
Int. J. Med. Sci. 2019, Vol. 16 
 

 
http://www.medsci.org 

909 

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  MMeeddiiccaall  SScciieenncceess  
2019; 16(7): 909-921. doi: 10.7150/ijms.34245 

Research Paper 

Possible association of arrestin domain-containing 
protein 3 and progression of non-alcoholic fatty liver 
disease 
Masahiro Ogawa#, Tatsuo Kanda#,, Teruhisa Higuchi, Hiroshi Takahashi, Tomohiro Kaneko, Naoki 
Matsumoto, Kazushige Nirei, Hiroaki Yamagami, Shunichi Matsuoka, Kazumichi Kuroda, Mitsuhiko 
Moriyama  

Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 
173-8610, Japan  

#These authors equally contributed. 

 Corresponding author: Tatsuo Kanda, M.D., Ph.D., Associate Professor, Division of Gastroenterology and Hepatology, Department of Medicine, Nihon 
University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan. E-mail: kanda.tatsuo@nihon-u.ac.jp; Phone: +81-3-3972-8111; Fax: 
+81-3-3956-8496 

© Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license 
(https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. 

Received: 2019.02.19; Accepted: 2019.05.03; Published: 2019.06.02 

Abstract 

The prevalence of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis 
(NASH) is increasing worldwide. Several effective drugs for these diseases are now in development 
and under clinical trials. It is important to reveal the mechanism of the development of NAFLD and 
NASH. We investigated the role of arrestin domain-containing protein 3 (ARRDC3), which is linked 
to obesity in men and regulates body mass, adiposity and energy expenditure, in the progression of 
NAFLD and NASH. We performed knockdown of endogenous ARRDC3 in human hepatocytes and 
examined the inflammasome-associated gene expression by real-time PCR-based array. We also 
examined the effect of conditioned medium from endogenous ARRDC3-knockdown-hepatocytes 
on the apoptosis of hepatic stellate cells. We observed that free acids enhanced the expression of 
ARRDC3 in hepatocytes. Knockdown of ARRDC3 could lead to the inhibition of 
inflammasome-associated gene expression in hepatocytes. We also observed that conditioned 
medium from endogenous ARRDC3-knockdown-hepatocytes enhances the apoptosis of hepatic 
stellate cells. ARRDC3 has a role in the progression of NAFLD and NASH and is one of the targets 
for the development of the effective treatment of NAFLD and NASH. 
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Introduction 
The diagnosis rate of nonalcoholic fatty liver 

disease (NAFLD), including nonalcoholic 
steatohepatitis (NASH), continues to increase in 
Western and Eastern countries [1,2]. Fatty liver 
diseases are growing causes of cirrhosis and 
hepatocellular carcinoma (HCC) globally [3]. 
Although it has been reported that various factors are 
involved in the mechanism of the development of 
NAFLD and NASH [4], the exact mechanism is still 
unknown. It is important to elucidate the mechanism 
of the progression of NAFLD and NASH. 

It has been reported that β-arrestins play an 
important role in metabolism [5, 6]. β-arrestins have 
been discovered as molecules that bind to and 
desensitize the activated and phosphorylated form of 
the G protein-coupled β2-adrenergic receptor [5]. Loss 
or dysfunction of β-arrestin-2 leads to the disturbance 
of insulin signaling [6]. β2-adrenergic receptor 
activation could control the antiapoptotic effects of 
the 27-kDa heat shock protein (HSP27) through 
association with β-arrestin [7]. β-arrestin dimerization 
regulates β2-adrenergic receptor-mitogen activated 
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protein kinase (MAPK) signaling, cell death and 
proliferation [8,9]. The effects of the β2-agonists via 
β2-adrenergic receptors increase cAMP and interfere 
with gene expression of peroxisome 
proliferator-activated receptors (PPARs), which are 
transcription factors belonging to the nuclear receptor 
superfamily [10]. Knockdown of β-arrestin-2 also 
prevented the cAMP-binding protein Epac1-induced 
histone deacetylase 4 (HDAC4) nuclear export [11]. 
β2-adrenergic receptor agonists may possibly exert 
multiple effects including a direct-effect on liver 
β2-adrenergic receptors and could promote recovery 
from insulin-induced hypoglycemia [12]. 

β-arrestin-2 binds apoptosis signaling-regulating 
kinase 1 (ASK1), mitogen-activated protein kinase 
kinase 4 (MKK4), and mitogen-activated protein 
kinase 10 (JNK3) and promotes JNK3 activation [13]. 
The activation of ASK1 in hepatocytes is a key step in 
the progression of NASH [4, 14]. 

The α-arrestins are broadly expressed and 
include 6 mammalian members referred to as arrestin 
domain-containing proteins (ARRDCs) [15]. The 
α-arrestins also have a similar structure to β-arrestins, 
and these play roles in G protein-coupled receptor 
trafficking [15]. The α-arrestin family includes 
thioredoxin-interacting protein (Txnip) which has 
crucial functions in regulating glucose uptake and 
glycolytic flux through the mitochondria [16], and 
arrestin domain-containing protein 3 (ARRDC3), 
which is linked to obesity in men and regulates body 
mass, adiposity, and energy expenditure [16, 17]. 
ARRDC3 is localized in the cytoplasm and expressed 
in the liver. 

A genome-wide association study (GWAS) 
identified a single nucleotide polymorphism (SNP) 
upstream of the ARRDC3 locus strongly associated 
with prognosis in early-onset breast cancer [18]. 
Genome-wide association analysis in East Asians also 
identified an SNP near the ARRDC3 gene associated 
with breast cancer risk [19]. 

In the present study, we observed the 
enhancement of ARRDC3 expression by the addition 
of oleic acids in human hepatoma cells. We have also 
used the siRNA targeting ARRDC3 to inhibit the 
expression of endogenous ARRDC3 in human 
hepatoma HepG2 cells and determined its effect on 
inflammasome pathway-associated gene expression. 
Furthermore, we treated human hepatic stellate cell 
line LX-2 with conditioned media from HepG2 cells 
transfected with or without ARRDC3-targeted siRNA 
and evaluated apoptosis of hepatic stellate cells. We 
have observed that the depletion of ARRDC3 in 
human hepatocytes resulted in the downregulation of 
inflammasome pathway-associated genes such as 
chemokine (C-X-C motief) ligand 2 (CXCL2), 

interleukin 6 (IL6), chemokine (C-C motief) ligand 5 
(CCL5), caspase 5 (CASP5) and interferon, beta 1 
(IFNB), and the enhancement of apoptosis of hepatic 
stellate cells treated with their conditioned media. 
Our results demonstrated ARRDC3 may play a role in 
the development of NAFLD and NASH. 

Results and Discussion 
Human hepatocytes express ARRDC3 mRNA. 

We previously observed that ARRDC3 mRNA 
was significantly higher expressed in the liver of 
NASH model rat SHRSP5/Dmcr [20] at week 4 after 
feeding a normal diet compared with those of the 
stroke-prone spontaneously hypertensive rat 
(SHRSP/Izm) (data not shown). SHRSP5/Dmcr or 
SHRSP/Izm, respectively, develops or not develops 
NASH at week 19 after feeding a high fat, high 
cholesterol-containing diet. Previous studies have 
demonstrated that various human cell lines express 
ARRDC3 [17, 21]. 

First, we examined ARRDC3 mRNA expression 
in the human hepatoma cell lines, HepG2 and Huh7, 
compared with that in human pancreatic cancer cell 
line MIAPaCa-2. Cellular RNA was extracted from 
these cell lines, and ARRDC3 mRNA levels were 
examined by real-time RT-PCR (Figure 1). We 
observed that human hepatocytes express ARRDC3 
mRNA significantly higher than human pancreatic 
cancer cells.  

Hoque et al. [22] reported that lactate negatively 
regulates toll-like receptor (TLR) induction of 
Nucleotide‑binding oligomerisation domain 
(NOD)-like receptor protein 3 (NLRP3) 
inflammasome and production of interleukin 1β 
(IL1𝛽𝛽), via β2-arrestin and the plasma membrane Gi 
protein coupled receptor (GPR)-81 and reduces organ 
injury in liver and pancreas. So, we also used human 
pancreatic cancer cells. As oleic acid induced steatosis 
and cytotoxicity on rat hepatocytes in primary culture 
[23], we did not use human primary hepatocytes in 
the present study. 

Oleic acids enhance ARRDC3 mRNA 
expression. 

Next, we examined the effects of oleic acid, 
which induces steatosis in hepatocytes [24], on 
ARRDC3 mRNA expression in human hepatoma cell 
lines. We previously demonstrated that free fatty 
acids such as oleic acid and/or palmitic acid induced 
fat deposition in human hepatoma cell lines by Nile 
red stain [25]. We added oleic acid (0 μM, 150 μM or 
300 μM) into cell culture medium of HepG2 or Huh7 
cells. Twenty-four hours after the addition of oleic 
acid, cellular RNA was extracted and ARRDC3 
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mRNA levels were measured by real-time RT-PCR 
(Figure 2a and 2b). In both HepG2 and Huh7 cell 
lines, oleic acids enhanced ARRDC3 mRNA 

expression in a dose-dependent manner. Thus, fat 
deposition might be associated with ARRDC3 mRNA 
expression in hepatocytes. 

 

 
Figure 1. Arrestin domain-containing protein 3 (ARRDC3) mRNA expressed in human hepatoma cells. ARRDC3 and β-actin mRNA levels were measured by 
real-time RT-PCR in HepG2, Huh7 and pancreatic cancer MIAPaCa-2 cells. *p < 0.05, compared with MIA PaCa-2 cells. 

 
Figure 2. Effects of oleic acid on arrestin domain-containing protein 3 (ARRDC3) mRNA expression levels in human hepatoma cell lines. (a) HepG2 and (b) 
Huh7 cells. Real-time RT-PCR analyses of ARRDC3 and β-actin mRNA levels in HepG2 and Huh7 cells treated with or without 150 μM or 300 μM oleic acid for 24 hours. *p < 
0.05, compared with 0 μM oleic acid. 
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Figure 3. Conditioned media from endogenous arrestin domain-containing protein 3 (ARRDC3)-knockdown-HepG2 enhances apoptosis of hepatic 
stellate cell line LX-2. (a) ARRDC3 mRNA expression was significantly inhibited by transfection with si-ARRDC3, compared with that of si-control. si-ARRDC3-1 and 
si-ARRDC3-2 indicate different set of experiments. (b) Conditioned media (CM) from ARRDC3-knockdown HepG2 enhanced LX-2 cell apoptosis, compared with that of 
control HepG2 cells. *p < 0.05, compared with control siRNA (si-control). 

 

Conditioned media from endogenous 
ARRDC3-knockdown-HepG2 enhances 
apoptosis of hepatic stellate cells. 

It is not clear whether the ARRDC3 expression in 
hepatocytes have any effects on human hepatic 
stellate cells. We investigated whether knockdown of 
endogenous ARRDC3 in HepG2 cells had effects on 
apoptosis in human hepatic stellate cell line LX-2. 
Forty-eight hours after transfection of siRNA into 
HepG2 cells, we confirmed the knockdown of 
ARRDC3 mRNA by real-time RT-PCR (Figure 3a). We 
also collected conditioned medium from HepG2 cells 
transfected with si-ARRDC3 or si-control, and cellular 
apoptosis of LX-2 cells was examined 72 hours after 
incubation of these media by APOPercentage 
apoptosis assay (Figure 3b). Cellular apoptosis of 

hepatic stellate cells increased after the incubation of 
conditioned media from ARRDC3-knockdowned 
HepG2 cells, compared with that from control HepG2 
cells. These results suggested that upregulation of 
ARRDC3 in hepatocytes might inhibit hepatic stellate 
cell apoptosis, resulting in the progression of liver 
fibrosis. Although we also tried to detect apoptosis of 
LX-2 cells by apoptosis marker Annexin V [26], we 
did not see any differences more clearly (data not 
shown). Further studies will be needed. 

Knockdown of ARRDC3 inhibits 
inflammasome-associated gene expression in 
human hepatocytes. 

Inflammasomes and cytokines are major players 
in the induction of hepatocyte apoptosis in NAFLD 
and NASH [4]. To further explore the mechanism, we 



Int. J. Med. Sci. 2019, Vol. 16 

 
http://www.medsci.org 

913 

have examined inflammasome-related gene 
expression profiles using real-time PCR-based 
focused microarrays to compare between HepG2 cells 
transfected with si-ARRDC3 and those with siRNA. 
The Inflammasome-associated gene expression 
between HepG2 cells transfected with si-ARRDC3 
and si-control were compared using inflammasome- 
associated signaling target PCR array. 

Out of 84 inflammasome-associated genes 
examined, one and 13 genes were significantly 
upregulated and downregulated, respectively, in 
HepG2 cells transfected with si-ARRDC3, compared 
with the si-control (p < 0.05; Table 1). Five genes 
(CCL5, CASP5, IL6, IFNB1 and CXCL2) were 
downregulated 3-fold or more. Heat shock protein 90 
kDa alpha (cytosolic), class A member 1 (HSP90AA1) 
was the only gene that was significantly upregulated. 

 

Table 1. Effects of knockdown of endogenous arrestin 
domain-containing protein 3 (ARRDC3) on 
inflammasome-associated gene expression in human HepG2 cells. 
Changes of gene expression in HepG2 cells transfected with 
si-ARRDC3, compared with si-control. 

Gene 
Symbol 

Pathways si-ARRDC3 vs. 
si-control 

p-values 

HSP90B1 Inflammasomes (Negative regulation) -1.57 0.000089 
BIRC3 Signaling Downstream of NOD-Like 

Receptors 
-1.90 0.0011 

CXCL2 Signaling Downstream of NOD-Like 
Receptors 

-3.69 0.0011 

IL6 Signaling Downstream of NOD-Like 
Receptors 

-6.90 0.0017 

CCL5 Signaling Downstream of NOD-Like 
Receptors 

-10.56 0.0069 

CASP1 Inflammasomes 
(IPAF/NLRP1/NLRP3) 

-1.51 0.0085 

CASP5 Inflammasomes (NLRP1) -10.06 0.010 
TXNIP Signaling Downstream of 

Inflammasomes 
-1.70 0.013 

MAP3K7 Signaling Downstream of NOD-Like 
Receptors 

-1.30 0.021 

PANX1 Signaling Downstream of 
Inflammasomes 

-1.22 0.037 

HSP90AA1 Inflammasomes (Negative regulation) 1.19 0.039 
PTGS2 Signaling Downstream of 

Inflammasomes 
-1.43 0.039 

MYD88 Signaling Downstream of 
Inflammasomes 

-1.61 0.049 

IFNB1 Signaling Downstream of NOD-Like 
Receptors 

-4.61 0.050 

HSP90B1, heat shock protein 90 beta family member 1; BIRC3, baculoviral IAP 
repeat containing 3; CXCL2, C-X-C motif chemokine ligand 2; IL6, interleukin 6; 
CCL5, C-C motif chemokine ligand 5; CASP1, caspase 1; CASP5, caspase 5; TXNIP, 
thioredoxin interacting protein; MAP3K7, mitogen-activated protein kinase kinase 
kinase 7; PANX1, pannexin 1; HSP90AA1, heat shock protein 90 alpha family class 
A member 1; PTGS2, prostaglandin-endoperoxide synthase 2; MYD88, myeloid 
differentiation primary response 88; IFNB1, interferon beta 1; IPAF (NLRC4), NLR 
family CARD domain containing 4; NLRP1, NLR family pyrin domain containing 
1; NLRP3, NLR family pyrin domain containing 3. 

 
Expression levels of endoplasmic reticulum 

molecule Heat shock protein 90 kDa beta (Grp94), 
member 1 (HSP90B1) were significantly up-regulated 
in the livers of zebrafish larvae fed high fat with or 
without high cholesterol diets [27]. Baculoviral IAP 

repeat containing 3 (BIRC3), a severe 
hypoxia-activated gene, was significantly increased in 
simple hepatic steatosis compared with the controls 
[28]. A Western-type cholesterol-containing diet 
significantly induced hepatic expression of CXCL2 
[29]. IL6 levels were increased in NASH and 
correlated with GP130 expression [30]. Steatosis 
induced CCL5/RANTES was associated with 
early-stage liver fibrosis in the progression of NAFLD 
[31]. NLRP3 inflammasome, pro-IL1β, active-CASP1 
and IL1β activation occurs in NAFLD [32]. 

Elevation of ceramide levels was associated with 
activation of CASP5 and the subsequent cleavage of 
HuR and apoptotic cell death in the liver [33]. The 
reactive oxygen species (ROS)-thioredoxin interacting 
protein (TXNIP) pathway mediates hepatocellular 
NOD-like receptor (NLR) family pyrin domain 
containing 3 (NLRP3) inflammasome activation, 
inflammation and lipid accumulation in 
fructose-induced NAFLD [34]. Mitogen-activated 
protein kinase kinase kinase 7 (MAP3K7) induced 
adipocyte differentiation through peroxisome 
proliferator-activated receptor gamma (PPARγ) 
signaling [35]. 

Pannexin 1 (PANX1)-dependent pathophysio-
logical extracellular ATP release in lipoapoptosis is 
capable of stimulating migration of human monocytes 
in chronic liver injury induced by free fatty acids [36]. 
HSP90AA1 is one of the nine critical genes related to 
the pathogenesis of hepatocellular carcinoma [37]. 
Prostaglandin-endoperoxide synthase 2 (PTGS2) and 
myeloid differentiation primary response gene 88 
(Myd88) are also associated with NAFLD and NASH 
[38, 39]. Mitochondrial damage in steatohepatitis 
extends to mitochondrial antiviral-signaling protein 
MAVS, an adapter of helicase receptors, resulting in 
inefficient type I IFN and inflammatory cytokine 
response [40]. Thus, it is possible that ARRDC3 might 
be involved in the inflammasome-associated 
pathways involved in the pathogenesis of NAFLD 
and NASH. 

We performed further pathway analysis. Effects 
of knockdown of ARRDC3 on inflammasome- 
associated pathways in human hepatocytes are shown 
in Figure 4. Most of inflammasome-associated genes 
were downregulated in HepG2 cells transfected with 
si-ARRDC3, compared with the si-control. However, 
among negative regulation molecules of 
inflammasomes, HSP90AA1 was significantly 
upregulated and B-cell CLL/lymphoma 2 (BCL2)-like 
1 (BCL2L1), cathepsin B (CTSB), heat shock protein 90 
kDa alpha, class B member 1 (HSP90AB) tended to be 
upregulated. 
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Figure 4. Effects of knockdown of endogenous arrestin domain-containing protein 3 (ARRDC3) on inflammasome-associated pathways in human HepG2 
cells. Changes of gene expression in HepG2 cells transfected with si-ARRDC3, compared with si-control. (a) Absent in melanoma 2 (AIM2), (b) Ice protease-activating factor 
(IPAF), (c) Nucleotide‑binding oligomerisation domain (NOD)‑like receptor protein 1 (NLRP1), (d) NOD-like receptor family pyrin domain containing 3 (NLRP3), (e) Negative 
regulation of inflammasomes, (f) Signaling downstream of inflammasomes. P, p-values. N.S., not statistically significant difference. 

 
We performed further pathway analysis. Effects 

of knockdown of ARRDC3 on inflammasome- 
associated pathways in human hepatocytes are shown 
in Figure 4. Most of inflammasome-associated genes 
were downregulated in HepG2 cells transfected with 
si-ARRDC3, compared with the si-control. However, 
among negative regulation molecules of 
inflammasomes, HSP90AA1 was significantly 
upregulated and B-cell CLL/lymphoma 2 (BCL2)-like 
1 (BCL2L1), cathepsin B (CTSB), heat shock protein 90 
kDa alpha, class B member 1 (HSP90AB) tended to be 
upregulated. 

Effects of knockdown of ARRDC3 on 
Nucleotide‑binding oligomerisation domain (NOD)‑ 
like receptor-associated pathways and 
pro-inflammatory caspases in human hepatocytes are 
shown in Figure 5. Among NOD-like receptor-related 

molecules, NLR family, CARD domain containing 4 
(NLRC4) and NLR family, pyrin domain containing 9 
(NLRP9) tended to be downregulated, and NLR 
family member X1 (NLRX1) and NOD1 tended to be 
upregulated (Figure 5). Of interest, among Signaling 
downstream of NOD‑like receptor-related molecules, 
Fas-associated via death domain (FADD), inhibitor of 
kappa light polypeptide gene enhancer in B-cells, 
kinase beta (IKBKB), inhibitor of kappa light 
polypeptide gene enhancer in B-cells, kinase gamma 
(IKBKG), Mitogen-activated protein kinase 1 
(MAPK1), MAPK3, MAPK11, MAPK12, nuclear factor 
of kappa light polypeptide gene enhancer in B-cells 1 
(NFKB1) and transforming growth factor (TGF)-beta 
activated kinase 1/MAP3K7 binding protein 1 (TAB1) 
tended to be upregulated (Figure 5b-5d). Two 
inflammatory caspases were significantly 
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downregulated in HepG2 cells transfected with 
si-ARRDC3, compared with the si-control (Figure 5e). 

In the present study, we demonstrated that free 
fatty acids induced ARRDC3 mRNA expression in 
hepatocytes and that upregulation of ARRDC3 in 
hepatocytes is associated with inhibition of hepatic 
stellate cell apoptosis, which may lead to the 
progression of liver fibrosis. We also demonstrated 
that ARRDC3 is strongly associated with 
inflammasome-associated gene expression. These 
results indicate that ARRDC3 plays a role in the 
progression of NAFLD and NASH. 

A previous study [17] has shown that ARRDC3 
deficiency in mice protects against obesity. ARRDC3 
is a gene required for β2-adrenergic receptor 
regulation and colocalizes with β2-adrenergic 
receptors [41]. ARRDC3 also plays an important role 
in neural precursor development downregulated 
protein 4 (NEDD4)-mediated ubiquitination and 

endocytosis of activated β2-adrenergic receptors and 
subsequent β2-adrenergic receptor degradation [41]. 
Shi et al. [42] reported that abrogation of 
β2-adrenergic receptors is known to modulate hepatic 
lipid accumulation and glucose tolerance in aging 
mice. Of interest, in the present study, we found an 
association between lipid accumulation and ARRDC3 
expression in hepatocytes (Figure 1). 

Two E3 ligases NEDD4 and NEDD4l, which are 
known to regulate membrane protein internalization 
and degradation via the endocytic pathway [43], are 
the proteins responsible for transmembrane BAX 
inhibitor motif-containing 1 (TMBIM1) ubiquitination 
[44]. TMBIM1 is an effective suppressor of 
steatohepatitis and a previously unknown regulator 
of the multivesicular body (MVB)-lysosomal pathway 
via targeting of the lysosomal degradation of TLR4 
[44]. 
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Figure 5. Effects of knockdown of endogenous arrestin domain-containing protein 3 (ARRDC3) on Nucleotide‑binding oligomerisation domain 
(NOD)‑like receptor-associated pathways and pro-inflammatory caspases in human HepG2 cells. Changes of gene expression in HepG2 cells transfected with 
si-ARRDC3, compared with si-control. (a) NOD‑like receptors, (b), (c), (d) Signaling downstream of NOD‑like receptors, (e) Pro-inflammatory caspases. P, p-values. N.S., not 
statistically significant difference. 

 
We also observed that knockdown of ARRDC3 

in human hepatocytes down-regulates 
inflammasome-associated gene expression (Table 1). 
It has been reported that activation of inflammasomes 
plays a role in the development of NAFLD and NASH 

[27-40, 44]. The association between ARRDC3 and 
inflammasome-related pathways may have a role in 
the development of NAFLD and NASH. Further 
studies will be needed to clarify this point. 
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Cell death is very important in the progression of 
NAFLD and NASH [4]. β-adrenergic receptor 
stimulation clearly induced the expression of 
v-raf-leukemia viral oncogene 1 (RAF-1) [45]. 
Inhibition of the pro-apoptotic function of ASK1 by 
RAF-1 may be the reason for maintaining survival 
[46]. Inhibition of the ASK1 pathway through the 
suppression of ARRDC3 may provide a novel 
mechanism in the management of NAFLD and 
NASH. 

The number of patients with NAFLD and NAS 
has been increasing in the USA, Europe and Asian 
countries [3, 4]. NAFLD and NASH can lead to 
advanced liver diseases including cirrhosis and HCC 
[3]. Selonsertib which is a serine/threonine kinase 
inhibitor and targets ASK1 is now in phase III clinical 
trial for the treatment of NASH [47]. In phase II 
clinical trials of this drug, according to magnetic 
resonance (MR) elastography and biopsies at baseline 
and week 24, 33% (18/54) had fibrosis improvement 
(≥1-stage reduction) after undergoing 24 weeks of 
treatment with the study drug [48]. According to MR 
imaging-estimated proton density fat fraction and 
biopsies at baseline and week 24, a ≥1-grade reduction 
in steatosis was observed in 28% (18/65) [48]. A 
combination therapy of anti-inflammatory and 
anti-fibrotic intervention could be effective for 
NAFLD and NASH. ASK1 pathway plays a role in 
both inflammation and fibrosis of NAFLD and NASH 
[4, 49, 50]. 

Materials and Methods 
Cell lines and reagents 

Human hepatoma cell lines (HepG2 and Huh7), 
hepatic stellate cell line LX-2 and human pancreatic 
cancer MIAPaCa-2 cells were maintained in Roswell 
Park Memorial Institute medium (RPMI 1640) (Sigma, 
St. Louis, MO, USA) supplemented with 1–10% fetal 
bovine serum, penicillin (100 U/mL) and 
streptomycin (100 μg/mL) at 5% CO2 and 37°C. 
HepG2, Huh7 and MIAPaCa-2 cells were purchased 
from the Japanese Collection of Research Bioresources 
Cell Bank (Ibaraki, Osaka, Japan) [26, 51]. LX-2 cells, 
spontaneously immortalized cells, were kindly 
provided by Prof. Scott L. Friedman, Mount Sinai 
Medical School, NY, USA [52]. Oleic acid-albumin 
from bovine serum was purchased from Sigma. 

Incubation of human hepatoma cell lines with 
oleic acids 

Before 24 hours of treatment with oleic acids, 
HepG2 and Huh7 cells were seeded in 6-well plates at 
a density of 0.5 x 106 cells/well. Cells were washed 
with PBS and incubated with or without 150 μM or 

300 μM oleic acids in RPMI with 10% fetal bovine 
serum for 24 hours. 

RNA extraction, cDNA synthesis and real-time 
reverse transcription-PCR (RT-PCR) 

Cellular RNA was isolated from cells by using 
the RNeasy Mini Kit (Qiagen, Tokyo, Japan). cDNA 
synthesis was performed by using PrimeScript RT 
reagent (Perfect Real Time) (Takara Bio, Otsu, Shiga, 
Japan) with random hexamers and oligo dT primers 
on GeneAmp PCR system 5700 (Applied Biosystems, 
Foster, CA, USA). PCR amplification was performed 
on cDNA templates using primers specific for 
ARRDC3 (sense primer [5’-ATCCCAGTGTGATGTG 
ACGA-3’] and antisense primer [5’-TTTGCAACAG 
AATCGGAAAA-3’]) and for actin-beta (sense primer 
[5’-CAGCCATGTACGTTGCTATCCAGG-3’]) and 
antisense primer [5’-AGGTCCAGACGCAGGATGG 
CATG-3’]). For RNA quantification, real-time PCR 
was performed by using Power SYBR Green Master 
Mix (Thermo Fisher Scientific, Tokyo, Japan) with a 
7500 Fast real-time PCR system (Applied Biosystems) 
as described previously [53]. The actin housekeeping 
gene was used for normalization, and data were 
analyzed by the comparative threshold cycle method. 
Relative quantification of gene expression using the 
2-ΔΔCt method correlated with absolute gene 
quantification obtained by standard curve [53]. Each 
real-time PCR assay was performed in triplicate. 

Transfection of small interfering RNA (siRNA) 
To transiently knockdown ARRDC3, 

approximately 0.5×105 cells were seeded in 35 
mm-plates (Iwaki Glass, Tokyo, Japan) 24 hours prior 
to transfection. Cells were transfected with 50 nM 
each of siRNA specific for ARRDC3 (si-ARRDC3) or 
control siRNA (si-control), using Effectene 
transfection reagent (Qiagen) according to the 
manufacturer’s protocol [53]. After 48 hours of 
transfection, cellular RNA and conditioned medium 
were collected. 

Detection of apoptosis of LX-2 cells 
After 72 hours of incubation with conditioned 

media from HepG2 cells transfected with si-ARRDC3 
or si-control, the APOPercentage apoptosis assay 
(Biocolor, Belfast, Northern Ireland) was used to 
evaluate apoptosis of LX-2 cells following the 
manufacturer’s instruction. Transfer and exposure of 
phosphatidylserine to the exterior surface of the 
membrane have been linked to the onset of apoptosis. 
Phosphatidylserine transmembrane movement 
results in uptake of APOPercentage dye by 
apoptosis-committed cells. Purple-red stained cells 
were identified as apoptotic cells by light microscopy 
[26]. 
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Inflammasomes-associated signaling target 
PCR array 

HepG2 cells were transfected with 50 nM each of 
si-ARRDC3 or si-control. After 48 hours of 
transfection, cellular RNA was extracted from both 
cells using the RNeasy Mini Kit (Qiagen). cDNA was 
synthesized with an RT2 First Strand cDNA Kit 
(Qiagen) according to the manufacturer's protocol. To 
examine the expression of 84 inflammasome- 
associated genes, a human inflammasomes RT2 
Prolifer PCR array (Qiagen) was performed with the 
SYBR Green real-time PCR-based method on 7500 
Fast real-time PCR system (Applied Biosystems)[20]. 
The cycling program was as follows: 95°C for 10 
minutes for 1 cycle, then 40 cycles of 95°C for 15 
seconds and 60°C for 1 minute. Data were analyzed 
using RT2 Profiler PCR Array Data Analysis software 
(http://pcrdataanalysis.sabiosciences.com/pcr/array
analysis.php). Gene expression was normalized to 5 
internal control genes (beta-actin, beta-2-microglo-
bulin, glyceraldehyde-3-phosphate dehydrogenase, 
hypoxantine phosphoribosyltransferase 1 and 
ribosomal protein, large, P0) to determine the fold 
change in gene expression by 2-ddCT (comparative 
cycle threshold) method. 

Statistical analysis 
All experiments were repeated at least three 

times independently, and all statistical analyses were 
performed using DA Stats software (O. Nagata, Nifty 
Serve: PAF01644). Statistical analyses were performed 
using a 2-tailed Student t-test or Welch t-test for 
paired data. 

Conclusion 
Recent studies demonstrated that ARRDC3 also 

play roles in human cancer signaling [54, 55]. We 
identified ARRDC3 as an important positive regulator 
in NAFLD and NASH. Targeting ARRDC3 may be a 
good strategy to develop a novel therapeutic method 
against NAFLD and NASH. 
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