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Abstract 

Background: Burn injury induces long-term skeletal muscle pathology. We hypothesized EPO 
could attenuate burn-induced muscle fiber atrophy.  
Methods: Rats were allocated into four groups: a sham burn group, an untreated burn group 
subjected to third degree hind paw burn, and two burn groups treated with weekly or daily EPO for 
four weeks. Gastrocnemius muscle was analyzed at four weeks post-burn.  
Results: EPO attenuated the reduction of mean myofiber cross-sectional area post-burn and the 
level of the protective effect was no significant difference between two EPO-treated groups 
(p=0.784). Furthermore, EPO decreased the expression of atrophy-related ubiquitin ligase, 
atrogin-1, which was up-regulated in response to burn. Compared to untreated burn rats, those 
receiving weekly or daily EPO groups had less cell apoptosis by TUNEL assay. EPO decreased the 
expression of cleaved caspase 3 (key factor in the caspase-dependent pathway) and 
apoptosis-inducing factor (implicated in the caspase-independent pathway) after burn. Furthermore, 
EPO alleviated connective tissue overproduction following burn via transforming growth factor beta 
1-Smad2/3 pathway. Daily EPO group caused significant erythrocytosis compared with untreated 
burn group but not weekly EPO group.  
Conclusion: EPO therapy attenuated skeletal muscle apoptosis and fibrosis at four weeks 
post-burn. Weekly EPO may be a safe and effective option in muscle wasting post-burn. 

Key words: Erythropoietin, Muscle fiber atrophy, Burn injury, Apoptosis Inducing Factor, Transforming Growth 
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Introduction 
Muscle fiber atrophy is a hallmark of several 

critical disorders, including burn injury [1-4]. A 
decline of skeletal muscle impairs patient recovery, 
including prolonged mechanical ventilation use, poor 
wound healing, and increased risk of infection [5-7]. 
Burn injury is considered the most devastating injury 
that may cause long-term muscle wasting and a 

decrease in muscle strength over several months 
[8-10]. Persistent muscle atrophy following burn 
impedes full recovery [9, 11]. The underlying cellular 
mechanisms leading to burn-induced muscle wasting 
remain elusive and effective therapeutic options are in 
demand for these patients. A consequence of central 
nerve system denervation following burn injury 
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subsequently causes muscle wasting. A burn mice 
study indicated that upregulation of cytokines and 
chemokines post-burn resulted in microglia acti-
vation, motor neuron degeneration and muscle loss 
[12]. In addition, several possible pathogeneses within 
skeletal muscle contribute to burn-induced muscle 
wasting. Recent studies showed the level of muscle 
pro-catabolic or muscle-specific secretory factor was 
increased under burn serum stimulation [13, 14]. 
Persist hypermetabolic state in response to burn- 
induced proinflammatory cascades and catabolic 
hormones ultimately caused skeletal muscle break-
down [8, 15, 16]. The activation of skeletal muscle cell 
autophagy also played a role in skeletal muscle 
wasting following burn [17]. A possible bone secreted 
factor, TGF-β, also involved in burn-induced muscle 
cachexia by increasing oxidative damage to muscle 
[18]. 

Furthermore, previous studies have proposed 
skeletal muscle cell apoptosis was increased following 
burn and involved in classical caspase-dependent 
pathways [19-23]. As Yasuhara et al reported 
increased apoptosis and caspase-3 activity in skeletal 
muscle within a few hours after burn in a rat model 
[20]. Other burn model showed maximal apoptosis 
occurred on four days after injury and caspase-3, -8 
and -9 activity increased in tibialis anterior muscle 
[22]. Moreover, the role of caspase-independent 
mediated apoptosis has rarely been discussed in burn 
injury models. The release of apoptosis-inducing 
factor (AIF) might associate with an increased skeletal 
muscle apoptotic potential, and result in muscle 
atrophy [24]. Muscle biopsies of rat and human 
suggested age-related muscle loss might be involved 
in the activation of AIF [25, 26]. Another process 
impairs muscle regeneration associated with over-
production of extracellular matrix (ECM) [27]. 
Abnormal muscle repair and excessive ECM 
deposition consequently progress toward fibrosis 
post-acute phase of trauma, which often causes poor 
response to pharmaceutical therapy. Burn injury often 
results in hypermetabolic state and production of 
various inflammatory factors [7, 28-31]. Transforming 
growth factor beta 1 (TGF-β1) is a crucial factor to 
regulate ECM remodeling [32, 33] and drives tissue to 
fibrosis in chronic inflammatory diseases. Inhibition 
of TGF-β1 activity enhances tissue repair [34, 35]. 
Research of burn scars reports that TGF-β1 acts 
through the Smad protein system to activate genes 
related to fibrosis [36, 37]. In addition, a downstream 
effector of TGF-β1, connective tissue growth factor 
(CTGF) was sustained increase in several fibrotic 
conditions [37-41] included burn scars to regulate 
ECM synthesis. However, scanty data investigated 
their pro-fibrotic role in skeletal muscle at the 

post-acute phase of burn and possible therapeutic 
agents. 

Erythropoietin (EPO) is a pleiotropic hormone 
whose primary function is to stimulate erythropoiesis. 
Its target receptors are expressed in several cell types 
including skeletal muscle [42-49]. EPO has a tissue 
protective potential, including anti-inflammation, 
anti-apoptosis, and improving metabolic alteration 
[48, 50-53]. EPO reduced cells apoptosis and inhibited 
pro-inflammatory cytokines in sepsis-induced lung 
injury model [54] as well as in kidney ischemia/ 
reperfusion injury model [55]. Neuroprotection of 
EPO was supported in ameliorating PC 12 cells 
against oxidative stress [56]. EPO protected heart 
from fibrosis by suppressing TGF-β1, collagen and 
pro-inflammatory cytokines expression in rat cardiac 
fibroblasts and in a rat model of cardiac remodeling 
[57, 58]. For critical trauma patients, EPO therapy 
might reduce mortality and improve outcome 
without increasing adverse events [59-61]. However, 
the precise role and regulatory mechanisms of EPO in 
skeletal muscle remains uncertain [62]. Human 
muscle biopsies showed EPO induces myogenic 
differentiation factor expression in satellite cells, 
which participate in muscle regeneration following 10 
weeks EPO treatment [63] and improves type I muscle 
fiber diameter in hemodialysis patients [64]. A 
diabetic mice model reported that 4 and 8 weeks EPO 
therapy reduced skeletal muscle insulin resistance by 
increasing autophagy and reducing apoptosis [65]. 
EPO increased erythropoietin receptor expression and 
induced cell proliferation in C2C12 myoblasts and 
satellite cells [66]. In addition, exercise training and 
erythropoietin attenuated muscle alterations in cancer 
cachexia [67]. These data suggest the potential 
therapeutic role of EPO in muscle wasting post-burn. 

In this rat study, we investigated the impact of 
burn on gastrocnemius muscle at four weeks 
post-burn and hypothesized EPO could prevent 
muscle wasting through anti-apoptosis and anti- 
fibrosis. We induced a burn trauma in the right 
hindpaw among three groups of rats, two treated with 
EPO, one group treated daily and the other group 
treated weekly. The pharmacological effect of EPO on 
caspase-dependent and caspase-independent mediat-
ed cell apoptosis was investigated. In addition, the 
anti-fibrogenic mechanism of EPO on TGF-β1- 
induced CTGF expression to regulated ECM synthesis 
was also investigated. 

Materials and Methods  
The study used 24 adult, male Sprague-Dawley 

rats. The procedures were approved and conduced in 
accordance with the guidance of the Institutional 
Animal Care and Use Committee at Kaohsiung 
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Medical University (IACUC Approval Number: 
106047). On day 0 (D0), all animals received either a 
third-degree burn or sham burn injury and wound 
care following a previous thermal model [68]. The rats 
were randomly allocated into four groups of six rats 
each: (1) a sham-control group (sham burn group) 
which received a sham burn and no drug treatment; 
(2) an untreated burn-only group (burn group); (3) a 
burn group treated with weekly EPO for four weeks 
(weekly EPO group) (5000 IU/kg i.p. at day 0, week 1, 
2, 3 [D0, W1, 2, 3]); and (4) a burn group treated daily 
with EPO for four weeks (daily EPO group) (3000 
IU/kg/day i.p. at day 0 to day 27 [D0-D27]). 

The right hind paw of each rat topped with 100-g 
weight (to maintain a standardized surface contact) 
was placed, plantar side down, on a temperature- 
controlled metal surface for 10 seconds [68]. The metal 
surface was set at 25 ± 0.5°C for the sham burn group. 
It was set at 75 ± 0.5°C for the three study groups, 
resulting in a third-degree thermal injury. The weekly 
and daily EPO groups both received recombinant 
EPO (Epoetin, Recormon, Roche) administered 
intraperitoneally (i.p) immediately after the burn 
injury. Afterwards, two groups were treated with 
daily or weekly EPO as scheduled. Our preparation of 
EPO and the dosage we used were based on our 
previous study [69]. Four weeks (W4) after burn, 
blood samples were collected to measure red blood 
cell (RBC) mass by an autoanalyzer (Bayer ADVIA 
2120). Then all rats were euthanized by administra-
tion of Zoletil 50 overdose and perfused with 4% 
paraformaldehyde. The gastrocnemius muscle of the 
right limb of each rat was harvested for histological 
analysis. 

Tissue samples from the mid-belly of the 
gastrocnemius muscle were fixed by formalin, 
embedded in paraffin and cut into 4-μm-thick sections. 
Serial tissue slices were mounted on glass slides, 
deparaffinized, and rehydrated in graded alcohol 
solutions. Muscle sections were stained with 
Hematoxylin and Eosin (H&E) staining (Abcam, 
Cambridge, MA) according to the manufacturer’s 
directions and visualized by light microscopy. The 
average muscle cross-sectional area of each 
experimental group was acquired from six stained 
sections of each specimen using a Nikon eclipse E600 
and capture with Nikon digital sight DS-5M. Images 
were obtained for the morphometric analyses with 
image analysis software IPP6.0 (Media Cybernetics, 
Bethesda, USA) after observing under a microscope.  

To detect apoptotic cell death, TdT dUTP 
nick-end labeling (TUNEL) assay was performed 
according to the manufacturer’s directions (Millipore, 
ApopTag fluorescein in situ apoptosis detection kit 

S7110). After incubated with 5% normal goat serum 
for 1 hour, the sections were incubated with cleaved 
caspase 3 (1: 200; Cell Signaling, Beverly, MA) or 
apoptosis-inducing factor (AIF, 1: 200, Abcam, 
Cambridge, MA) overnight at 4℃. Subsequently, all 
of them were incubated with Cy3-conjugated anti- 
mouse IgG secondary antibody (MerckMillipore, 
Bedford, MA) at room temperature for an additional 1 
hour, rinsed 3 times with PBS for 5 minutes each, and 
mounted with a medium containing 4’6-diamidino- 
2phenylinodole (DAPI) for identifying nuclei. TUNEL 
index was calculated as the number of TUNEL- 
positive nuclei to the gross area of nuclei according to 
a previous study [25]. 

Muscular fibrotic changes were analyzed by 
immunofluorescence with fibronectin (1: 200, 
Novus Biologicals, Littleton, CO, USA), type I 
collagen (1: 200, Novus Biologicals, Littleton, CO, 
USA), type III collagen (1:200, Origene, Rockville, 
Maryland, USA) and phosphorylated Smad2/3 (1:200, 
Cell Signaling, Beverly, MA). The appropriate 
secondary antibody conjugated with goat anti-rabbit 
Cy3 (1:400, red, Millipore, Temecula, CA). All images 
were acquired using a fluorescence microscope (Leica 
DM 6000).   

Western blotting of the tissue samples was 
performed as described previously [69]. The 
antibodies used were atrogin-1 (1: 1000; affinity 
biosciences, Changzhou, China), cleaved caspase 3 (1: 
1000; Cell Signaling, Beverly, MA), apoptosis- 
inducing factor (AIF) (1:1000, Abcam, Cambridge, 
MA), fibronectin (1:1000, Novus Biologicals, Littleton, 
CO, USA), type I collagen (1:1000, Novus Biologicals, 
Littleton, CO, USA), Type III collagen (1:1000, 
Origene, Rockville, Maryland, USA), transforming 
growth factor beta-1 (TGF-β1) (1:1000, Abcam, 
Cambridge, MA), connective tissue growth factor 
(CTGF) (1: 1000, Novus Biologicals, Littleton, CO, 
USA) and GADPH (1:2000, Sigma-Aldrich, Poole, 
Dorset, UK) were performed. The muscle lysates were 
centrifuged at 13,000× RPM at 4°C for 30 minutes. 
Each protein concentration of the supernatants was 
measured using bovine serum albumin as the 
standard. The above antibody-bound proteins were 
detected using chemiluminescence detection regents 
and the total signal was quantified using Image Lab. 

All values were expressed as means ± standard 
error of the mean (SEM). All data were calculated 
according to the numerical data, as presented in the 
text. All statistical operations were performed using 
SPSS (ver.14.0, Chicago, IL, USA). A p < 0.05 was 
considered statistically significant. *p < 0.05. **p < 
0.01.
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Results 
Weekly EPO did not cause significant 
erythrocytosis  

To investigate whether two EPO regimens lead 
to the obvious erythrocytosis, we checked red blood 
cell (RBC) count of four groups (shown in Table 1). 
Compared to untreated burn rats, those treated with 
weekly EPO did not have significantly altered RBC 
count (7.84±0.99×106 /uL vs. 8.07±0.88×106/uL, 
p=0.069), while those treated daily EPO did 
(7.84±0.99×106/uL vs. 10.41±0.87×106/uL, p=0.001). 

EPO alleviated burn-induced muscle fiber 
atrophy and the expression of atrophy-related 
ubiquitin ligase, atrogin-1 

H&E staining showed significant muscle fiber 

atrophy at four weeks post-burn in Figure 1. Both 
EPO-treated groups attenuated the reduction in the 
mean cross-sectional area of myofibers. There was no 
significant difference between EPO-treated groups 
(p=0.784). Furthermore, atrogin-1 is an important 
regulator of ubiquitin-mediator protein degradation 
in skeletal muscle. An increase expression was found 
in aged rats with the decline of muscle mass [70] and 
during muscle atrophy [71]. Our result showed that 
the atrophy-related ubiquitin ligase was significantly 
up-regulated in burn untreated group in comparison 
with sham groups (p=0.032). Compared to the 
untreated burn group, both EPO-treated groups 
attenuated the expression of atrogin-1 (Weekly EPO, 
p=0.048, Daily EPO, p=0.041). 

 

Table 1. Effect of EPO on erythrocytosis 

 Sham burn  Burn injury Weekly EPO Daily EPO pB-A pC-B pD-B 
RBC (x106/μL) 7.51±0.34 7.84±0.99 8.07±0.88 10.41±0.87 0.709 0.069 0.001** 
Data are presented as the mean ± SEM. **: p < 0.01. 
pB-A: burn-untreated versus sham-burn group,  
pC-B: Weekly EPO group versus burn untreated group 
pD-B: Daily EPO group versus burn untreated group.  
RBC: Red blood cell. 

 
 

 
Figure 1. EPO on burn-induced muscle fiber atrophy and atrophy-related ubiquitin ligase, atrogin-1 (A) Representative H&E staining of gastrocnemius muscle section 
(200x). Average myofiber cross-sectional area of 4 groups. (B) Representative western blot of atrogin-1. EPO decreased the elevation of atrogin-1 post-burn. All 
error bars represented the SEM. *p<0.05, **p<0.01. 
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EPO attenuated burn-induced muscle 
apoptosis  

In Table 2, compared to the sham burn group, 
the untreated burn group shows a significant increase 
in the number of TUNEL-positive nuclei (p=0.008). 
Compared to the untreated burn group, both 
EPO-treated groups had markedly decreased cell 
apoptosis (Weekly EPO, p=0.040, Daily EPO, 
p=0.028). In anti-apoptotic efficacy, weekly EPO was 
no inferior to daily EPO (p=0.08).  

 

Table 2. TUNEL index in gastrocnemius muscle  

Grouping Sham burn Burn untreated Weekly EPO Daily EPO 
TUNEL-positive 
cell/HPF (x400) 

4.32±3.76 33.56±5.84 16.07±6.82 13.23±6.36 

Data was presented as the mean±SEM. 
 
 

EPO attenuates apoptosis post-burn by 
decreasing cleaved caspase 3  

For immunostaining localized to cleaved caspase 
3, the nuclei for DAPI and TUNEL assay are shown in 
Figure 2A. The untreated burn group had an 
increased number of TUNEL-stained cells and the 
expression of cleaved caspase 3 (indicated by 
arrowhead). Both EPO-treated groups improved the 
phenomenon. The ratio of TUNEL/cleaved caspase 3 
positive apoptotic cells was counted. We found an 
attenuation of the TUNEL/cleaved caspase 3 positive 
apoptotic cell ratio in both EPO-treated groups. 
Figure 2B shows the protein expression of cleaved 
caspase 3 by western blot. Cleaved caspase 3 was 
significantly decreased in both EPO-treated groups 
compared to the untreated burn group. We suggest 
EPO could attenuate caspase 3-mediated apoptosis 
post-burn. 

 

 
Figure 2. EPO on cleaved caspase 3 mediated apoptosis. (A) Representative TUNEL stain (green) and immunofluorescence of cleaved caspase 3 (red). DAPI (blue) 
was used for nuclear counterstaining. Arrowheads indicated positive-staining cells. EPO-treated groups showed less TUNEL/cleaved caspase 3 positive cells. (B) The 
expression of cleaved caspase 3 by western blot. EPO decreased the elevation of cleaved caspase 3 post-burn. All error bars represented the SEM. *p<0.05, **p<0.01. 
Scale bar: 50 µm. 
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Figure 3. EPO on AIF mediated apoptosis. (A) Representative TUNEL stain (green) and immunofluorescence of AIF (red). DAPI (blue) was used for nuclear 
counterstaining. Arrowheads indicated positive-staining cells. TUNEL/AIF-positive cells were decreased in both EPO-treated groups. (B) Representative western blot 
of AIF. EPO decreased the elevation of AIF post-burn. AIF: Apoptosis-inducing factor. All error bars represented the SEM. *p<0.05, **p<0.01. Scale bar: 50 µm. 

 

EPO attenuated apoptosis-inducing factor 
mediated apoptosis post-burn  

Caspase-independent pathway, apoptosis- 
inducing factor (AIF) might also be involved in 
apoptotic events post-burn. As shown in the merged 
image in Figure 3A, we found an increase in 
co-localized AIF with TUNEL-stained apoptotic cells 
(indicated by arrowheads) and EPO attenuated the 
phenomenon. EPO-treated groups had less TUNEL/ 
AIF positive apoptotic cells. Figure 3B showed the 
western blot of AIF. The protein expression of AIF 

was elevated in untreated burn rats, but not in 
EPO-treated rats. 

EPO attenuated burn-induced extracellular 
matrix proteins overproduction 

Figure 4A shows the immunofluorescence of 
ECM proteins (type I collagen, type III collagen, and 
fibronectin). The untreated burn rats had an 
overexpression of ECM proteins compared with other 
groups. Western blot in Figure 4B also showed that 
EPO attenuated ECM protein production following 
burn.
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Figure 4. EPO on ECM overproduction following burn. (A) Immunofluorescence images of type I collagen, type III collagen and fibronectin. The expression of ECM 
proteins was significantly increased in untreated burn group but not in EPO-treated groups. (B) Western blot revealed EPO attenuated burn-induced ECM proteins 
elevation. ECM: extracellular matrix. All error bars represent the SEM. *p<0.05. Scare bars= 100 µm. 

 

EPO improved burn-induced muscle fibrosis 
by TGF-β1/Smad signaling to decrease CTGF 
expression 

Western blot was used to analyze the pro-fibrotic 
activity of TGF-β1 and CTGF expression (Figure 5A). 
Compared to sham-burn group, the untreated burn 
rats had a 2.7-fold and 2.1-fold increase in TGF-β1 and 
CTGF respectively. The EPO-treated groups 
attenuated their elevation post-burn. Furthermore, we 
found EPO decreased Smad 2/3 phosphorylation 
(pSmad2/3) by immunofluorescence and western blot 
(Figure 5B). We suggested EPO suppressed 
TGF-β1/Smad pathway to down-regulate CTGF 
expression post-burn. 

Discussion 
Typically, critical illness including burn leads to 

muscle wasting for a prolonged period. In this study, 
we investigated gastrocnemius muscle at four weeks 
post-burn and the therapeutic potential of EPO in 
muscle wasting. We found EPO could prevent 
cleaved caspase-3 and AIF mediated apoptotic cell 
death as well as maintain muscle fiber diameter 
following burn. EPO also attenuated burn-induced 
collagens and fibronectin deposition. The possible 
mechanism mediated via TGF-β1/Smad2/3 signaling 
to decrease the expression of CTGF. EPO therapy 
attenuated burn-induced skeletal muscle wasting 
through anti-apoptotic and anti-fibrotic effects. 
Weekly EPO was non-inferior efficacy to daily EPO 
and did not alter red blood cell count. This study may 
provide information not only for burn patients but 
also possibly for those suffering from critical 
disease-induced muscle wasting. 
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Figure 5. EPO alleviated burn-induced muscle fibrosis by suppressing TGF-β1/Smad pathway. (A) Representative western blot of CTGF and TGF-β1. EPO 
attenuated the overexpression of CTGF and TGF-β1 post-burn. (B) Immunofluorescence and western blot of pSmad2/3 in muscle sections. EPO attenuated the 
overexpression of pSmad2/3 after burn. TGF-β1: Transforming growth factor-β1, CTGF: Connective tissue growth factor, pSmad2/3: phosphorylated Smad2/3. 
*p<0.05. 

 
Skeletal muscle wasting following critical illness 

is an important clinical feature and often associated 
with poor outcomes [6, 8, 72]. To understand the 
underlying mechanisms and seek effective regimen to 
enhance patients’ recovery are needed. Several 
mechanisms may contribute to burn-induced muscle 
wasting. Alteration of mitochondrial function [72-74] 
and activation of inflammatory cascades [1, 75] within 

skeletal muscle have been proposed. A marked 
increase of apoptotic cell death in skeletal muscle was 
found on day 7 post-burn [19] and caspase 3-mediated 
apoptosis has been implicated in various muscle 
atrophy models, including burn injury [20, 76, 77]. 
Our data showed persistent caspase 3-mediated cell 
apoptosis in gastrocnemius muscle at four weeks 
post-burn to impend full recovery of muscle mass.  



Int. J. Med. Sci. 2020, Vol. 17 

 
http://www.medsci.org 

41 

Prior to our study, the role of caspase- 
independent pathway in burn-induced muscle 
wasting was limited. Caspase-independent 
mechanisms, such as AIF lead to DNA fragmentation 
and cell death [25, 78-80]. In this study, we found AIF 
expression was correlated with an increase of cell 
death and suggested caspase-independent apoptosis 
also contributed to burn-induced muscle atrophy.  

Furthermore, muscle fibrosis is a progressive 
irreversible condition indicating impaired muscle 
healing process and delineated regeneration in 
response to aging, pathological disorders or trauma 
[27]. Proper ECM remodeling process is important in 
muscle regeneration and the recovery of muscle 
strength [81]. TGF-β is a key regulator to drive tissue 
atrophy and fibrosis [82, 83]. Ex vivo TGF-β treated 
muscle experiment showed TGF-β induced mice 
muscle atrophy and reduced muscle contractility [84]. 
TGF-β1 is the most abundant isoform of TGF-β in 
mammals. Mice with overexpressing TGF-β1 showed 
myofiber atrophy and collagen accumulation [85]. 
During muscle damage, excessive TGF-β1 impairs 
ECM remodeling and initiates fibrotic cascade during 
the recovery phase [86]. Targeting TGF-β1 could 
prevent ECM deposition and improve muscle 
regeneration in disuse muscle atrophy [87], toxin- 
induced muscle injury [88] as well as dystrophic and 
age-related muscle wasting [89]. Smad2/3 and CTGF 
are the downstream mediators associated with 
TGF-β-induced fibrosis [90-93]. Therapeutic agents 
inhibiting pro-fibrotic TGF-β1/Smad2/3 signaling 
could prevent renal fibrosis [94], liver fibrosis [95, 96], 
pulmonary fibrosis [97, 98], and cardiac fibrosis 
[99-101]. This study showed burn enhanced the 
expression of TGF-β1, pSmad2/3 and CTGF to 
stimulate ECM (collagen and fibronectin) 
accumulation.  

Erythropoietin is a multi-function cytokine that 
can regulate erythropoiesis and protect organs from 
damage. In an acute heart failure rat model, single 
(5,000 or 10,000 IU/kg) EPO injection decreased 
caspase-3 expression in renal medulla [102]. Puchulu 
et al. suggested 3 days of EPO treatment (1,000 IU/kg) 
decreased oxidative damage and improved heart 
function in a rat hypovolemic model. Single-dose EPO 
(5,000 IU/kg) protected myocardial apoptosis in rats 
following carbon monoxide exposure [103]. 
Overexpressed EPO improved rat heart fibrosis 
through the PI3K/Akt/TLR4 pathway to suppress the 
release of mediators such as TGF-β1, pro- 
inflammatory cytokines, and matrix metalloprotein-
ase [58]. EPO exerts neuroprotective effect in 
neurodegenerative diseases [104], ischemic brain 
injury [105, 106], spinal cord injury [107] and motor 
neuron death post-burn [69]. EPO has also been found 

to improve muscular dysfunction in various 
experimental models, possible through increasing 
autophagy as well as decreasing apoptosis in type 2 
diabetic skeletal muscles [65], reducing apoptosis in a 
crushing injury model [108] and preventing 
cancer-induced muscle alteration [67]. A C2C12 
myotube ischemia model also showed EPO and its 
derivations could decrease myotube cell death and 
inflammation [109]. In human trials, weekly EPO 
injection increased mitochondrial capacity in skeletal 
muscle [110].  

In this study, we found EPO could prevent 
burn-induced muscle apoptosis through caspase- 
dependent and caspase-independent apoptotic path-
ways. In addition, EPO inhibited the expression 
TGF-β1 and its downstream signaling to prevent 
excessive ECM at four weeks post-burn. The possible 
mechanism of EPO on burn-induced muscle fiber 
atrophy was summarized in Figure 6. These finding 
suggests that EPO could potentially be used to 
preserve functional skeletal muscle tissue and 
attenuate excessive fibrotic tissue in burn patients. 

 

 
Figure 6. Proposed mechanism of EPO on muscle fiber atrophy following burn. 
EPO attenuates burn-induced skeletal muscle apoptosis via decreasing the 
expression of cleaved caspase 3 and AIF at four weeks post-burn. Moreover, 
EPO modulates burn-induced overexpression of TGF-β1/Smad2/3 profibrotic 
pathway and decreases the elevation of CTGF. EPO is a potential therapeutic 
agent for burn-induced skeletal muscle wasting. Apoptosis-inducing factor (AIF), 
Transforming growth factor beta 1 (TGF-β1), phosphorylated Smad2/3 
(pSmad2/3), Connective tissue growth factor (CTGF). 
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Conclusion 
EPO attenuates burn-induced muscle wasting at 

4 weeks post-burn. EPO preserves muscle fiber size 
and prevents apoptosis after burn through caspase- 
dependent as well as caspase-independent pathway. 
EPO improves excessive ECM production by 
suppressing TGF-β1/Smad signaling and CTGF 
overexpression following burn. 

Abbreviations 
EPO: Erythropoietin; H&E staining: Hema-

toxylin & Eosin staining; TUNEL assay: TdT dUTP 
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2phenylinodole; AIF: Apoptosis-inducing factor; 
TGF-β1: Transforming growth factor beta 1; CTGF: 
Connective tissue growth factor.  
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