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Abstract 

Although increasing evidence has suggested crosstalk between Parkinson’s disease (PD) and type 2 
diabetes mellitus (T2DM), the common mechanisms between the two diseases remain unclear. The aim 
of our study was to characterize the interconnection between T2DM and PD by exploring their shared 
biological pathways and convergent molecules. The intersections among the differentially expressed 
genes (DEGs) in the T2DM dataset GSE95849 and PD dataset GSE6613 from the Gene Expression 
Omnibus (GEO) database were identified as the communal DEGs between the two diseases. Then, an 
enrichment analysis, protein-protein interaction (PPI) network analysis, correlation analysis, and 
transcription factor-target regulatory network analysis were performed for the communal DEGs. As a 
result, 113 communal DEGs were found between PD and T2DM. They were enriched in lipid 
metabolism, including protein modifications that regulate metabolism, lipid synthesis and decomposition, 
and the biological effects of lipid products. All these pathways and their biological processes play 
important roles in both diseases. Fifteen hub genes identified from the PPI network could be core 
molecules. Their function annotations also focused on lipid metabolism. According to the correlation 
analysis and the regulatory network analysis based on the 15 hub genes, Sp1 transcription factor (SP1) 
could be a key molecule since it affected other hub genes that participate in the common mechanisms 
between PD and T2DM. In conclusion, our analyses reveal that changes in lipid metabolism could be a key 
intersection between PD and T2DM, and that SP1 could be a key molecule regulating these processes. 
Our findings provide novel points for the association between PD and T2DM. 
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Introduction 
Parkinson’s disease (PD) is the second most 

common neurodegenerative disorder, causing 
irreversible, progressive motor and nonmotor 
dysfunction. PD is characterized by neuronal loss in 
the substantia nigra and other brain regions with the 
presence of intracytoplasmic protein inclusions 
known as Lewy bodies [1]. Type 2 diabetes mellitus 
(T2DM) is a prevalent metabolic disorder 
characterized by obesity and chronic insulin 

resistance. T2DM comprises about 90% of all diabetic 
cases [2]. However, the potential relationship between 
these two refractory diseases remains unclarified. 

Recently, several clinical studies with conflicting 
results have given deeper insight into the association 
between T2DM and PD [3]. Evidence from a case- 
control study suggested that diabetic individuals may 
have a decreased incidence of PD [4]. However, data 
from a meta-analysis showed no conclusive evidence 
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supporting T2DM as a risk factor for PD [5]. In 
addition, some studies indicated that the contributing 
role of T2DM as a risk factor for PD could be 
associated with certain ethnic groups, including 
American [6], British [7], Danish [8], and Chinese [9]. 
Meanwhile, it was reported that T2DM is most likely 
associated with PD progression [10,11], as evidenced 
by repeated inpatient care, longer duration of 
hospitalization [12], a higher United Parkinson’s 
Disease Rating Scale (UPDRS), and more severe 
Hoehn and Yahr staging [13] in PD patients with 
T2DM. Notably, the conflicting results may be due to 
several confounding factors, one of which is the 
impact of drugs. While PD medications (such as 
levodopa) induce hyperglycemia and hyper-
insulinemia [14], anti-diabetic drugs (such as 
metformin [15], glitazones [16], and exenatide [17]) 
could elicit neuroprotection in PD and might lower 
the risk of acquired PD in populations with diabetes. 
In a word, the aforementioned findings highlight the 
detrimental impact that T2DM imposes on PD 
patients. 

Even though T2DM is considered as a risk factor 
for developing PD, the exact mechanisms that explain 
the coexistence of these two disorders remains 
unclear. Recent studies have revealed convergent 
molecular and biological pathways that link both 
diseases. Hyperglycemia could be the most 
fundamental pathway. As previously reported, the 
majority of PD patients have abnormal glucose 
tolerance and display hyperglycemia [18], let alone 
T2DM. As a consequence of hyperglycemia, glycation 
is exacerbated in T2DM, and the formation of its 
agents is increased [19]. Accordingly, increased levels 
of glycation have been reported in the cerebral cortex, 
amygdala, and substantia nigra of PD patients [20]. 
Besides, chronic hyperglycemia is often accompanied 
by insulin signaling disorders that are common in 
both PD and T2DM patients. In turn, insulin signaling 
disorders can also alter systemic glucose and lipid 
metabolism, and impaired lipid metabolism is 
associated with inflammatory, oxidative stress, 
mitochondrial dysfunction, and insulin resistance [3]. 
Moreover, amyloid formation is another shared 
mechanism. One of the typical pathological features in 
PD is proteinaceous amyloid fibrils, which are 
composed mostly of alpha-synuclein, called Lewy 
pathology [1]. In T2DM, another disease involving 
amyloid formation, the primary pathological 
characteristic is islet amyloid polypeptide in 
pancreatic β-cells [21]. The amyloid formation 
initiates many processes, including endoplasmic 
reticulum stress, unfolding protein response, 
oxidative stress, autophagy, mitochondrial 
dysfunction, and cell apoptosis [3]. In general, the 

various processes do not exist independently but 
rather influence each other. They are reciprocal 
causations in the two disorders. 

Common transcriptional signatures may provide 
further insight into the shared biological mechanisms 
in PD and T2DM. In the current study, we compared 
the expression profiles in T2DM and PD, and 
analyzed the communal differentially expressed 
genes (DEGs) in order to identify common pathologic 
mechanisms and protein‐protein interaction (PPI) 
nodes. 

Materials and Methods 
Data preprocessing and identification of DEGs 

We retrieved transcription profile datasets of PD 
and T2DM from the NCBI Gene Expression Omnibus 
(GEO) database [20] based on the keywords 
"Parkinson’s disease and human being" and "Diabetes 
mellitus and human being". These datasets were 
screened based on inclusion/exclusion criteria. The 
inclusion criteria were as follows: 1. Sporadic PD or 
type 2 diabetes mellitus; 2. Transcriptional RNA 
expression profiles based on peripheral blood; 3. 
Datasets that included patients and healthy controls. 
The exclusion criteria were as follows: Patients had 
participated in a clinical trial for drugs or other 
treatments. Finally, the transcription profiles in 
peripheral blood in PD (GSE6613, including 50 PD 
patients and 23 controls) and T2DM (GSE95849, 
including 6 T2DM patients and 6 controls) were 
obtained (Figure 1). According to the platforms, 
preprocessing and normalization of raw data (CEL 
files) were carried out with the affy package (version 
1.64.0) [22] and the limma package (version 3.42.2) 
[23]. After excluding patients with other diseases, the 
following processes were performed: data format 
conversion, missing value imputation, background 
adjustment, quantile normalization, and principal 
components analysis (PCA) [24]. According to the 
PCA results, we excluded one sample affecting 
classification and reserved five T2DM patients and six 
healthy controls (HCs) in GSE95849. Since all the 
samples of GSE6613 were jumbled together and could 
not be classified at all according to the PCA and the 
clustering results, we randomly selected PD patients 
and HCs to avoid errors caused by subjective factors. 
And we decided to randomly selected six PD patients 
and six HCs, the same as the sample size of GSE95849. 
Significant expression differences were analyzed 
using the Bayesian analysis method provided by the 
limma package [23] with the cut-off value p < 0.05 and 
│Log2fold change (FC)│ > 1.0. In the following study, 
the intersection of the 2-dataset DEGs was defined as 
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communal DEGs and visualized by the VennDiagram 
package (version 1.6.20) [25]. 

Functional annotation of significant DEGs 
Gene ontology (GO), Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathways and Reactome 
pathways enriched by DEGs were analyzed by the 
clusterProfiler package (version 3.14.0) [26] and the 
ReactomePA package (version 1.30.0) [27] with the 
significant selection criteria including a p value <0.05 
and gene count ≥ 2.0.  

Integration of the PPI network and correlation 
analysis of hub nodes 

The Search Tool for the Retrieval of Interacting 
Genes (STRING) online tool [28] was applied to 
analyze the PPI of the communal DEGs with the 
threshold of the combined score >0.15. The PPI 
network was constructed using the Cytoscape 
software (version 3.7.1) [29]. To identify hub nodes 
with higher betweenness centrality (BC), we used 

CytoHubba plug-in [30] in Cytoscape to analyze the 
significant nodes in the PPI network. In addition, the 
most highly interconnected module in the PPI 
network was analyzed using the plug-in MCODE [31] 
with default parameters. Correlations of hub genes 
with higher BC and hub nodes in MCODEs were 
calculated and visualized by the ggplot2 package 
(version 3.3.1). 

Transcription factor-target regulatory 
network 

The transcription factors (TFs) that target hub 
genes in the PPI network were predicted using the 
Cytoscape plug-in iRegulon [32], which integrates 
information from the lager motif and track collections. 
We obtained the data predicted by the track discovery 
of existing regulatory datasets, which include data 
validated by ChIP-Seq, DHS-seq, or FAIRE-seq. 
TF-target pairs with normalized enrichment scores 
(NES) >4 were selected. 

 

 
Figure 1. Flow chart of the study. GEO: Gene Expression Omnibus, PD: Parkinson’s disease, DM: diabetes mellitus, T2DM: type 2 diabetes mellitus, DEGs: differentially 
expressed genes, PPI: protein-protein interaction, TF: transcription factor, SREBP: sterol regulatory element binding protein, PPARα: peroxisome proliferator activated receptor 
alpha, SP1: Sp1 transcription factor. 
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Figure 2. Identification of gene expression profiles in the two datasets. (A) Volcano plot of PD microarray data. (B) The cluster heat map of PD DEGs. (C) Volcano plot of 
T2DM microarray data. (D) The cluster heat map of T2DM DEGs. (E) Venn diagram of the 194 communal DEGs between T2DM and PD. 

 

Results 
Identification of 113 communal DEGs between 
PD and T2DM 

As described in the materials and methods 
section, based on the PCA and the clustering analyses, 
samples affecting classification were excluded from 
the preprocessed datasets (Figure S1, S2). We 
performed differential gene analysis and cluster 
analysis based on the screened samples, which 
included six PD patients and six HCs in GSE6613, and 
five T2DM patients and six HCs in GSE95849. We 
identified 964 genes (694 upregulated and 270 
downregulated genes) (Figure 2A) as significant 
DEGs in patients with PD, compared to the controls. 
Meanwhile, compared to the controls, 2878 genes 
(1686 upregulated and 1192 downregulated genes) 
(Figure 2C) were identified as DEGs in T2DM. The 
results of the cluster analysis (Figure 2B, 2D) showed 
significant differences in the DEGs in PD and T2DM. 
By analyzing the shared DEGs of PD and T2DM, we 
found 113 communal DEGs (Figure 2E), including 49 
co-upregulated and 12 co-downregulated genes. 

Communal DEGs between PD and T2DM 
focused on the regulation of lipid metabolism 

In order to identify potential communal 
biological processes and pathways between PD and 
T2DM, functional annotation analyses were 
performed based on the communal DEGs identified. 
According to our selection criteria, three KEGG 
pathways, six Reactome pathways, and 21 GOs were 
enriched by co-upregulated genes (Figure 3A, 3C, 3D), 
while two Reactome pathways and 20 GOs were 
enriched by co-downregulated genes (Figure 3B, 3E). 
The co-upregulated DEGs were enriched mainly in 
processes and pathways associated with the 
regulation of cholesterol biosynthesis (through the 
sterol regulatory element binding protein (SREBP)) 
and the regulation of lipid metabolism (through 
peroxisome proliferator activated receptor alpha 
(PPARα)). The co-downregulated DEGs were 
enriched mainly in deacetylation modifications and 
the steroid hormone mediated signaling pathway. 
These results suggested that the regulation of lipid 
metabolism could be the common pathologic 
mechanism that links both diseases. 
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Figure 3. Functional annotation of communal DEGs. (A) Bubble plot of the Gene ontology (GO) enriched by co-upregulated DEGs. (B) Bubble plot of the GOs enriched by 
co-downregulated DEGs. (C) Bubble plot of the KEGG pathway enriched by co-upregulated DEGs. (D) Bubble plot of the Reactome pathway enriched by co-upregulated DEGs. 
(E) Bubble plot of the Reactome pathway enriched by co-downregulated DEGs 

 

Hub nodes in the PPI network focused on lipid 
metabolism processes 

To clarify the interactions between DEGs, we 
performed a PPI network analysis on all communal 
DEGs (Figure 4A), and predicted core genes in the 
network through the topological property of BC 
(Figure 4B, Supplementary Table 1) and clustering 
algorithms called MCODE (Figure 4C, 4D). 
Combining the results of these two analyses, 15 key 
genes were obtained, in which Sp1 transcription factor 
(SP1), RAD51 paralog B (RAD51), transducin 
(beta)-like 1 X-linked (TBL1X), H2A histone family, 
member V (H2AFV), and alpha-thalassemia/mental 
retardation syndrome X-linked (ATRX) were 
identified by both methods. To verify the identified 
biological processes shared between PD and T2DM, 
function annotations of the 15 hub genes were 
performed. The results of those studies highlighted 
metabolic processes such as the response to insulin 
and steroid hormones, the activation of gene 

expression by SREBF, and the activation of gene 
expression by PPARα (Figure 5). The function 
annotations of the 15 hub genes were similar to the 
results of all 113 common DEGs, enhancing the 
credibility of the conclusion that lipid metabolism 
processes are the common pathologic mechanism 
between PD and T2DM. 

SP1 was identified as a key molecule that 
affects other hub genes 

To find the most important regulatory molecule 
in the 15 hub genes, we analyzed correlations between 
the hub genes (Figure 6A) and constructed the 
TF-target regulatory network (Figure 6B, 
Supplementary Table 2). While the majority of the 
hub genes had significant correlations with each 
other, SP1 had either direct or indirect interactions 
with the other genes in the TF-target regulatory 
network. In other words, SP1 could be a key gene that 
regulates and connects with the other 14 hub genes. It 
is a nuclear transcription factor that can activate or 
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repress the transcription of many genes. We reviewed 
the roles of the genes in the TF-target network in 

T2DM and PD (Table 1). 

 

 
Figure 4. Hub gene identification in a PPI network based on communal DEGs. (A) The PPI network of co-upregulated and co-downregulated DEGs. (B) The top 10 node genes 
in the PPI network. (C) Cluster 1 analyzed by the plug-in MCODE in the whole PPI network. (D) Cluster 2 analyzed by the plug-in MCODE in the whole PPI network. 

 
Figure 5. Functional annotation of the hub genes. (A) Circos plot of the GOs enriched by hub genes. (B) Circos plot of the Reactome pathway enriched by hub genes. 
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Figure 6. Identification of the key molecule affecting other hub genes. (A) The correlation analysis between hub genes. (B) TF-targeting regulatory network based on hub genes. 
Red polygons represent upregulated hub genes; green polygons represent downregulated hub genes; dark blue bordered polygons represent transcription factors; blue polygons 
represent predicted transcription factors.  

 

Table 1. Review of the hub nodes in the transcription factor (TF)-target regulatory network 

Genes T2DM PD 
polo-like kinase 1 (PLK1) Stimulation of KLF14/PLK1 pathway potentiates endothelial 

dysfunction in Type 2 diabetes mellitus [50].  
PLK1 is involved in the phosphorylation of aggregated α-syn 
at S129 in this system; knockdown of PLK1 significantly inhibit 
Cory-induced autophagy that promotes the clearance of 
PD-associated SNCA/α-synuclein [51].  

transducin (beta)-like 1X-linked (TBL1X) None None 
Sp1 transcription factor (SP1) The specific recognition of -420G by Sp1/3 increases RETN 

promoter activity, leading to enhanced serum resistin levels, 
thereby inducing human T2DM [52].  

SP1 is a principal factor regulating increases in MAO B activity, 
and SP1 inhibition produces neuroprotective effects in PD 
models through decreases in MAO B activity, which may be a 
new neuro-protective therapeutic strategy for PD treatment 
[46]. 

ADP-ribosylation factor-like 3 (ARL3) None None 
RAD51 paralog B (RAD51) Advanced Glycation End‐Products decrease the expression of 

RAD51 and RAD52 in INS-1 cells [53]. 
DNA repair proteins like p-CREB, APE1 and Rad51 were 
increased in response to rotenone-induced DNA damage [54]. 

H2A histone family, member V (H2AFV) None None 
abhydrolase domain containing 2 (ABHD2) None None 
Circadian Regulator 1 (CRY1) Insulin-activated SREBP1c downregulates gluconeogenesis 

through CRY1-mediated FOXO1 degradation and 
dysregulation of hepatic SREBP1c-CRY1 signaling may 
contribute to hyperglycaemia in diabetic animals [55]. 

None 

Interleukin 6 Receptor (IL6R) IL6R inhibits viability and apoptosis of pancreatic beta-cells in 
type 2 diabetes mellitus via regulation by miR-22 of the 
JAK/STAT signaling pathway [56]. 

Protein expression of IL-1R, IL-6R, and TNFR subtype TNFR1 
in the plasma membrane midbrain periaqueductal gray of PD 
rats was upregulated [57]. 

 
 

Discussion 
The last decade has witnessed an unceasing 

debate on the potential relationship between PD and 
T2DM. We attempted to associate the transcriptome 
data of T2DM patients with PD patients in order to 
explore the crosstalk between the two diseases.  

In our study, all of the functional annotation 
results can be summed up in three aspects: protein 
modifications (protein deacetylation), lipid synthesis 
and decomposition (the regulation of cholesterol 
biosynthesis by SREBP and the regulation of lipid 

metabolism by PPARα), and the biological effects of 
lipid products (steroid hormone-mediated signaling 
pathways). Firstly, protein acetylation and 
deacetylation are posttranslational protein 
modifications that regulate inflammation, oxidative 
stress, mitochondrial function, and glucose and lipid 
metabolism in PD [33] and T2DM [34]. Secondly, 
overactivated SREBP means an imbalance between 
cholesterol synthesis and decomposition, while 
changes in the activity of PPARα can break the 
balance in lipid oxidation. All of these disorder 
processes not only contribute to α-synuclein 
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aggregation and dyslipidemia [35,36], but also lead to 
elevated levels of both lipid and protein oxidation in 
T2DM and PD [37,38]. Finally, steroid hormones may 
participate in both PD [39] and T2DM [40]. For 
example, endogenous sexual hormones might have 
neuroprotective effects against neurotoxic agents for 
dopamine neurons [41], and modulate the glycemic 
status and risk of T2DM [42]. 

According to our analyses, 15 hub nodes were 
identified in the PPI network. The functional 
annotation results of these hub nodes also highlighted 
lipid metabolism, and showed these nodes to have 
significant correlations with each other. In the 
TF-target regulatory network, SP1 was the core factor 
that regulated the other genes either directly or 
through predicted transcription factors. SP1 not only 
regulates insulin signaling and cholesterol 
metabolism [43], but it is also a common interpreter of 
nuclear signal transduction in response to hormones 
[44]. Besides, SP1 modulates the expression and 
activity of PD-related genes to produce neuro-
protective effects [45,46]. In conclusion, SP1 and its 
relevant genes may act as a core intersection in the 
crosstalk between T2DM and PD. 

Santiago and Potashkin [47] discussed the 
pathways that are shared between PD and T2DM and 
obtained a key shared gene, amyloid precursor 
protein. The results were based on the analyses of 
confirmed genes associated with PD and T2DM. 
These genes were obtained from the genome-wide 
association studies (GWAS) catalog that collected 
published GWAS analyses, and were then verified by 
GEO microarray studies and clinical samples. GWAS 
aims at identifying genetic variants and disease-trait 
associations, but cannot identify all genetic 
determinants of complex traits [48]. Besides, complex 
traits and complex diseases, such as PD and T2DM, 
can be attributed not only to genotype but also 
environment. Results based solely on GWAS data do 
not include the substantial contribution of 
environmental factors. It is preferable to combine 
GWAS data with microarray studies and validation 
using clinical samples. In our study, we chose to 
analyze gene expression data from sporadic PD and 
T2DM patients in order to analyze the transcriptional 
response of the genome to environmental stimuli or 
physiological/pathological conditions [49]. 

Several limitations in our study should be 
acknowledged. First, the hub nodes identified need to 
be validated in future studies. Second, the sample size 
in this study was relatively small, and external 
validation is needed to consolidate our results. 
Additionally, it is necessary to perform functional 
studies to confirm the roles of the DEGs in T2DM and 
PD. Future functional verification could be performed 

on model organism that could be used to explore 
pathway-/gene-disease associations by gain or loss of 
function. 

In conclusion, the communal DEGs and 
pathways identified in our study reveal transcriptome 
links between T2DM and PD, and provide novel 
mechanisms and targets that involve changes in lipid 
metabolism. Additionally, SP1 could be a key 
molecule regulating these processes. 
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