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Abstract 

Rationale: Acute respiratory distress syndrome (ARDS) is one of the major reasons for ventilation and 
intubation management of COVID-19 patients but there is no noninvasive imaging monitoring protocol for 
ARDS. In this study, we aimed to develop a noninvasive ARDS monitoring protocol based on traditional 
quantitative and radiomics approaches from chest CT. 
Methods: Patients diagnosed with COVID-19 from Jan 20, 2020 to Mar 31, 2020 were enrolled in this study. 
Quantitative and radiomics data were extracted from automatically segmented regions of interest (ROIs) of 
infection regions in the lungs. ARDS existence was measured by Pa02/Fi02 <300 in artery blood samples. Three 
different models were constructed by using the traditional quantitative imaging metrics, radiomics features and 
their combinations, respectively. Receiver operating characteristic (ROC) curve analysis was used to assess the 
effectiveness of the models. Decision curve analysis (DCA) was used to test the clinical value of the proposed 
model. 
Results: The proposed models were constructed using 352 CT images from 86 patients. The median age was 
49, and the male proportion was 61.9%. The training dataset and the validation dataset were generated by 
randomly sampling the patients with a 2:1 ratio. Chi-squared test showed that there was no significant 
difference in baseline of the enrolled patients between the training and validation datasets. The areas under the 
ROC curve (AUCs) of the traditional quantitative model, radiomics model and combined model in the 
validation dataset was 0.91, 0.91 and 0.94, respectively. Accordingly, the sensitivities were 0.55, 0.82 and 0.58, 
while the specificities were 0.97, 0.86 and 0.98. The DCA curve showed that when threshold probability for a 
doctor or patients is within a range of 0 to 0.83, the combined model adds more net benefit than “treat all” or 
“treat none” strategies, while the traditional quantitative model and radiomics model could add benefit in all 
threshold probability. 
Conclusions: It is feasible to monitor ARDS from CT images using radiomics or traditional quantitative 
analysis in COVID-19. The radiomics model seems to be the most practical one for possible clinical use. 
Multi-center validation with a larger number of samples is recommended in the future. 
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Introduction 
The coronavirus disease 2019 (COVID-19) 

caused by novel coronavirus SARS-CoV-2 has been 
spreading rapidly in the world [1,2]. Compared with 

the previous respiratory epidemics, there are some 
new characteristics of COVID-19 and new patient 
management challenges. For instance, studies 
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indicated that COVID-19 patients could be 
asymptomatic and highly contagious in the early 
stage, resulting in difficulty for early diagnosis [3,4].
 Fortunately, since the disease outbreak, there a 
good few early diagnosis models on COVID-19 were 
published [5,6]. Some studies indicated that 
Computed Tomography (CT) findings might be 
earlier than the symptom onset in COVID-19 patients 
[7], and hence CT imaging had become a major 
complementary tool for diagnosis and assessment of 
COVID-19 [8]. However, there were still a lot that 
radiologists could do in COVID-19 management, such 
as monitoring of the disease progression or prediction 
of the patients’ prognosis. 

One of the challenges in treatment of COVID-19 
is how to decrease the mortality rate and improve 
treatment outcome. Acute respiratory distress 
syndrome (ARDS) is the major cause of severe cases, 
and early detection and early treatment of ARDS 
patients could improve the outcome [9,10]. 

However, it is a tough task for clinicians to be 
conscious of early ARDS existence in COVID-19 
because there could be no symptom deterioration or 
abnormalities of laboratory tests before the mild 
ARDS existence [11]. The most reliable way to 
overcome this difficulty is to perform arterial gas 
blood analysis frequently, which was the gold 
standard of the ARDS diagnosis, but the arterial 
puncture was an invasive procedure and could cause 
extra risk for complications. 

 ARDS is caused by the injury of 
alveolar-capillary membrane [12], which could result 
in imaging feature changes captured using 
quantitative analysis from chest CT images [13]. 
Therefore, it is possible to use the traditional 
quantitative chest CT metrics, such as volume and 
density to monitor the existence of ARDS. However, 
to our knowledge, no studies have used quantitative 
results to monitor the ARDS in COVID-19, while few 
quantitative results were used in some diagnosis 
models [14]. 

It should be noted that computing the 
aforementioned quantitative changes is not trivial by 
traditional methods. Radiomics method thus is ideal 
to be used in this situation for extracting rich image 
features. Such kind of method refers to extracting a 
large number of imaging features in the high-content 
manner, and use high-dimensional feature selection 
and classification methodologies for analyzing the 
relationship between imaging features and clinical 
factors [15]. Radiomics methods have been 
successfully applied in various applications including 
some infectious diseases [16-20]. However, there is no 
radiomics-based study for early detection of ARDS in 
COVID-19 patients. 

In this study, we use quantitative data analysis 
of chest CT images to detect the existence of ARDS 
during the COVID-19 treatment. The imaging data 
were analyzed by traditional and radiomics 
approaches, respectively, and their performances 
were validated and compared using the datasets 
collected from our hospital. 

Methods 
Patients’ cohort and clinical data collection 

All COVID-19 patients treated in Chengdu 
Public Health Center between Jan 20, 2020 and Mar 
31, 2020 were enrolled in our study. The diagnosis of 
COVID-19 was based on a positive result high- 
throughput sequencing or real-time reverse- 
transcriptase–polymerase-chain-reaction (RT-PCR) 
assay of nasal and pharyngeal swab specimens [21]. 
After collecting the CT imaging and clinical 
management data, a subset of patients were excluded 
according to the following criteria: (i) age < 18 years- 
old; (ii) incomplete medical records; (iii) cases with no 
arterial blood analysis result corresponding to 
respective CT images. 

The research protocol was approved by the 
appropriate ethics review board of our hospital, and 
patient informed consent form was waived because 
only anonymized data were used, and no diagnosis 
and treatment for patients has been altered due to this 
retrospective study. 

Clinical data, such as age, sex, arterial blood 
analysis results and the numbers of comorbid were 
obtained from the medical records. The comorbid 
diseases included: COPD, hypertension, 
hyperlipemia, cerebral infarction, coronary heart 
disease, cardiac dysfunction III-IV, Liver dysfunction, 
diabetes, chronic kidney disease and, malignant 
tumor. The ARDS existence was measured by the 
result of arterial blood analysis. If the Pa02/Fi02 of the 
artery was <300, the patient was considered as with 
ARDS. 

CT image acquisition and traditional 
quantitative metrics extraction 

 Non-contrast chest CT examinations were 
performed for each patient when their doctors 
deemed it was necessary to assess their respiratory 
status. CT examination was prohibited when the 
patient could not get rid of the ventilator. Details of 
CT scanning were provided in supplementary 
materials (Table S1). Qualitative assessment was 
performed by two independent radiologists after each 
CT examination, including the change of volumes, 
density and location of lesions. 
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Infection regions were segmented by a 
pulmonary pneumonia-dedicated multi-task deep 
learning algorithm, trained by using over 6000 
multi-center CT scans (United Imaging Intelligence) 
based on VB-Net [22]. Its accuracy was tested by two 
expert radiologists with 15 years (Zixing Huang) and 
25 years (Bin Song) experience in chest CT 
interpretation. More detailed information of 
segmentation algorithm was shown in the 
supplementary material (Table S2). 

 The following traditional quantitative metrics 
were calculated to quantify infectious regions of the 
image of each patient: 
• Volumes of infection in the whole lung, and 

volumes of infection in each lobe and each 
bronchopulmonary segment; 

• Percentage of Infection (POI) in the whole lung, 
each lobe and each bronchopulmonary segment; 

• Hounsfiled Unit (HU) histograms within 
different infection regions. Different HU ranges 
or components were used, including (zone 1: 
<-750), (zone 2: from -750 to -650), (zone 3: -649 to 
-550), (zone 4: -549 to -450), (zone 5: -449 to -350), 
(zone 6: -349 to -250), (zone 7: -249 to -150), (zone 
8: -149 to -50), (zone 9: -49 to 100) and 
(zone10:>100) inside the infection region. 

 The entire pipeline for the traditional 
quantitative COVID-19 extraction was shown in 
Figure 1. 

A two-step logistic regression was performed to 
explore the relationship between traditional 
quantitative metrics and ARDS existence. First, a 
univariable logistic regression was performed on all 
clinical and quantitative imaging features. Then a 
multivariable logistic regression was performed on 
factors whose P value <0.1 in the first regression. 
Finally, a linear combination of the above significant 
factor was applied to build a traditional quantitation 
predictive model. 

Radiomic feature extraction 
The radiomics workflow is presented in Figure 

1. ROIs were the same regions used for traditional 
quantitative assessment, which were segmented 
automatically. Texture extraction was performed 
using Pyradiomics in Python 3.7. All radiomics 
features were based on Image Biomarkers 
Standardization Initiative (IBSI). In summary, 104 
imaging features were extracted from individual CT, 
including 18 first-order features, 14 shape features, 16 
glrlm features, 14 gldm feautures, 16 glszm features, 
21 glcm features and 5 ngtdm features. 

 

 
Figure 1. Pipeline of the traditional quantitative metrics and radiomics metric extraction. 
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Radiomics features were all normalized by 
StandardScaler in both datasets. Then, a two-step 
high-dimensional data reduction was performed. 
First, minimum redundancy and maximum 
correlation of feature selection (mRMR) was 
performed to eliminate the redundant and irrelevant 
features, and 30 features were retained. Then, the least 
absolute shrinkage and selection operator (LASSO) 
logistic regression algorithm was applied to choose 
the optimized subset of features to construct the final 
model. A linear regression was performed by 
combination of selected features that were weighted 
by their respective LASSO results. A risk score, called 
radiomics score was calculated by the formula for 
each patient to refer the risk of ARDS existence. A 
radiomics model was constructed based on the 
radiomics score. Finally, a combination of 
quantitation and radiomics model was constructed 
based on the multivariable regression result of the 
selected quantitative variable and radiomics scores. 

Evaluation of the constructed model 
The predictive performance of the constructed 

models was assessed by ROC, where AUC was 
calculated for the quantification in both training set 
and validation sets. Also, DCA was performed by 
calculating the net benefits for a range of threshold 
probabilities in the training and validation sets. 

Statistical analysis 
 Continuous variables were reported as the mean 

(standard deviation) or median (interquartile range 
[IQR]). Student's t-test or Mann–Whitney U test was 
used to compare between-group differences (presence 
and non-presence of primary composite endpoints) 
based on distributions. Categorical variables were 
presented as n (%) and compared using Chi-square 
(χ2) test or Fisher's exact test. The LASSO logistic 
regression model was performed with penalty 
parameter tuning, which was conducted by 10-fold 
cross-validation by minimum criteria. Back-ward 
step-down selection was applied to the multivariable 
model. 

 All statistical tests were performed using R 
statistical software version 3.6.3. “mRMRe” package 
was used for the mRMR reduction; “glmnet” package 
was used for the LASSO logistic regression; “pROC” 
package was used for ROC curves plotting; “dac.R” 
package was used for DAC analysis. Statistical 
significant was considered when a two-sided P <0.05. 

Results 
Patient characteristics 

 Totally, 102 COVID-19 patients were enrolled in 
our study. 4 patients were excluded due to age <18. 14 

patients were excluded because of incomplete medical 
records. Finally, 84 patients were included in their 
study. There were 381 CT scans for these patients, and 
352 CT scans had corresponding arterial blood gas 
analysis results. 

 The median age of patients was 49 (IQR: 34.00 - 
60.75), male proportion was 61.90% (52/84). Among 
these patients, 61.90% (52/84) patients were mild, 32 
patients were severe and 15.47% (13/84) patients were 
transferred into ICU. The median time from symptom 
onset to admission was 5 days (IQR: 3 – 9 days). The 
median number of CTs during the admission was 4 
(3-5). The most common initial symptom was fever 
(80.95%, 68/84) and cough (70.23%, 59/84). The most 
common comorbidity was hypertension (20/84, 
23.8%). The detail of patients characterize was shown 
in Table 1. 

 

Table 1. Characterize of the enrolled patients 

Variables Value 
General characterize 
Total numbers 84 
Age (year) 49.00 (34.00 -60.75) 
Male 61.90% 
Median time from illness onset to hospital admission 
(day) 

5 (3 - 9) 

Median time from admission to Frist CT (day) 1 (1 - 6) 
Numbers of CT 4 (3 – 5) 
ICU admission 13 
Death  4 
Initial symptom 
Fever 68 
Cough 59 
Sputum 16 
Pharynagalgia 1 
fatigue 3 
headache 1 
Dyspnoea 11 
myalgia 5 
stomachache 1 
Diarrheal 2 
Comorbidity 
COPD 6 
Hypertension 20 
Hyperlipemia 9 
Cerebral infarction 4 
Coronary heart disease  6 
Cardiac dysfunction III-IV 7 
Liver dysfunction 3 
Diabetes 12 
Chronic Kidney disease 5 

 

Clinical data and traditional quantitative 
metrics 

 Among 352 CT scans, 14.49% (51/352) were 
shown to have ARDS existence at that moment. 
Qualitative assessment showed that 47.72% of CT 
results were better than the previous ones, while 
26.70% CT images showed significant deterioration of 
infection. 
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Quantitative assessment of CT showed the mean 
infectious proportion of the lung was 6.38 ± 8.69%. 
The mean density of infection regions was -588.96 ± 
134.34 HU. The largest component of the infection 
region was Zone 1 (HU < -750), which composed 12.38 
± 11.15% of infection region among all patients on 
average. The mean infection area proportion of inner 
zone of lung was 3.30% ± 5.35%, while the mean 
proportion of peripheral zone of lung was 3.07% ± 
4.00%. More information on the area proportion of 
different density interval region could be achieved in 
Table 2. 

Χ2 test was applied to all clinical data to assess 
the distribution of each factor in mild group and 
severe group. The factor with P value<0.1 was put 
into further logistic regression. The χ2 result showed 
that Male proportion (P=0.089), chronic kidney 
disease (P= 0.067), coronary heart disease (P=0.002), 
cardiac dysfunction (P=0.001), COPD (P=0.028), and 
hypertension (P = 0.01) met the above criteria. 

 A multiple variable backward step logistic 
regression was applied to all traditional metrics with 
all the above including clinical variables. The 
regression result showed that male (P=0.008), 

existence of hypertension (P= 0.016), total infection 
proportion (P<0.001), age (P=0.048) and area 
proportion of zone 10 (CT value >100 HU) were 
significantly related to the ARDS existence. The 
regression result was visualized in Figure 2. 

Radiomics signature construction 
 The training sets and validation sets were 

generated by random sampling from the CT image 
cohort with a ratio of 2:1.The χ2 test showed that there 
was no difference (χ2 < 0.001, P-value= 0.99) of the 
number of ARDS existence case in train sets (36/247) 
and validation sets (15/105). There was no difference 
between training sets and validation sets (Table S3). 
A total of 104 imaging features were extracted from 
each CT image. After mRMR reduction and lasso 
regression, 17 features were selected to calculate the 
radiomics score (Figure 3). The details of radiomics 
score calculation method were demonstrated in the 
supplementary material. The Wilcoxon test showed 
that the distribution of radiomics score was 
significantly different in both training sets and 
validation sets (Figures 4 & 5). 

 

 
Figure 2. Visualization of the multivariable logistic regression results on the traditional quantitative and clinical metrics. 
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Table 2. Summary of the quantitative metrics of enrolled CT image 

Variables No ARDS (N=51) ARDS existence (N=301) Total (N=352) 
Mean Sd Mean Sd Mean Sd 

***Total Volume (%) 4.17 6.08 19.39 10.36 6.38 8.69 
***Mean Density (HU) 607.59 121.71 -479.02 152.95 -588.96 134.34 
***Zone1 Proportion (%) 0.56 1.00 1.40 1.33 0.68 1.10 
***Zone2 Proportion (%) 0.30 0.47 0.84 0.70 0.38 0.54 
***Zone3 Proportion (%) 0.21 0.33 0.70 0.51 0.28 0.40 
***Zone4 Proportion (%) 0.14 0.24 0.54 0.37 0.20 0.30 
***Zone5 Proportion (%) 0.10 0.18 0.44 0.30 0.15 0.23 
***Zone6 Proportion (%) 0.07 0.14 0.37 0.27 0.12 0.19 
***Zone7 Proportion (%) 0.06 0.11 0.34 0.28 0.10 0.18 
***Zone8 Proportion (%) 0.05 0.10 0.34 0.29 0.09 0.18 
***Zone9 Proportion (%) 0.06 0.15 0.50 0.48 0.13 0.27 
***Zone10 Proportion (%) 0.03 0.07 0.26 0.28 0.06 0.15 
***Vi Proportion (%) 2.18 2.97 8.41 5.09 3.08 4.01 
***Vp Proportion (%) 2.00 3.37 10.97 7.95 3.30 5.36 
Zonex indicated the volume proportion of the regions with specific density within the infection, including (zone 1: <-750 HU), (zone 2: from -750 HU to -650 HU), (zone 3: 
-649 HU to -550 HU), (zone 4: -549 HU to -450 HU), (zone 5: -449 HU to -350 HU), (zone 6: -349 HU to -250 HU), (zone 7: -249 HU to -150 HU), (zone 8: -149 HU to -50 HU), 
(zone 9: -49 HU to 100 HU) and (zone10:>100 HU). Vi represents the volume proportion of the infection located in the inner part of the lung, including anterior segment of 
bilateral upper lobes / apical segment of right upper lobe / lingular segment of left upper lobe / middle lobe of right lung/ anterior and medial basal segment of bilateral 
lower lobes. Vp represents the volume proportion of the infection located in the peripheral part of the lung, including posterior segment of right upper lobe / apicoposterior 
segment of left upper lobe / superior segment of bilateral lower lobes / lateral and posterior basal segment of bilateral lower lobes. *, **, ***, **** means the P value of t-test 
between two group >0.05, <0.05, <0.01, <0.001, <0.0001 respectively. 

 
 

 
Figure 3. Histogram of selected radiomics features. X labels indicates the coefficients of each feature in the lasso regression. 

 

Model combination and assessment 
 Age, total volume, area proportion of Zone10 

and radiomics score were selected to construct the 
combined model. The AUC in training set of 
quantitation model, radiomics model and combined 
model was 0.93, 0.96 and 0.97 respectively, while the 
AUC of the above three models in validation sets was 
0.91, 0.94 and 0.94, respectively (Figure 6). The 
radiomics model had the highest accuracy (92.31% in 
training sets and 83.81% in validation sets) and 
sensitivity (92.89% in training sets and 82.33% 

validation sets), while the combined model had the 
highest specificity (98.97% in training sets and 98.68% 
in validation sets). DeLong's test showed there was no 
difference in AUC between every two of ROC. More 
information on each model was demonstrated in 
Table 3. 

 The DCA curve showed that when threshold 
probability for a doctor or patients is within a range of 
0 to 0.83, the combined model adds more net benefit 
than “treat all” or “treat none” strategies, while the 
traditional quantitation and radiomics model could 
add benefit in all threshold probability (Figure 7). 
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Figure 4. Radiomics score distribution in the training sets. “0” group represents the cases without ARDS existence. “1” group represents the cases with ARDS 
existence. NS, *,**,***,**** means the P value of wilcox test between two group >0.05, <0.05, <0.01, <0.001, <0.0001 respectively. 

 
Figure 5. Radiomics score distribution in the validation sets. “0” group represents the cases without ARDS existence. “1” group represents the cases with ARDS 
existence. NS, *, **, ***, **** means the P value of wilcox test between two group >0.05, <0.05, <0.01, <0.001, <0.0001 respectively. 
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Figure 6. Roc curves of the constructed models. Green line represents the traditional quantitative model. Blue line represents the radiomics model. Red line represents 
the combined model. 

 

 
Figure 7. DCA for the radiomics nomogram. The y-axis represents the net 
benefit. The red, green and orange line represents the traditional, radiomics and 
combined model, respectively. The blue line represents the hypothesis that all 
patients had ARDS. The black line represents the hypothesis that no patients had 
ARDS. The x-axis represents the threshold probability. The threshold probability is 
where the expected benefit of treatment is equal to the expected benefit of avoiding 
treatment. For example, if the possibility of ARDS existence of a patient is over the 
threshold probability, then a treatment strategy for ARDS should be adopted.  

Table 3. Summary of the performance of each constructed model 

Datasets Accuracy Sensitivity Specificity 
Traditional Train 93.52% 73.81% 97.56% 
Traditional Test 87.62% 55.00% 95.29% 
Radiomics Trian 92.31% 92.89% 88.89% 
Radiomics Test 83.81% 82.22% 86.33% 
Combined Train 91.50% 64.15% 98.97% 
Combined Test 84.76% 58.28% 98.68% 

 

Discussion 
ARDS existence is the major reason for 

ventilation care in COVID-19 patients. Besides, the 
current experience showed that earlier treatment of 
ARDS is one of the key measures to decrease the 
modality [9]. Thus, early identification of ARDS 
existence could be beneficial to the COVID-19 
patients. In this study, we constructed 3 different 
models by using the quantitative, radiomics and 
combined data. To the best of our knowledge, it was 
the first study to use the traditional quantitative and 
radiomics metrics to monitor the ARDS existence in 
COVID-19. Our results showed that used radiomics or 
quantitative metrics to monitor the ARDS existence 
was feasible, which had expanded the effectiveness of 
CT scans during the COVID-19 treatment, although it 
is still in controversy for reasons of availability, cost, 
and increased risk of cross-infection and radiation 
dosage [23]. 

 There had already been some constructed model 
based on deep-learning to predict the prognosis of 
COVID-19 patient [24]. Currently, all of the above 
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models were based on the initial CT of the patient. 
Usually, this strategy did not cause significant bias 
because all patients were accepted similar treatment 
following the treatment guideline. However, as for 
COVID-19 patients, the treatment varies in different 
countries, different regions, even in the different 
patients of the same hospital because some drugs 
were proven to be ineffective after initial application. 
In this condition, the treatment strategy would cause 
significant heterogeneity. Thus, we used individual 
CT results during the patients’ treatment instead of 
the initial CT to construct the model. 

Our results showed that radiomics or traditional 
quantitative post-analysis on a CT image could add 
extra information of disease condition in COVID-19 
patients. The traditional quantitation and radiomics 
data of chest CT had the potential to become a 
noninvasive method for ARDS screening. The DCA 
curves showed that radiomic or traditional 
quantitative model could add benefit to patients 
whatever the threshold probability, which means the 
model is better than the “treat all” or “treat none” 
strategies definitely. The noninvasive ARDS monitor 
method could benefit COVID-19 patients in many 
ways. Firstly, there are some patients with ARDS but 
without obvious respiratory symptoms, which was 
reported in some published studies11. Those patients 
could get earlier oxygen treatment and may have a 
better prognosis. Besides, the monitor method could 
also decrease the number of arterial punctures, which 
was an invasive procedure. 

Although there was no difference in AUC among 
the three models, the radiomics model should be the 
most practical model for monitoring ARDS existence 
in COVID-19. Because for the traditional quantitation 
and combined model, the sensitivity was low (0.68 
and 0.70, respectively), while the specificity was high 
(0.98 and 0.98, respectively). In contrast, the radiomics 
model had a relatively high sensitivity (0.94) and low 
specificity (0.86). Every model is not perfect, but 
sensitivity was much more important than specificity 
in ARDS monitoring because false-negative will cause 
delay of oxygen treatment to patients while false 
positive cause an unnecessary extra arterial puncture, 
which was much less harmful than the former. 

Our traditional quantification result was 
homologous with the clinical findings. In our 
quantification result, the significant variable included: 
male (P =0.008), existence of hypertension (P = 0.016), 
total infection proportion (P <0.001), age (P =0.048) 
and area proportion of zone10 (CT value >100HU). 
Age and total infection proportion was the risk factor 
reported in many previous COVID-19 studies [10]. 
The higher risk in male proportion might come from 
the higher smoking history of the male, which was 

reported as risk factor of bad prognosis of COVID-19 
patients in previous study [25]. The probable 
mechanism of higher ARDS rate in patient with 
hypertension was that after COVID-19 infection, the 
virus could combine with the ACE2 receptor, 
resulting in a decrease in the number of ACE2. Thus, 
when persons with hypertension get infected by 
COVID-19, their ACE2 receptor level will become 
extremely low since they have lower ACE2 receptor 
than those without hypertension [26], which could be 
a significant risk factor for lung failure [27]. Finally, 
the infection regions with CT value >100 was highly 
related to the ARDS existence. The region with CT 
value >100 HU is seldom seen in pneumonia, it could 
refer to the dense fibrous tissue in the lung, which 
could be a sign of lung failure [28]. 

  There were also several limitations in our study. 
The results could be influenced by the cohort 
retrospective nature. A larger sample of external 
validation is needed to acquire high-level evidence 
before clinical application. Besides, the cost-effective 
between radiation dose, medical cost and patients 
benefit should be analyzed further. Also, we had to 
mention that there is no “one fits” all analysis 
approach as performance of various ML workflows 
has been shown to depend on application and/or 
type of data. Thus, current study may change and 
improve by using different machine learning 
algorithms. 

Conclusion 
 A noninvasive ARDS existence monitoring 

model was constructed by using quantitative and 
radiomics analysis of chest CT images for COVDI-19 
patients. Experimental results showed that the 
radiomics model was the most promising model for 
ARDS monitoring. Multi-center validation with a 
large number of samples is recommended in the 
future work. 
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respiratory syndrome coronavirus; ROIs: segmented 
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