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Abstract 

Bladder cancer is one of the most commonly diagnosed tumors and is results from the accumulation 
of somatic mutations in the DNA. Tumor mutation burden (TMB) has been associated with cancer 
immunotherapeutic response. In this study, we attempted to explore the correlation between TMB 
and cancer prognosis. Identify the different expressed genes and immune cell infiltration signatures 
between low and high TMB group. Mutation data, gene expression profiles and clinical data were 
downloaded from The Cancer Genome Atlas (TCGA) database. Patients were divided into high and 
low TMB groups, allowing differentially expressed genes (DEGs) to be identified. Functional 
enrichment and protein-protein interaction (PPI) network analysis were used to identify the 
functions of the DEGs. And immune cell infiltration signatures were evaluated by CIBERSORT 
algorithm. These results shown that high TMB was significantly associated with prognosis. We 
obtained a list of TMB related genes which may influence the infiltrations of immune cells. We also 
found a higher proportion of CD8 T cells, CD4 T cells and NK cells in the high TMB group. Our data 
suggest that higher TMB tends to promote the infiltrations of T cells and NK cells and patients with 
higher TMB may achieve a more favorable prognosis in bladder cancer. 
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Introduction 
Bladder cancer (BLCA) is the most common 

carcinoma in the urinary system and remains a major 
global medical problem despite the numerous new 
treatment options available, BLCA has a high 
recurrence rate which become a major economic 
burden on the health care systems [1, 2]. The cause of 
BLCA is unclear. Smoking, environmental factors, 
exposure to toxic industrial chemicals and gases, 
bladder inflammation are thought to be associated 
with bladder cancer [3]. Despite improvements in 
clinical outcomes in recent years, there are still many 
issues to be aware of, such as patients with invasive 

tumors or metastatic have short survival times. 
Recently, immunotherapy target the programmed cell 
death 1 programmed cell death 1 (PD-1), PD-1 ligand 
(PD-L1), cytotoxic T-lymphocyte antigen-4 (CTLA-4) 
offers great promise for various cancer therapies [4-6]. 

Many studies have explored the link between 
immunotherapy response and tumor mutation 
burden (TMB) [7-10]. Mutations in tumor cells can be 
transcribed and translated, and may form new 
antigens can be identified and targeted by the 
immune system [11, 12]. In fact, not all mutations will 
generate immunogenic, only a few mutations can be 
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recognized by T cells [13-15]. The more tumor 
mutations, the more antigens it may form. Higher 
TMB tends to form more new antigens, making 
tumors more immunogenic and improving clinical 
response to immunotherapy [9]. So TMB can be used 
to estimate the new antigen load of a tumor. 

The Cancer Genome Atlas (TCGA) has been 
established to map the genome variations of human 
cancers using genomic analysis techniques, providing 
a wealth of mutation and expression profile data. In 
this study, we identified different expression genes 
(DEGs) between high and low TMB groups and 
evaluate the relationship of immune cell infiltration 
signatures and TMB by using the information of 
patients with bladder cancer from the TCGA 
database. 

Materials and Methods 
Database and genomic analysis 

The mutation data, gene expression profiles and 
clinical data of patients with bladder cancer were 
obtained from the TCGA data portal (https://tcga- 
data.nci.nih.gov/tcga/) and the maftools package 
was used to analyze and summarized the mutation 
data. TMB was calculated from the tumor specific 
mutation genes. Gene expression data analysis was 
performed using the R software package, limma. A 
fold change of > 1.5 and false discovery rate (FDR) of 
< 0.05 were used as cutoffs to identify DEGs. Volcano 
plots and heat maps were generated using the ggplot2 
and pheatmap packages respectively. 

DEGs enrichment analysis and protein-protein 
interaction (PPI) network construction 

Gene ontology (GO) enrichment analysis and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis were performed using 
the clusterProfiler package [16]. The STRING database 
[17] and cytoscape software [18] were used to retrieve 
and reconstruct a PPI network. Important nodes and 
subnetworks were predicted and explored using 
cytohubba, a cytoscape plugin [19], and the top 10 hub 
genes were selected from the results of each method. 

Gene set enrichment analysis (GSEA) analysis 
GSEA was used to further understand 

CXCL10-related pathways. The expression level of 
CXCL10 was used as the phenotype label and bladder 
cancer patients in the TCGA cohort were divided into 
two groups based on the median expression value of 
CXCL10. The collection of annotated gene sets of 
c2.cp.kegg.v6.2.symbols.gmt was chosen as the 
reference gene sets and GSEA version 3.0 software 
was used to analyze our data. FDR < 0.01 was used as 
the cut-off criteria. 

Evaluation of tumor-infiltrating immune cells 
CIBERSORT algorithm was used to calculate the 

fractions of infiltrating immune cells. CIBERSORT is 
an analytical tool that estimates specific cell types in a 
mixed cell population using gene expression data. 
And the algorithm was run using the 1000 
permutations and LM22 signature [20]. CIBERSORT 
method was used to quantify the fractions of immune 
cells in the bladder cancer samples. At a threshold of P 
< 0.05, the results of the inferred fractions of immune 
cell populations produced by CIBERSORT were 
considered accurate [20]. 

Statistical analysis 
We divided patients into the high TMB or the 

low TMB groups with the median of mutation 
frequency as the threshold value. Kaplan‐Meier 
survival curves were obtained and compared by log‐
rank tests. The associations of clinicopathologic 
characteristics and corresponding TMB were 
analyzed by one-way ANOVA followed by Tukey’s 
multiple-comparison post-hoc test and unpaired 
two-tailed t test. The difference of infiltrating immune 
cells between high TMB group and low TMB group 
was assessed using the unpaired t test. 

Results 
Primary genetic alterations in bladder cancer 
patients 

In this study, the clinical information and the 
results of whole-exome sequencing of patients with 
BLCA were downloaded from the TCGA database. By 
using maftools, mutation data were analyzed and 
summarized. The mutations were further classified 
according to the variant effect predictor, among these 
mutations, missense mutations are the most common 
(Figure 1A). And the most common mutations type is 
SNP (Figure 1B). C > T transversion is the most 
common type of SNV in bladder cancer (Figure 1C). 
And the top 10 mutated genes are TTN, TP53, 
MUC16, KMT2D, ARID1A, KDM6A, SYNE1, 
PIK3CA, RB1, HMCN1(Figure 1D, E).  

Correlation of TMB with prognosis, 
clinicopathological characteristics and tumor 
grades of BLCA patients 

TMB was calculated as the number of 
nonsynonymous protein coding variants divided by 
the total sequenced genome length. Next, we divided 
the patients with bladder cancer into high and low 
TMB groups based on the median TMB. The 
clinicopathologic characteristics of the patients are 
shown in Table 1. Kaplan–Meier survival analysis 
revealed that patients with high TMB had a higher 
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survival rate than those with low TMB (Figure 2A). 
Next, we analyzed the relationship between TMB and 
clinical stage, and the results showed that TMB had 
no relationship with the clinical stage (Figure 2B). 
And higher TMB level correlated with advanced 
tumor grades (Figure 2C). 

Comparison of the gene expression profiles of 
patients in different TMB groups 

Patients were divided into low and high TMB 

groups and their gene expression profiles were 
analyzed to identify DEGs with FDR < 0.05 and fold 
change of > 1.5. A total of 266 DEGs (89 up-regulated 
and 177 down-regulated) were identified in high TMB 
group (Figure 3A) and visualized using a heatmap 
(Figure 3B). And the list of DEGs is shown in 
supplementary Table S1.  

 

 
Figure 1. Primary genetic alterations in bladder cancer patients. (A, B) Variant classification and type of genetic alterations in bladder cancer. (C). The SNV 
class of bladder cancer. (D, E) Top 10 mutant genes and mutation profile of bladder cancer. 
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Table 1. 

    TMB P-value 
Variables total patients low high   
age 68.05±10.61 67.3±11.27 68.8±9.885  
age    0.117 
<60 87 50 37  
>=60 316 151 165  
gender    0.042 
female 106 62 44  
male 297 139 158  
grade    0.011 
low Grade 20 16 4  
high Grade 383 185 198  
stage    0.513 
stage I 2 2 0  
stage II 129 63 66  
stage III 139 67 72  
stage IV 135 70 65   

 

 
Figure 2. Correlation of TMB with prognosis, clinicopathological 
characteristics and tumor grades of BLCA patients. (A) Patients with 
BLCA were divided into two groups based on their TMB. As shown in the 
Kaplan‐ Meier survival curve, patients with high-TMB had a higher overall 
survival than those with low-TMB (hazard ratio [HR] 1.562; 95 % CI 1.14–2.14; 
P= 0.005 by log-rank test). (B) The TMB showed no statistically significant 
differences at different pathological stages (by one-way ANOVA followed by 
Tukey’s multiple-comparison post-hoc test). (C) Higher TMB level correlated 
with advanced tumor grades (*, P<0.05; by unpaired two-tailed t test) 

Functional enrichment and PPI network 
analysis of differentially expressed genes 

GO enrichment analysis was used to determine 
the functions of the 266 DEGs (Figure 4A). In BP 
category, “cell chemotaxis”, “lymphocyte 
chemotaxis” and “regulation of ion transmembrane 
transport” were enriched, which means the DEGs 
affects the consists of immune cells in tumor 
microenvironment. The enriched CC terms included 
“extracellular matrix”, “collagen−containing extra-
cellular matrix”, “apical dendrite”, and the enriched 
MF terms included “chemokine activity”, “chemokine 
receptor binding”, “G protein−coupled receptor 
binding”. We also performed KEGG pathway 
enrichment analysis to determine the pathways most 
enriched for DEGs, which included “TGF-beta 
signaling pathway”, “chemokine signaling pathway” 
and “pathways in cancer” (Figure 4B). Next, we 
explored the relationships between the DEGs, The 
Search Tool for the Retrieval of Interacting Genes 
(STRING) database and Cytoscape software were 
used to construct a PPI network for the DEGs (Figure 
5A). The important nodes and subnetworks of the PPI 
were predicted and explored using CytoHubba; the 10 
most significant node genes were CXCL10, CXCL11, 
GNG7, CXCR2, AGT, ADCY5, CCL5, ADRA2A, 
S1PR1, GALR2. Next, we analyzed the pathway of 
high-expression samples of CXCL10 by GSEA 
analysis. The results showed that high CXCL10 
expression samples were mainly enriched in natural 
killer cell mediated cytotoxicity, antigen processing 
and presentation, chemokine signaling pathway and 
T cell receptor signaling pathway (Figure 5B). 

Correlation of TMB with immune signatures in 
bladder cancers 

Previous studies have shown that the higher 
mutation burden in tumors tends to form more new 
antigens, making tumors to have higher immuno-
genicity [9]. The GO enrichment analysis shows the 
DEGs involve in cell chemotaxis, so we analyzed the 
correlation of TMB with immune signatures in 
bladder cancers. CIBERSORT algorithm was used to 
calculated the fractions of infiltrating immune cells. 
At a threshold of P < 0.05, the results of the inferred 
fractions of immune cell populations produced by 
CIBERSORT were considered accurate. There are 90 
patients in low TMB group and 104 patients in high 
TMB group with the P value < 0.05 and their inferred 
fractions of immune cell were considered accurate. 
The results shown that tumors with high TMB were 
significantly associated with high fractions of CD8 T 
cells, CD4 memory T cells, follicular helper T cells and 
resting NK cells. In low TMB group there is a higher 
fraction of mast cell. (Figure 6). 
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Figure 3. Comparison of the gene expression profiles of patients in different TMB groups. (A, B) The volcano plot and heatmap show the 266 genes (89 
up-regulated and 177 down-regulated) identified based on the TMB. 

 

 
Figure 4. Functional enrichment of differentially expressed genes. (A) Biological process, cellular component, and molecular function terms for the DEGs. 
(B) KEGG pathways enriched for the DEGs.  
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Figure 5. PPI network analysis of differentially expressed genes. (A) 
Protein–protein interaction networks of the DEGs. (B) CXCL10 correlated 
enrichment gene analysis with GSEA. 

 

Discussion 
Cancer is a genetic disease and results from the 

accumulation of somatic mutations in the DNA [21]. 
Genetic changes in tumors include nonsynonymous 
mutations, synonymous mutations, insertions or 
deletions, and copy number gains and losses. And 
nonsynonymous mutations mainly comprised of 
missense mutations (point mutations that change the 
amino acid codon). In different tumor types and 
individual tumors, there is obvious difference in the 
frequency of each type of these genetic alterations 
[22]. The genetic changes increase the tumors’ 
immunogenic. To avoid detection and killing by the 
host immune system, tumors often upregulate 
immune checkpoints. Recently, the overall survival 
(OS) rates of bladder cancer have increased with the 
therapy of immune checkpoint [23]. TMB can be used 

to predict the efficacy of immune checkpoint blockade 
therapy, and can been seen as a useful biomarker to 
identify the patients who will benefit from 
immunotherapy [9, 10, 24].  

High TMB cases can be seen in almost every type 
of cancer [25]. In different tumor types, melanomas 
have the highest levels of TMB followed by 
non-small-cell lung carcinoma and other squamous 
carcinomas. Leukemias and pediatric tumors usually 
have the lowest levels of TMB [21]. And TMB also has 
a significant difference in the same cancer type. A 
high TMB probably reflects the presence of 
mutation-associated neoantigens, with consequent 
increased lymphocyte infiltration in the tumor 
microenvironment. This phenomenon has been 
observed in other tumors [26, 27]. The tumor 
microenvironment consists of immune cells, 
mesenchymal cells, endothelial cells, extracellular 
matrix (ECM) molecules, and inflammatory 
mediators. BLCA is an immunosensitive tumor which 
is infiltrated by tumor-infiltrating immune cells 
(TIICs) including T cells, macrophages, dendritic cells, 
neutrophils and mast cells [28-30]. Studies have 
shown that the tumor microenvironment affects the 
gene expression of tumor tissues and the patient 
outcome, and therefore, has a diagnostic and 
prognostic value for BLCA [31]. In present study, we 
found that TMB affects the prognosis of bladder 
cancer. High TMB may reflect the presence of new 
antigens, thereby increasing tumor-infiltrating 
immune cells in the tumor microenvironment which 
closely related to the effectiveness of targeted drugs 
and clinical outcomes. We also identified 266 DEGs 
(89 up-regulated and 177 down-regulated) between 
low and high TMB groups. Among the DEGs, many 
genes involve immune response and chemokine 
signaling pathway. GO term and KEGG analysis 
revealed that the DEGs affects the cell chemotaxis, 
intercellular signaling, ion transport, and the 
formation of extracellular matrix. These data 
indicated that TMB is closely related with the tumor 
microenvironment and these TMB-related genes 
cause the changes of tumor microenvironment. 
CXCL10 is the most significant node genes Among all 
DEGs and high CXCL10 expression samples were 
mainly enriched in natural killer cell mediated 
cytotoxicity, antigen processing and presentation, 
chemokine signaling pathway and T cell receptor 
signaling pathway. Chemokines and cytokines are 
well known to guide macrophages, T-cells and other 
immune cells to the tumor microenvironment and 
influence the outcome of the patients [32]. CXCL10 
may play an important role in regulating immune cell 
migration, differentiation, and activation in bladder 
cancer. 
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Figure 6. Correlation of TMB with immune signatures in bladder cancers. 22 types of adaptive and innate immune cells in high and low TMB groups. (*, 
P<0.05; **, P<0.01; ***, P<0.001; by unpaired two-tailed t test). 

 
Immune-cell infiltration is a characteristic of 

cancer, and many cancers have a complex chemokine 
network that affect the extent and phenotype of this 
infiltrate, as well as tumor cell growth, survival and 
migration [33]. In this study, we found high TMB 
group has higher fractions of CD8 T cells, CD4 T cells 
and NK cell and in low TMB group; there is a higher 
fraction of mast cell. These data indicated that TMB 
can affect the immune cell infiltration signatures and 
high TMB attracted effector cells of the immune 
system. Tissue resident memory T cells are a key 
factor in making tumors dormant; hence, it is essential 
to establish a cancer–immune system balance [34]. 
Under hypoxic conditions, CD8 T cells can 
differentiate into lytic effector cells, increase the 
expression of interferon gamma (IFNγ), Fas ligand 
(FASL), granule B (GZMB), and inhibit tumor cell 
proliferation [35, 36]. High infiltration of T 
lymphocytes in tumors is positively correlated with 
the survival rate of patients with bladder cancer [37]. 
NK cell typically account for 5–15% of peripheral 
blood lymphocytes and respond to their targets 
without prior antigen sensitization [38]. NK cells can 
recognize bladder tumor cells and their activity is 
important to against bladder tumor cells [39]. Mast 
cells may contribute to tumor angiogenesis and play 
an important role in the growth of tumors [40]. These 
data indicated that TMB is closely related with the 
immune microenvironment. Mast cells in the low 
TMB group may promote tumor growth and 
metastasis. High TMB tends to cause the chemotaxis 
of immune cells in BLCA and the crosstalk between 

these cells play an important role in the growth of 
tumors.  

In summary, our data implicate that higher-TMB 
patients could gain a more favorable prognosis in 
bladder cancer. We also obtained a list of TMB related 
genes which may influence the infiltrations of 
immune cells. Our data provide insights into the 
correlation between TMB and immune cell infiltration 
signatures in bladder cancer and may be helpful for 
the exploration of the role of TMB in BLCA. 
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