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Abstract 

Tumor-infiltrating immune cells are closely related to the prognosis of bladder cancer. Analysis of 
tumor infiltrating immune cells is usually based on immunohistochemical analysis. Since many 
immune cell marker proteins are not specific for different immune cells, which may induce 
misleading or incomplete. CIBERSORT is an algorithm to estimate specific cell types in a mixed cell 
population using gene expression data. In this study, the CIBERSORT algorithm was used to identify 
the immune cell infiltration signatures. The gene expression profiles, mutation data, and clinical data 
were collected from The Cancer Genome Atlas (TCGA) database. Unsupervised consensus 
clustering was used to acquire the immune cell infiltration subtypes of bladder cancer based on the 
fractions of 22 immune cell types. Four immune cell clusters with different immune infiltrate and 
mutation characteristics were identified. In addition, this stratification has a prognostic relevance, 
with cluster 2 having the best outcome, cluster 1 the worst. These clusters showed distinct mRNA 
expression patterns. The characteristic genes in subtype cluster 1 were mainly involved in cell division, 
those in subtype cluster 2 were mainly related in antigen processing and presentation, those in 
subtype cluster 3 were mainly involved in epidermal cell differentiation, and those in subtype cluster 
4 were mainly related in the humoral immune response. These differences may affect the 
development of the bladder cancer, the sensitivity to treatment as well as the prognosis. Through 
further validation, this study may contribute to the development of personalized therapy and 
precision medical treatments. 

Key words: bladder cancer, immune infiltration subtypes, The Cancer Genome Atlas, gene expression, 
CIBERSORT algorithm, personalized therapy  

Introduction 
As one of the most common types of urological 

malignancies, bladder cancer (BLCA) remains a major 
global medical problem despite the availability of 
numerous new treatment options. Transitional cell 
(urothelial) carcinoma is responsible for 95% of BLCA 
cases [1]. It is reported that there are 549,000 new 
cases of BLCA and 200,000 BLCA-related deaths per 
year in the world [2]. 

BLCA is highly heterogeneous on the genetic, 
expression, and histological [3]. Accurate 
understanding of this heterogeneity can promote the 
molecular classification of BLCA and the 
management of personalized medicine. Numerous 
studies have reported the influence of the immune 
microenvironment on BLCA development and 
immunotherapy including intravesical bacillus 
Calmette-Guérin (BCG) and PD-1/PD-L1 blockade 
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was long applied for the treatment of BLCA [4,5]. The 
tumor microenvironment consists of immune cells, 
mesenchymal cells, endothelial cells, extracellular 
matrix (ECM) molecules, and inflammatory mediators 
[6]. BLCA is an immunosensitive tumor which is 
infiltrated by tumor-infiltrating immune cells (TIICs) 
including T cells, macrophages, dendritic cells, 
neutrophils and mast cells [7-9]. Studies have shown 
that the tumor microenvironment affects the gene 
expression of tumor tissues and the patient outcome, 
and therefore, has a diagnostic and prognostic value 
for BLCA [10-12]. TIICs, which are main components 
of tumor microenvironment, have been reported 
closely related to the effectiveness of targeted drugs 
and clinical outcomes. However, most studies 
evaluated TIICs based on immunohistochemical 
analysis, which relies on a single marker to identify a 
specific immune cell [11-14]. These traditional 
methods can be misleading and are not accurate as 
many marker proteins are not specific for different 
immune cells. 

CIBERSORT is an algorithm to estimate specific 
cell types in a mixed cell population using gene 
expression data [15]. In the present study, gene 
expression data was obtained from The Cancer 
Genome Atlas (TCGA) bladder urothelial cancer 
dataset and the fractions of 22 immune cell types were 
estimated by CIBERSORT. Four immune cell clusters 
with different clinical prognoses and mutation 
characteristics were identified by using unsupervised 
consensus clustering. It is hoped that this study may 
offer some important information for the 
understanding of the relationship between the 
heterogeneity of TIICs, and disease progression in 
BLCA, and provide insights into potential 
personalized therapeutic strategies for each subtype 
of BLCA. 

Materials and methods 
Database and genomic analysis 

The mutation data, gene expression profiles, and 
clinical data of patients with BLCA were obtained 
from TCGA data portal (https://tcga-data.nci.nih. 
gov/tcga/). Gene expression data analysis was 
performed using the limma package of the R software. 
A fold change of > 2 and false discovery rate (FDR) of 
< 0.05 were used as cutoffs to identify differentially 
expressed genes (DEGs). The Maftools package was 
used to analyze and summarize the mutation data. 
Volcano plots and heat maps were generated using 
the ggplot2 and pheatmap packages, respectively. 

Evaluation of tumor-infiltrating immune cells 
CIBERSORT algorithm was used to calculate the 

fractions of infiltrating immune cells. CIBERSORT is 

an analytical tool that estimates specific cell types in a 
mixed cell population using gene expression data; the 
algorithm was run using the 1000 permutations and 
LM22 signature [16]. The fractions of immune cell 
were considered accurate when the CIBERSORT 
output reached p < 0.05. 

Characteristic genes enrichment analysis  
The clusterProfiler package was used to perform 

GO enrichment analysis [17]. An FDR of < 0.05 was 
used as the cut-off value. 

Statistical analysis 
The unpaired t test was used to assess the 

difference between the immune fractions from tumor 
and non-tumor tissues. The median of the proportion 
of each cell type was computed for survival analysis, 
and survival curves were constructed by the Kaplan–
Meier method and compared using the means 
obtained from the log rank test. To investigate 
whether distinct classes of tumor-infiltrating immune 
cells are present in different tumors, the patients were 
clustered into four groups based on the consensus 
proportion of each cell type. The differences of tumor 
mutation burden (TMB) in case of genes from each 
cluster were analyzed by one-way ANOVA, followed 
by Tukey’s multiple-comparison post-hoc test. All 
analyses were performed using the R software 
(version 3.6). 

Results 
Composition and prognostic value of immune 
cells in bladder cancer 

Using the CIBERSORT algorithm, 22 
subpopulations of immune cells in 199 samples (192 
tumor tissues, 7 normal tissues) were investigated 
(Figure 1A). The fractions of M0 and M1 macrophages 
were higher in the tumor tissues than in the normal 
tissues, whereas the fractions of naive B cells and 
resting mast cells were significantly lower in the 
tumor tissues (Figure 1B). M2 macrophages (13.7%) 
were the most abundant infiltrating immune cells in 
BLCA, followed by M0 macrophages (13.2%), CD8 T 
cells (12.4%), and CD4 T cells (10.2%). Then, 
Kaplan-Meier analysis and log-rank test were 
performed to analyze the prognostic value of the 
tumor-infiltrating immune cells. We found that CD8 T 
cells were associated with good prognosis (HR 0.571, 
95% CI 0.365–0.8932, p = 0.0149), whereas memory B 
cells (HR 1.765, 95% CI 0.9926–3.138, p = 0.0221) were 
associated with poor prognosis in patients with BLCA 
(Figure 1C, D). 
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Figure 1. Composition and prognostic value of immune cells in bladder cancer (A) The percent of 22 types of fractions of tumor-infiltrating immune cell in bladder 
cancer. (B) 22 types of adaptive and innate immune cells in tumor and normal tissue groups. The fractions of M0 and M1 macrophages were consistently higher in the bladder 
cancer tissue than those of the normal tissue, whereas the fraction of naive B cells and resting mast cells was significantly lower in bladder cancer tissue (by unpaired t test). (C, 
D) The Kaplan-Meier survival curve of CD8 T cell and memory B cells in bladder cancer. Patients with high CD8 T cell fraction had a higher overall survival (HR 0.571, 95% CI 
0.365-0.8932, p = 0.0149) whereas memory B cells (HR 1.765, 95% CI 0.9926-3.138, p = 0.0221) were associated with poor prognosis. 



Int. J. Med. Sci. 2020, Vol. 17 
 

 
http://www.medsci.org 

765 

Consensus clustering of immune cells 
identified four clusters of immune cell 
subtypes of BLCA  

The immune infiltration varies considerably at 
the individual level, and partially reflects the 
prognosis. Using unsupervised consensus clustering, 
we identified immune cell subtypes of BLCA with 
different clinical characters based on 22 different 
types of immune cells. Based on the similarity of 
immune infiltration, k = 4 was determined as the 
optimal number of clusters (Figure 2A, B). The 
consensus matrix heatmap revealed the four clusters 
that were identified (Figure 2C). The four clusters 
comprised different proportions of immune cells 
(Figure 2D). The fractions of the 22 immune cell types 
in each cluster are shown in Tables 1-4. Moreover, 
each cluster was associated with different clinical 
outcomes (Figure 2E). Significantly longer overall 
survival (OS) was found in the cluster 2 subgroup 
than that in other clusters. 

 

Table 1. The fractions of tumor-infiltrating immune cells in 
cluster 1 

Immune cells in cluster 1 Fraction 
Macrophages M2 0.199609146 
T cells CD4 memory resting 0.162765006 
Macrophages M0 0.093887564 
Macrophages M1 0.073074785 
T cells CD8 0.071416282 
Dendritic cells resting 0.060103665 
Mast cells resting 0.05985775 
B cells naive 0.038816143 
Dendritic cells activated 0.037608841 
T cells follicular helper 0.029186935 
T cells regulatory (Tregs) 0.028161336 
T cells CD4 memory activated 0.02725125 
NK cells activated 0.025787568 
Plasma cells 0.020464493 
Mast cells activated 0.01548266 
Monocytes 0.015375007 
NK cells resting 0.014180805 
Neutrophils 0.013552612 
B cells memory 0.009292636 
Eosinophils 0.002728938 
T cells gamma delta 0.001396577 
T cells CD4 naive 0 

 

Identification of the expression profile features 
of genes from the four clusters 

Since different clusters showed variations in the 
infiltrating immune cell types and patient outcomes, 
we explored the DEGs in the different clusters, 
compared to the genes in the normal tissues. In cluster 
1, a total of 2694 DEGs (1689 upregulated and 1005 
downregulated genes) were identified (Figure 3A) 
and visualized using a heatmap (Figure 3B). In cluster 
2, a total of 3819 DEGs (2387 upregulated and 1432 
downregulated genes) were identified (Figure 3C) 
and visualized using a heatmap (Figure 3D). In cluster 

3, a total of 3260 DEGs (1984 upregulated and 1276 
downregulated genes) were identified (Figure 3E) and 
visualized using a heatmap (Figure 3F). In cluster 4, a 
total of 3202 DEGs (2063 upregulated and 1139 
downregulated genes) were identified (Figure 3G) 
and visualized using a heatmap (Figure 3H).  

 

Table 2. The fractions of tumor-infiltrating immune cells in 
cluster 2 

Immune cells in cluster 2 Fraction 
T cells CD8 0.233496 
Macrophages M2 0.120392 
T cells CD4 memory activated 0.112792 
Macrophages M1 0.096799 
T cells CD4 memory resting 0.066103 
Macrophages M0 0.05563 
T cells follicular helper 0.054722 
Plasma cells 0.041017 
Mast cells resting 0.035316 
B cells naive 0.03482 
Dendritic cells activated 0.027455 
Dendritic cells resting 0.027433 
NK cells resting 0.025294 
T cells regulatory (Tregs) 0.020309 
NK cells activated 0.019001 
Monocytes 0.010053 
B cells memory 0.005778 
Neutrophils 0.005571 
T cells gamma delta 0.004365 
Mast cells activated 0.002259 
Eosinophils 0.001397 
T cells CD4 naive 0 

 

Identification of characteristic genes in the 
four clusters and functional enrichment 
analysis 

A total of 953 DEGs were found to be 
overlapping in the four clusters. A total of 120, 461, 
223, and 517 characteristic genes were identified in 
cluster 1, cluster 2, cluster 3, and cluster 4, respectively 
(Figure 4A). GO enrichment analysis of the 
characteristic genes in cluster 1 indicated that these 
genes were involved in “nucleosome assembly”, 
“chromatin assembly”, and “nucleosome 
organization” in the ‘biological process’ category. 
“Nucleosome” was the most enriched term in the 
‘cellular components’ category, while “protein 
heterodimerization activity” was the most 
significantly enriched term in the ‘molecular function’ 
category (Figure 4B). In case of the genes from cluster 
2, “antigen processing and presentation”, “response 
to interferon−gamma”, and “antigen processing and 
presentation of peptide antigen” were enriched in the 
‘biological process’ category, “side of membrane”, 
“coated vesicle membrane”, and “MHC protein 
complex” were enriched in the ‘cellular components’ 
category, and “peptide binding” and “antigen 
binding” were enriched in the ‘molecular function’ 
category (Figure 4C). In case of genes from cluster 3, 
“keratinocyte differentiation” and “epidermal cell 
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differentiation” were enriched in the ‘biological 
process’ category, “cornified envelope” was enriched 
in the ‘cellular components’ category, and “cell 
adhesion molecule binding” was enriched in the 
‘molecular function’ category (Figure 4D). In case of 
genes from cluster 4, “humoral immune response”, 
“acute inflammatory response”, and “regulation of 

humoral immune response” were enriched in the 
‘biological process’ category, no term was enriched in 
the ‘cellular components’ category, and “antigen 
binding and catalytic activity” and “acting on a 
glycoprotein” were enriched in the ‘molecular 
function’ category (Figure 4E). 

 

 
Figure 2. Consensus clustering of immune cells identified four clusters of bladder cancer. (A) Consensus clustering cumulative distribution function (CDF) for k = 
2 to 9. (B) Relative change in area under CDF curve for k = 2 to 9. (C) Results of unsupervised consensus clustering identified four clusters. (D) The tumor-infiltrating immune 
cell proportions in four clusters. (E) The Kaplan-Meier survival curve of patients in different clusters. 
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Figure 3. Identification of gene expression profile feature in four clusters. (A, B) The volcano plot and heatmap show the 2694 genes (1689 up-regulated and 1005 
down-regulated) identified in cluster 1. (C, D) The volcano plot and heatmap show the 3819 genes (2387up-regulated and 1432 down-regulated) identified in cluster 2. (E, F) 
The volcano plot and heatmap show the 3260 genes (1984 up-regulated and 1276 down-regulated) identified in cluster 3. (G, H) The volcano plot and heatmap show the 3202 
genes (2063 up-regulated and 1139 down-regulated) identified in cluster 4. 
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Table 3. The fractions of tumor-infiltrating immune cells in 
cluster 3 

Immune cells in cluster 3 Fraction 
Macrophages M0 0.335242 
Macrophages M2 0.124094 
T cells CD4 memory resting 0.07798 
T cells CD8 0.074366 
Macrophages M1 0.070703 
B cells naive 0.053255 
Mast cells resting 0.040685 
T cells follicular helper 0.040265 
Plasma cells 0.030809 
T cells CD4 memory activated 0.030375 
Dendritic cells resting 0.024294 
NK cells activated 0.021609 
Dendritic cells activated 0.019461 
T cells regulatory (Tregs) 0.011788 
Mast cells activated 0.011171 
B cells memory 0.010108 
NK cells resting 0.009934 
Neutrophils 0.004579 
T cells gamma delta 0.003108 
T cells CD4 naive 0.002469 
Monocytes 0.002026 
Eosinophils 0.00168 

 

Table 4. The fractions of tumor-infiltrating immune cells in 
cluster 4 

Immune cells in cluster 4 Fraction 
B cells naive 0.194482 
T cells CD8 0.107602 
T cells CD4 memory resting 0.093953 
Plasma cells 0.09387 
Macrophages M2 0.093446 
Macrophages M0 0.074231 
Macrophages M1 0.067259 
Mast cells resting 0.05007 
T cells follicular helper 0.040493 
T cells CD4 memory activated 0.035873 
T cells regulatory (Tregs) 0.0339 
Dendritic cells activated 0.032261 
B cells memory 0.021131 
NK cells activated 0.020878 
Dendritic cells resting 0.01669 
Monocytes 0.00695 
T cells gamma delta 0.005126 
Neutrophils 0.004548 
NK cells resting 0.003773 
Mast cells activated 0.003042 
Eosinophils 0.000312 
T cells CD4 naive 0.00011 

 

Identification of the mutation profile features 
of genes from each cluster 

It is well-known that cancer may results from the 
accumulation of somatic DNA mutations. High TMB 
leads to the formation of more new antigens, making 
tumors more immunogenic and more sensitive to 
immunotherapy. We downloaded the mutation data 
for each cluster from the TCGA database and 
calculated the respective TMB values. The results 
show that compared with the other clusters, cluster 2 
had a higher TMB (Figure 5A). The alteration 
landscapes of the four clusters are shown in Figure 
5B–E. In cluster 1, 6 genes were mutated by > 20%: 

TP53 (52%), TTN (35%), RB1(23%), KDM6A (21%), 
KMT2C (21%), and KMT2D (21%). In cluster 2, 15 
genes were mutated by > 20%: TTN (65%), TP53 
(46%), PIK3CA (40%), MUC16 (38%), KMT2D (35%), 
ARID1A (31%), HMCN1 (31%), KMT2A (31%), 
SYNE1 (29%), RB1 (27%), AHNAK (25%), ERBB2 
(25%), KDM6A (21%), KMT2C (21%), and LRP1B 
(21%). In cluster 3, 9 genes were mutated by > 20%: 
TP53 (55%), KMT2D (33%), TTN (31%), ARID1A 
(26%), KDM6A (24%), XIRP2 (24%), ELF3 (21%), 
KMT2C (21%), and PIK3CA (21%). In cluster 4, 5 
genes were mutated by > 20%: TTN (36%), KMT2D 
(34%), TP53 (34%), ARID1A (32%), and MUC16 (27%). 
There were fewer mutant genes in cluster 1, while 
cluster 2 had the greatest number of mutated genes 
(Figure 5F). 

Discussion 
While the introduction of novel targeted drugs 

can increase treatment options of BLCA, these 
treatments are only effective in certain BLCA patients. 
The identification of subtypes of BLCA will help 
biological research and personalized treatment of 
BLCA. TCGA is an open-access database that uses a 
genome-wide approach to reveal the genetic 
characteristics of cancers. Many studies on cancers 
such as BLCA have screened diagnostic and 
prognostic biomarkers using TCGA [18-20]. Patient 
subgroups with different treatment response and 
prognosis can also be identified using TCGA.  

In the present study, four immune clusters for 
BLCA were identified and these four clusters showed 
different patterns of infiltrating immune cell gene 
expression signatures and mutation characteristics. 
Among all clusters, cluster 1 was associated with the 
worst prognosis, and cluster 2, with the best outcome. 
Cluster 1 was characterized by the increased 
infiltration of M2 macrophages and CD4 memory T 
cells. M2 macrophages play a role in anti- 
inflammatory processes, tissue repair and 
remodeling, the immune regulation process, parasite 
clearance, and the tumor promotion process [21]. The 
immunosuppressive factors released by M2 
macrophages may support immune evasion in 
bladder cancer. Tissue resident memory T cells are a 
key factor in making tumors dormant; hence, it is 
essential to establish a cancer–immune system balance 
[22]. The feature of cluster 2 was the increased 
infiltration of CD8 T cells. Studies have shown that 
the accumulation of CD8 T lymphocytes in tumors 
often indicates good clinical outcomes [23]. Under 
hypoxic conditions, CD8 T cells can differentiate into 
lytic effector cells, increase the expression of 
interferon gamma (IFNγ), Fas ligand (FASL), granule 
B (GZMB), and inhibit tumor cell proliferation [24,25]. 
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M0 macrophages were the most abundant infiltrating 
immune cells in case of cluster 3, and naive B cells 
were the most abundant infiltrating immune cells in 
case of cluster 4. Previous studies have shown that 
activated naive B cells are required for the initiation of 

T cell immune responses, owing to their co- 
stimulatory activity and ability to produce cytokines 
for the activation and expansion of effector and 
memory TH cell populations [26,27].  

 

 

 
Figure 4. Identification of characteristic genes of four clusters and functional enrichment analysis (A) In the Venn diagrams, co-expression of upregulated and 
downregulated genes in four clusters. (B-E) The biological process, cellular component, and molecular function terms in four clusters. 
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Figure 5. Identification of mutation profile feature of each cluster. (A) The TMB in four clusters. (B-E) The mutant genes and mutation profile of bladder cancer in four 
clusters. (F) Gene cloud map shows the name of mutant genes in four clusters. The size of gene names is proportional to the number of samples mutated for each gene. 

 
The four subtypes also showed different gene 

expression signatures and were associated with 
different biological processes. The signature genes in 

cluster 1 were mainly involved in the process of cell 
division. The signature genes in cluster 2 were mainly 
involved in the response to interferon-gamma and 
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antigen processing and presentation. The signature 
genes in cluster 3 were mainly involved in epidermal 
cell differentiation. The signature genes in cluster 4 
were mainly involved in the humoral immune 
response. This result reflects a profound link between 
gene expression and immune cell infiltration. Cancer 
is a genetic disease and caused by the accumulation of 
somatic mutations [28]. In a sense, the characteristics 
of immune infiltration also represent the genetic 
characteristics of cancer. Next, we analyzed the 
mutation characteristics of genes from each cluster. 
The results showed that the mutant genes and 
mutation frequencies in each cluster were different. In 
cluster 1, 6 genes were mutated by > 20%: TP53 (52%), 
TTN (35%), RB1 (23%), KDM6A (21%), KMT2C (21%), 
and KMT2D (21%). In cluster 2, 15 genes were 
mutated by > 20%: TTN (65%), TP53 (46%), PIK3CA 
(40%), MUC16 (38%), KMT2D (35%), ARID1A (31%), 
HMCN1 (31%), KMT2A (31%), SYNE1 (29%), RB1 
(27%), AHNAK (25%), ERBB2 (25%), KDM6A (21%), 
KMT2C (21%), and LRP1B (21%). In cluster 3, 9 genes 
were mutated by > 20%: TP53 (55%), KMT2D (33%), 
TTN (31%), ARID1A (26%), KDM6A (24%), XIRP2 
(24%), ELF3 (21%), KMT2C (21%), and PIK3CA (21%). 
In cluster 4, 5 genes were mutated by > 20%: TTN 
(36%), KMT2D (34%), TP53 (34%), ARID1A (32%), and 
MUC16 (27%).  

We found that TP53 and TTN are the major 
mutant genes in cluster 1. The tumor suppressor gene 
TP53 has been reported to be mutated in more than 
50% of human malignancies, and thus, promote the 
development and progression of cancer [29]. In 
comparison with other groups cluster 2 have more 
mutated gene and a higher TMB. It has been observed 
in other tumors that high TMB may reflects the 
presence of new antigens, thereby increasing 
lymphocyte infiltration in the tumor 
microenvironment [30,31]. The cluster 3 had similar 
mutation characteristics with cluster 1; TP53 and TTN 
were the major mutant genes. Additionally, we found 
that the mutation in TP53 in case of cluster 4 is 
significantly lower than that in case of the other 
clusters. Furthermore, there was no dominant mutant 
gene in cluster 4. TP53 mutations often result in 
unstable tumor genomes and impaired DNA repair 
capacity, therefore; TP53 mutant tumors may be more 
sensitive to DNA damage factors [3]. Conversely, a 
wild-type TP53 gene expression signature in BLCA 
have been shown to be resistant to neoadjuvant 
chemotherapy [32], so the prognosis of patients in this 
cluster 4 may likely to be resistant to neoadjuvant 
chemotherapy. BLCA is one of the most 
immunotherapy-responsive solid tumors. High TMB 
is associated with the response to immune checkpoint 
inhibitors (ICIs) in BLCA [33]. Patients in cluster 2 

have high infiltration of CD8 T cells. Moreover, high 
levels of TMB suggest that these patients may benefit 
from ICIs, such as anti‐PD‐1 or anti‐CTLA‐4 therapies. 
Cluster 3 was highly expressed basal and squamous 
differentiation markers. Basal bladder cancer 
originates from basal cells and stem cells of the 
bladder urothelium [34], which characterized by 
enrichment of squamous, stemness and EMT markers 
[35]. This subtype may be more sensitive to 
neoadjuvant chemotherapy. In basal BLCA, 
epidermal growth factor receptor (EGFR) pathway 
was usually activated [36]. Therefore, anti-EGFR 
therapy may provide benefits for patients of this 
subtype.  

In conclusion, based on immune cell types, we 
used unsupervised consensus clustering to identify 
four subtypes of BLCA. These four immune subtypes 
showed distinct mRNA expression patterns and 
different mutation characteristics. These differences 
may affect the development of the tumors and the 
sensitivity towards the treatment. We also provided a 
potential treatment strategy for different subtypes. 
This study may be helpful for the exploration of 
personalized treatments. 
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