the affy package, the value 1 on the vertical axis means 
100% of the untreated control, excellent quality chips have normalized NUSEs and RLEs near or lower than 1 (control value). Poor quality chips have normalized NUSEs and RLEs 
higher than 1. Only the GSM2233086 NUSE value was obviously higher than controls. Thus GSM22330086 and its corresponding adjacent normal sample GSM2233087 were 
split. (C) A Volcano map of DEGs between HCC tissues and adjacent normal liver tissues. Red dots represented upregulated genes and green dots represented downregulated 
genes. (D) A hierarchical clustering dendrogram of the top 100 DEGs based on the |logFC| value. 
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relationship based on STRING databases, where 
statistical significance made up 108 nodes and 2369 
edges (Figure 2C). Next, DGEs were analyzed by 
GSEA. GSEA was performed to search for KEGG 
pathways enriched in HCC samples compared to 
adjacent normal samples. GSEA results showed that 
significant enriched gene sets were only associated 
with cell cycle signaling pathways (p<0.05) (Figure 
2D), where there were a total of 66 genes enriched in 
the signaling pathway. 

Gene set enrichment and co-expression 
analyses 

All DGEs were analyzed by WGCNA. WGCNA 
was used to detect modules of highly correlated 
genes. Genes in each group with highly similar 
expression patterns were combined into modules 
using average linkage hierarchical clustering. A 
power of 20 was selected as the soft-thresholding to 
ensure a scale-free network. A total of 9 modules were 

excavated (Figure 3A) and a corresponding heatmap 
of all genes was shown (Figure 3B). The association 
between each module and tumor traits were 
demonstrated in each group, as shown Figure 3C. The 
blue module was the most relevant module with 
tumor traits (p=8x10-20, R2=0.97), which was extracted 
for further analysis. Furthermore, a scatter diagram of 
the correlation between GS for HCC and the MM in 
the blue module were shown (Figure 3D). GS and MM 
of genes in the blue module showed a correlation with 
HCC. Hub were functionally significant in biological 
processes [35]. Genes in a module were selected for 
candidate hub genes with a cutoff of weighted 
correlation coefficient s≥0.8. Therefore, 370 genes with 
high connectivity in the blue module were further 
analyzed. Furthermore, the PPI network for hub 
genes in the blue module was generated according to 
the STRING database and the top 25 hub genes in the 
co-expression network were screened (Figure 3E).  

 

 
Figure 2. DEGs of the two datasets based on GO, KEGG pathway, PPI nework and GSEA. (A) The top 15 GO annotations included biological process in the enrichment analysis 
of the DEGs. (B) The significant KEGG pathways in the enrichment analysis of DEGs. (C) Some DEGs were filtered into the PPI network that contained 108 nodes and 2369 
edges. The color intensity in each node was proportional to change fold of expression compared to para-cancerous samples. (D) Gene set enrichment analysis (GSEA) for HCC 
samples and adjacent normal tissues. GSEA showed that significantly enriched gene sets were associated with cell cycle, p<0.05. 
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Figure 3. WGCNA of GSE29570 and GSE89657 datasets. (A) Differentially expressed genes in 32 samples of HCC and adjacent para-cancerous were assigned to one of 9 
moduleswith a cutoff powers =14. The top image represented all gene dendrograms, the bottom image represented gene modules with different colors. (B) Correlation between 
modules eigengenes and sample features. Each cell contained the corresponding correlation coefficient and P value. Among these, the blue and black modules were the most 
probable relevant modules with cancer traits. (C) A scatter diagram of the correlation between GS for HCC and the MM in the blue module. Intra-modular analysis of the genes 
in the blue module that show a strong relationship to HCC, with p<1e-200 and r =0.97. (D) A heatmap of all DEGs. The intensity of the red color represented the strength of 
the relationship between pairs of modules on a linear scale. (E) PPI network of hub genes identified by co-expression network analysis in the blue module. The color intensity of 
each node was proportional to change fold of expression in comparison to para-cancerous samples. The network contained 370 nodes and 3933 edges. 

 

Functional analyses of key genes 
Common differently expressed genes from the 

DEGs of GEO and TCGA and hub genes in the Brown 
module were overlapped. There were 69 differently 
expressed genes screened (Figure 4A). KEGG 
pathway analyses of the 69 genes was performed by 
DAVID. Significantly enriched signaling pathways 
were in DNA replication, mitotic M-M/G1 phases, 
cell cycle mitosis, cell cycle checkpoint and G2/M 
damage checkpoint (Figure 4B). This demonstrated 
that cell cycle regulation plays the most important 

role in HCC progression. Thus, we further overlapped 
the 69 genes with genes involved in the cell cycle 
pathway using GSEA and found that there were 10 
genes CCNB1/CDK1/CDC45/CDC6/ORC6/MAD 
2L1/BUB1B/CCNA2/TTK/PTTG1 screened (Figure 
4C). These 10 genes were regarded as “real” key genes 
for HCC progression. Analysis of the expression 
fold-change of the 10 key genes showed strong 
significant differences at mRNA level between tumor 
and normal liver tissues, which was also visualized on 
a heatmap in Figure 4D. In addition, an initial 
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unstable plaque PPI network was constructed using 
10 key genes as input for STRING databases and 
Cytoscape software. The 10 key genes showed 
distinguished networks and interactions (Figure 4E). 
Furthermore, based on the expression of these 10 
genes, we could effectively distinguish HCC patients 
from healthy controls in the TCGA cohort using PCA 
analysis (Figure 4F). We then further determined the 
association of these 10 key genes with HCC patient 
prognosis. Levels of these 10 genes were negatively 
correlated with OS and DFS for HCC patients from 
the TCGA cohort (Figure 4G-4J, Supplementary 
Figure 1A-1F). We also performed an interrelation 
analysis comparing infiltrating immune cells in HCC 

tissues and the expression of these 10 genes. The 
expression levels of these 10 genes were positively 
related to the infiltration levels of tumor purity, B 
cells, CD8+ T cells, CD4+ T cells macrophages, 
neutrophils and dendritic cells in HCC tissues. This 
showed that higher expression levels of these 10 genes 
suggested an advantage for cancer immunotherapy 
(Figure 4K, Supplementary Figure 2A-2F). In 
addition, these genes had copy number variations 
significantly correlating with infiltrating levels of B 
cells, CD4+ T cells, macrophages, neutrophils and 
dendritic cells (Figure 4L, Supplementary Figure 
3A-3E), except for ORC6 due to not included in the 
database. 
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Figure 4. Molecular functional pathways and processes of 10 key genes. (A) A Venn diagram of DEGs from GEO, DEGs from TCGA and hub genes in the Brown module 
revealed 69 key genes. (B) Significant KEGG pathways in the enrichment analysis of 69 key genes. (C) A Venn diagram of 69 key genes and genes involve in the cell cycle pathway 
using GSEA revealed 10 genes involved in cell cycle modulation. (D) A hierarchical clustering dendrogram of 10 genes based on the value of |logFC|. (E) A PPI network of 10 
genes. Many genes involved in the progression of HCC interact with 10 key genes. (F) A three-dimensional principle component analysis (PCA) score plot showing that HCC 
patients can be effectively distinguished from healthy controls based on the expression of these 10 genes. (G-J) Analysis of the correlation between CDC6 (G), CDK1 (H), TTK 
(I) and PTTG1 (J) gene expression signatures and overall survival (OS) and disease-free survival (DFS) for HCC patients included in the TCGA cohort. (K) Correlation between 
CDC6, CDK1, TTK and PTTG1 levels and tumor purity, infiltrating levels of CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells in hepatocellular carcinoma 
tissues.Each black dot represents one sample in the TCGA cohort. (L) CDC6, CDK1, TTK and PTTG1 copy number variation affected infiltrating levels in hepatocellular 
carcinoma tissues. 

 

CDC6 served as a biomarker and prognostic 
factor for HCC 

CDC6, one of the 10 candidate key genes, plays 
an important role in the progression of some cancers 
[16 - 20], but the full role of CDC6 in HCC still 
remains unclear. We then searched the CCLE and 
Firebrowse online database to exam the expression of 

CDC6. A comprehensive profile of CDC6 was 
amplified in many human malignancies (Figure 5A). 
We further detected the expression variation of CDC6 
between HCC cell lines. As demonstrated, the 
expression of CDC6 in differential HCC cell lines was 
high (Figure 5B). Then, GEO/TCGA/Oncomine 
datasets were utilized to further validate the 
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expression of CDC6. Results showed that CDC6 
expression was higher in HCC tissues compared to 
para-cancerous tissues (Figure 5C-5E). Based on the 
Kaplan–Meier Plotter online database, OS was longer 
for patients with low CDC6 expression compared to 
those with high CDC6 expression (Figure 5F). 
Furthermore, the PPI network based on CDC6 was 
analyzed. As expected, CDC6 represented a complex 
protein protein interaction as shown in Figure 5G, 
Many proteins involved in the progression of HCC 
interaction with CDC6, including TP53, RB1 and 
MCMs family members. Together, these analyses may 
reveal that CDC6 was associated with extent of 
malignancy and clinical stage of OC and may serve as 
a potential therapeutic target for HCC.  

CDC6 is expressed at aberrantly high levels in 
HCC tissues and cell lines and serves as a 
miR-215-5p direct target gene 

The expression of CDC6 was assessed in HCC 
using RT-qPCR and immunoblottings. Up-regulation 
of CDC6 was observed in multiple human HCC cell 
lines compared to immortalized normal liver 
epithelial cells LO2 (Figure 6A and 6B). Meanwhile, 
CDC6 mRNA expression levels were also detectable 
by RT-qPCR in HCC tissue samples and 
para-cancerous tissues. The expression levels of CDC6 
were relatively higher in HCC tissues compared to 
para-cancerous tissues (Figure 6C). We next 
performed immunohistochemistry staining for CDC6 
in liver tumors and revealed that CDC6 was highly 
expressed in tumors compared to stroma tissues. This 
demonstrated dysregulated expression and a 
pro-invasion role for CDC6 in liver cancer (Figure 
6D).  

Bioinformatics analysis using miRanda and 
TargetScan databases revealed that CDC6 was a target 
gene of miR-215-5p (Figure 6E). To confirm CDC6 was 
a target gene of miR-215-5p, the 3’UTR sequence of 
the wide type CDC6 gene and the corresponding 
control luciferase vectors containing a mut-type CDC6 
gene was inserted into a dual luciferase reporter 
vector pEZX-MT06. Then, pEZX-MT06 and 
miR-215-5p mimics or a miR-negative control were 
transfected into HCC cells. As shown in Figure 6F and 
6G, after transfection with a miR-215-5p mimic and 
pEZX-CDC6-wt, the luciferase activity was 
significantly inhibited compared to the miR-negative 
control and pEZX-CDC6-wt groups. Transfection 
with a miR-215-5p mimic and pEZX-CDC6-mut, the 
suppressive effect induced by miR-215-5p, was 
significantly abolished. These findings suggested that 
miR-215-5p serviced as a regulator direct binding to 
the 3’UTR of CDC6 mRNA to negatively regulate 
CDC6 expression. 

CDC6 promoted proliferation via regulation of 
G1 phase checkpoint and was negative 
regulated by miR-215-5p to involve in the 
proliferation of HCC. 

As that CDC6 was highly expressed in HCC 
tissue as well as cell lines, we then further wondered 
whether CDC6 was involved in the proliferation of 
HCC cells in vitro. We generated transiently 
transfected SMMC-7721 and HEP3B cell lines with 
scramble control and siRNA, and the CDC6 
expression level was confirmed using real-time PCR 
(Figure 7A). We observed that compared with the 
scramble control group, the CDC6 suppression 
resulted in inhibited the proliferation of both cell lines 
growth (Figure 7B). To further explore the mechanism 
of CDC6 on HCC proliferation, cell cycle distribution 
of both cell lines was analyzed by flow cytometry. 
Results showed that knockdown of CDC6 contributed 
to G1 phase arrest (Figure 7C). Furthermore, we then 
explored whether CDC6 suppression could influence 
the expression of cell cycle-related proteins including 
cyclin D1, CDK6 and CDK2. As showed in figure 7D, 
western blot assay demonstrated CDC6 could 
regulate the expression of cell cycle-related proteins. 
From these data, we could conclude that CDC6 
suppression had an inhibitory effect on HCC cell 
proliferation via modulation of G1 phase checkpoint. 

To explore the relationship between CDC6 and 
miR-215-5p, we then transfected both cell lines with 
miR-215-5p mimic or miR-215-5p inhibitor. The 
miR-215-5p expression levels were confirmed using 
RT-qPCR (Figure 7E and 7F). The mRNA and protein 
level of CDC6 were determined by RT-PCR and 
western blotting, respectively. Results showed that 
the mRNA level and protein expression of CDC6 was 
obviously downregulation after transfected with 
miR-215-5p mimic (Figure 7E and 7G), meanwhile, 
opposing effects could be found after transfected with 
miR-215-5p inhibitor (Figure 7F and 7G). Thus, these 
data clearly indicated that CDC6 was negative 
regulated by miR-215-5p in HCC. 

Discussion 
HCC is a highly aggressive neoplasm. It is 

common that patients suffering from HCC are 
diagnosed at a relatively later stage. Issues with 
radical resection, ionizing radiation resistance and 
chemotherapy resistance poses a challenge in the 
HCC therapeutic strategy [36, 37]. Currently, the 
therapeutic strategy focused on molecule-targeting 
has shown remarkable benefits for patients [38, 39]. 
However, there are few effective molecule-targeted 
drugs approved in clinical practice [38]. Furthermore, 
the molecular mechanisms where cancer cells develop 
multi-drug resistance and biomarkers of HCC have 
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not been fully elucidated. It is difficult for clinicians to 
judge the condition of the patient or predict patient 
prognosis. It is urgent to identify reliable biomarkers, 

which are meaningful in preclinical and clinical 
practice and to develop guidelines for precise and 
personal cancer therapy. 

 

 
Figure 5. CDC6 expression profiles in GEO/TCGA/Oncomine datasets in human malignancies. CDC6 served as a biomarker and prognostic factor for HCC. (A) Most human 
malignancies expressed relatively higher CDC6 levels compared to para-cancerous tissues in a reliable confidence interval from the Firebrowse database (http://firebrowse.org/). 
(B) CDC6 expression in HCC cell lines from the CCLE database (https://portals.broadinstitute.org/ccle/). (C-E) Validation of CDC6 mRNA expression from both GEO 
databases (C), Oncomine (D) and TCGA (E). (F) OS of HCC cohorts based on the Kaplan–Meier plotter database. (G) A PPI network of CDC6 identified by co-expression 
network analysis. 
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Figure 6. CDC6 expression was further verified in HCC patient specimens and cell lines and serve as a direct target gene for miR‑215-5p. (A-B) The relative CDC6 mRNA and 
protein levels were determined using qPCR(A) and immunoblotting (B) in HCC cell lines. (C) The mRNA levels of CDC6 (normalized to β-actin) in HCC tissues and 
para-cancerous tissues were confirmed using quantitative real-time PCR. (D) CDC6 protein levels in HCC tissues were analyzed by IHC, using yellow lines to indicate the tumor 
and stroma edges. (E) Scheme for the predicted miR-215-5p binding site in the wild type CDC6 mRNA 3’UTR (3’UTR-WT) and in the mutant construct (3’UTR-MUT). (F) 
Relative luciferase activities in HCC cells co-transfected with pEZX-CDC6-WT and miR-215-5p vs. control vector. Firefly luciferase activity was normalized to Renilla luciferase. 
Student's t-test, Data represent mean ± S.D (from triplicates); *p<0.05. 

 
Numerous molecules had been aberrantly 

expressed in HCC. These molecules connect and 
establish complex networks involving HCC genesis 
and progress. Here, by data mining from NCBI GEO 
and TCGA databases, we obtained two series from 
GEO datasets and performed an integrated analysis to 
try to identify valuable clues. There was a total of 16 
HCC cases and 16 normal liver cases data available 
after quality control measures and combined analysis 
of the two microarray datasets. A total of 445 DEGs 
were identified, including 284 significant 
over-expression genes and 161 downregulated genes 
in HCC compared to normal liver tissues. GO and 
KEGG enrichment analyses were subsequently 
conducted to further analyze the function of these 
genes. Combined with the results of enrichment, a set 
of pathways involved in tumorigenesis, were 
identified, including cell cycle, cell proliferation and 
chemical carcinogenesis. A total of 21654 genes were 
analyzed by GSEA and WGCNA. The cell cycle 
signaling pathway was enriched by GSEA. According 

to WGCNA analysis, 21654 genes were clustered into 
9 modules. Blue and black modules were the most 
relevant modules to tumor traits, especially genes in 
blue modules. Genes in the blue module were selected 
as hub genes with a cutoff of correlation 0.8 and a total 
of 370 hub genes were identified.  

Furthermore, the DEGs were overlapped 
between the GEO, TCGA. significantly enriched genes 
involved in the cell cycle pathway and hub genes in 
the blue module. A map of 10 key genes overlapping 
in all datasets was obtained. Thus, a comprehensive 
view of the molecular function and pathway of these 
10 candidates was obtained. Our data suggested that 
higher expression levels of these 10 genes indicate an 
advantage for checkpoint inhibitor therapy, 
potentially providing guidance for cancer 
immunotherapy. To better screen prognostic and 
diagnostic markers, we also identified these genes for 
where expression precisely predicted patient 
prognosis and suggested their relevance to HCC 
pathogenesis and progression. 
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Figure 7. miR-215-5p service as a regulator to negative regulate CDC6 expression. (A) Relative level of CDC6 in HCC cell were verified after knockdown of CDC6. (B-C) 
viability (B) and Cell cycle distribution (C) of HCC cell lines were verified after knockdown of CDC6. (D) The protein levels of cell cycle-related proteins were verified by 
western blot assay. (E-G) Relative level of miR-215-5p and CDC6 in HCC cells were verified after transfection with miR-215-5p mimic or miR-215-5p inhibitor. *p<0.05, 
**p<0.01, and ***p<0.001. 

 
CDC6, an essential regulator of DNA replication 

and one of 10 candidates, was noticed during our 
analyses. CDC6 is located at chromosome 17q21.3 and 
the expression of CDC6 is cell cycle regulated. It is 
expressed in late mitosis once cells are rapidly 

replicating and expression is regulated by Mcm1 [15, 
40]. CDC6 has been shown to determine the rate of 
initiation of DNA replication through interaction with 
ORC6p [41]. E2F may regulate the expression of 
CDC6 and Orc1, required for the induction of cellular 
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DNA synthesis [42]. Considering that CDC6 played 
an important role in DNA replication and cell cycle 
regulation, its deregulation may have a negative 
impact on genomic integrity and induce malignant 
proliferation of cells. High expression of CDC6 
protein was reported in most cancers. There have also 
been reports that CDC6 was downregulated in 
aggressive prostate cancer [44] and some cases of 
non-small cell lung carcinomas [45]. This 
accumulating evidence validated that CDC6 has 
differential expression profiles and functions in 
various malignancies. However, the exact role of 
CDC6 involved in HCC pathogenesis and its 
underlying molecular mechanisms remain poorly 
understood. 

In this study, we first confirmed the CDC6 
over-expression profile in HCC tissues by integrating 
bioinformatic analyses. In addition, CDC6 was highly 
expressed in most HCC cell lines and tumors as 
shown using the Firebrowse and CCLE database. 
Elevated expression of CDC6 in HCC tissues was 
associated with advanced T stage as shown by the 
TCGA database. Kaplan—Meier analysis revealed 
that high expression of CDC6 served as a poor 
prognosis factor for HCC. Moreover, the relationships 
between CDC6 expression and tumor-infiltrating 
immune cells are still unknown. For the roles of 
immune and inflammatory response, the correlation 
between CDC6 expression and the marker sets of 
immune cells indicated CDC6 played an important 
role in regulating tumor immunology. Our results 
suggested CDC6 expression had strong correlations 
with tumor purity, infiltrating levels of CD8+ T cells, 
CD4+ T cells, macrophages, neutrophils and dendritic 
cells in hepatocellular carcinoma tissues. But how 
CDC6 influenced tumor-infiltrating immune cells in 
hepatocellular carcinoma should be further explored. 
The strong correlations between CDC6 and immune 
cells in HCC suggested CDC6 may play a major role 
in HCC progression. Then to further validate our 
findings via public database mining, we conducted 
research using HCC patients specimens and tumor 
cell lines. As expected, CDC6 was over expressed in 
HCC tissues and tumor cell lines compared to 
counterparts using RT-qPCR and IHC assays. This 
suggested highly reliability of database mining 
analyses. 

Bioinformatics analysis revealed CDC6 as a 
potential target of miR-215-5p using the 
targetScanHuman and miRanda databases. It had 
been reported that miR-215-5p was involved in 
various pathological processes including 
proliferation, mesenchymal transition, metastasis and 
apoptosis [22-24]. However, relative research 
regarding miR-215-5p and CDC6 in HCC was not 

sufficient. Due to a potential binding site of CDC6 
mRNA 3'UTR, which could interact with miR-215-5p, 
we hypothesized a direct interaction between the two 
molecules. Wildtype and mutated 3’-UTR sequences 
of CDC6 were constructed and luciferase signals were 
measured using a dual-luciferase reporter assay. As 
expected, miR-215-5p directly bound to the CDC6 
3’UTR to negatively modulate CDC6 expression. Then 
to explore the function of miR-215-5p and CDC6 and 
their relationship in HCC, we knocked down CDC6 or 
transfected with miR-215-5p mimic or inhibitor and 
then the levels of CDC6 and miR-215-5p were 
determined. Knockdown of CDC6 reduced the cell 
vitality of HCC cells and caused the cell cycle of HCC 
cells arrest in G1. miR-215-5p inhibitor significantly 
decreased the level of miR-215-5p and increased the 
expression of CDC6, opposing effects could be found 
in transfecting with miR-215-5p mimic cells. 
Nevertheless, the full function and molecular 
mechanisms behind CDC6 in HCC still require 
additional investigation. 

Conclusion 
According to the discovery of our study, we had 

determined that CDC6 had an important role in the 
tumorigenesis of HCC and provided a new insight 
into the mechanism of HCC. Thus CDC6 could serve 
as a useful biomarker for improving the prediction of 
HCC patient prognosis. 
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