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Abstract 

We document an established population of blacklegged ticks, Ixodes scapularis, on Corkscrew Island, 
Kenora District, Ontario, Canada. Primers of the outer surface protein A (OspA) gene, the flagellin (fla) 
gene, and the flagellin B (flaB) gene were used in the PCR assays to detect Borrelia burgdorferi sensu lato 
(s.l.), the Lyme disease bacterium. In all, 60 (73%) of 82 adult I. scapularis, were infected with B. 
burgdorferi s.l. As well, 6 (43%) of 14 unfed I. scapularis nymphs were positive for B. burgdorferi s.l. An I. 
scapularis larva was also collected from a deer mouse, and several unfed larvae were gathered by flagging 
leaf litter. Based on DNA sequencing of randomly selected Borrelia amplicons from six nymphal and 
adult I. scapularis ticks, primers for the flagellin (fla) and flagellin B (flaB) genes reveal the presence of B. 
burgdorferi sensu stricto (s.s.), a genospecies pathogenic to humans and certain domestic animals. We 
collected all 3 host-feeding life stages of I. scapularis in a single year, and report the northernmost 
established population of I. scapularis in Ontario. Corkscrew Island is hyperendemic for Lyme disease 
and has the highest prevalence of B. burgdorferi s.l. for any established population in Canada. Because of 
this very high infection prevalence, this population of I. scapularis has likely been established for decades. 
Of epidemiological significance, cottage owners, island visitors, outdoors enthusiasts, and medical 
professionals must be vigilant that B. burgdorferi s.l.-infected I. scapularis on Corkscrew Island pose a 
serious public health risk. 
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Introduction 
The blacklegged tick, Ixodes scapularis (northern 

populations previously treated as I. dammini) (Acari: 
Ixodidae), is the principal North American vector of 
the Lyme disease bacterium, Borrelia burgdorferi sensu 
lato (s.l.) east of the Rocky Mountains [1]. In northern 
latitudes, I. scapularis typically has a 2-yr life cycle that 
consists of egg, larva, nymph, and adult (male, 

female), and has a diapause in the winter months 
throughout northwestern Ontario. Worldwide, the B. 
burgdorferi s.l. complex comprises of at least 23 
genospecies or genomospecies. In North America, at 
least 10 B. burgdorferi s.l. genospecies/genomospecies 
are present, namely B. americana, B. andersonii, B. 
bissettii, B. burgdorferi sensu stricto (s.s.), B. 
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californiensis, B. carolinensis, B. garinii, Borrelia 
genomospecies 2, B. kurtenbachii, and B. mayonii [2-10]. 
Of these genospecies, B. americana, B. andersonii, B. 
bissettii, B. burgdorferi s.s., B. garinii, B. kurtenbachii, and 
B. mayonii are known to be pathogenic to humans and 
certain domestic animals [9, 11-14].  

Blacklegged ticks feed on more than 125 North 
American vertebrates (avian, mammalian, reptilian) 
[15]. This ixodid tick has been collected from at least 
81 bird species in the United States and Canada and, 
in particular, songbirds (Passeriformes) play a key 
role in the wide dispersal of I. scapularis larvae and 
nymphs. Biogeographically, larval and nymphal I. 
scapularis have been reported during spring migration 
on Neotropical songbirds as far north and as far west 
as Slave Lake, Alberta [16, 17]. As well, I. scapularis 
immatures have been recorded on passerine migrants 
in Saskatchewan, Manitoba, northern Ontario, 
southern Ontario, Quebec, New Brunswick, Nova 
Scotia, and Prince Edward Island [16-21]. Pertinent to 
the present study, passerine migrants provide an 
influx of bird-feeding ticks annually to the Kenora 
District.  

Historically, Banerjee et al. [22] isolated B. 
burgdorferi s.l. from an I. scapularis female collected 
from a resident dog of Kenora, Ontario with no 
history of travel. Subsequently, Canadian tick 
researchers reported B. burgdorferi s.l.-positive I. 
scapularis on people and domestic hosts residing 
between Kenora and Clearwater Bay, and further 
north in the Kenora District [23]. In the upper 
Midwest, Turtinen et al. [24] reported an infection 

prevalence of 35.7% for B. burgdorferi s.l. in I. scapularis 
adults collected in Wisconsin. 

The aim of this study was to determine if there is 
an established population of I. scapularis on 
Corkscrew Island and to determine the prevalence of 
B. burgdorferi s.l. in these ticks. 

Materials and Methods 
Study area. Corkscrew Island, Ontario (49º 40′ 

36″ N, 94º 40′ 58″ W) is located in the northern part of 
Lake of the Woods between Clearwater Bay and 
Kenora, Ontario (Figure 1). This 1064.7 ha, 
zigzag-shaped island is situated along the southern 
fringe of the Canadian Shield, which consists of 
Precambian igneous rock, and lies within the 
southernmost belt of the boreal forest. 
Geographically, this insular tract of land is 1.5 km 
from the mainland (on the east side). A grassy 
meadow extends over part of the core area, while a 
deciduous-coniferous forest covers much of the 
perimeter of the island. The predominant tree species 
include trembling aspen, Populus tremoides; bur oak, 
Quercus macrocarpa; red ash, Fraxinus pennsylvanica; 
black ash, Fraxinus nigra; white spruce, Picea glauca; 
black spruce, Picea mariana; and eastern white pine, 
Pinus strobus. Smaller arboreal shrubs include: 
American hazelnut, Corylus americana; Saskatoon 
berry, Amelanchier alnifolia; bittersweet, Celastrus 
scandens; and smooth rose, Rosa blanda. Poison ivy, 
Rhus radicans, is prevalent, and various grass species 
abound, especially in the central area of the island. 

 

 
Figure 1. Map of the northern part of Lake of the Woods showing the geographic location of Corkscrew Island, Kenora District, Ontario. 
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Large animals consist of white-tailed deer, 
Odocoileus virginianus; American black bear, Ursus 
americanus; and gray wolf, Canis lupus. Medium-sized 
animals include Canadian beaver, Castor canadensis; 
red fox, Vulpes vulpes; raccoon, Procyon lotor; and 
snowshoe hare, Lepus americanus. Small mammals 
comprise: deer mouse, Peromyscus maniculatus; 
meadow vole, Microtus pennsylvanicus; southern 
red-backed vole, Myodes gapperi; northern short-tailed 
shrew, Blarina brevicauda; eastern chipmunk, Tamias 
striatus; least chipmunk, Tamias minimus; and 
American red squirrel, Tamiasciurus hudsonicus.  

Gallinaceous birds include Ruffed Grouse, 
Bonasa umbellus and Spruce Grouse, Falcipennis 
canadensis, whereas some of the prominent 
ground-foraging passerines include Song Sparrow, 
Melospiza melodia; Pine Grosbeak, Pinicola enucleator; 
Eastern Phoebe, Sayornis phoebe; and Blue Jay, 
Cyanocitta cristata. 

Tick collection. Blacklegged tick adults were 
collected by flagging low-level vegetation during the 
spring and fall bimodal questing periods (spring 2014 
to spring 2016) (Figure 2A, B). Nymphs were collected 
from the leaf litter by flagging around bur oaks 
during late May and early June. The habitats for 
flagging included open field (grass meadow), ecotone 
(woods edge), and open canopy (sparse trees). The 
flag cloth was made from a piece of sweatshirt fleece 
measuring 70 cm by 80 cm. Ticks were removed from 
the flag with fine-pointed tweezers, and put in 8.5 mL 
polypropylene vials (15.7 mm × 74 mm) with a label 
listing background information (i.e., geographical 
location, date collected). A 7-mm hole in the 
polyethylene push-cap (15.7 mm diameter) provided 
ventilation for the ticks. After the ticks were inserted, 
a piece of tulle netting was placed over the mouth of 
the vial before inserting the push-cap preventing ticks 

from escaping. The vial was placed in a self-sealing, 
double-zippered plastic bag with a slightly moistened 
section of paper towel, and sent in a bubble-pack 
envelope to the laboratory (JDS). A taxonomic key 
and re-description information were employed for 
morphological identification [15, 25].  

We flagged leaf litter within a radius of 3 m from 
the trunks of mature bur oaks in both open canopy 
and ecotone areas for nymphs during the nymphal 
questing period (28 May 2016 – 19 June 2016) (Figure 
2C).  

In order to check winter hardiness, we set out 
live I. scapularis adults in a wooded area in October 
(2015) and collected them in April (2016). They were 
placed in vented polyethylene vials that were inserted 
in a vented, plastic canister (63 mm × 135 mm). This 
container was covered with aluminum screen for 
mouse exclusion. The screened canister was then put 
in an open-ended wooden crate (80 mm × 125 mm × 
150 mm) for hoof protection. A layer of leaves was 
placed over the overwinter box to reflect the 
surrounding leaf layer.  

Spirochete detection. During Phase 1, we sent 
live ticks to the vector ecology and zoonotic diseases 
laboratory (JFA) for culturing. Live ticks were 
cultured in Barbour-Stoenner-Kelly (BSK) medium, 
and dead ticks were directly tested using DNA 
extraction and PCR testing. The DNA detection 
protocols have been described previously [26-28]. 
Although Persing et al. [26] used both the flagellin 
gene (fla) and the major outer surface protein A 
(OspA) gene, which is on the 49-kbp linear plasmid, 
we only employed the OspA gene in Phase 1 study. 
Appropriate negative and positive controls were 
used. 

 

 
Figure 2. Blacklegged ticks, A) male, B) unfed female, and C) unfed nymph. Bar, 1 mm. Photo credit: Kellyn Hough 
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For Phase 2, ticks were put in 94% ethyl alcohol 
and forwarded to the environmental epidemiology 
research laboratory (KLC). These ticks were PCR 
tested using primers of the flagellin B (flaB) gene and 
the 16S-23S r RNA intergenic spacer gene. For ticks 
collected in the latter part of Phase 2, we only used the 
flaB gene. The methodology is described in Scott et al. 
[29]. In Phase 2, the negative control consisted of 
nuclease-free TE buffer. In order to prevent DNA 
contamination, a positive control sample was not 
used. Amplicons of the 194-bp (base position 313 to 
506) and the 206-bp (base position 532 to 737) of the B. 
burgdorferi s.l. flaB gene were obtained from four I. 
scapularis adults (14-5A192A-1, 14-5A197, 14-5A201A, 
15-5A79A) using PCR1 and PCR2 primer sets, 
respectively.  

For Phase 3, ticks were sent by courier to the 
biomolecular laboratory (JEF). These ticks were PCR 
tested using primers of the flagellin (fla) gene to detect 
B. burgdorferi s.l., and the procedures are described 
elsewhere [30, 31].  

The infection prevalence of B. burgdorferi s.l. in I. 
scapularis adults was calculated by dividing the total 
number of B. burgdorferi s.l.-infected ticks by the total 
number of I. scapularis males and females tested. 
Likewise, the same calculations apply to nymphs. 

Nucleotide sequences. In phase 2, DNA 
sequences of the flaB gene of B. burgdorferi s.l. 
amplicons were deposited in the GenBank database 
with accession numbers: KT807493, KT827334 for tick 
14-5A192-1; KT807495, KT827328 for tick 14-5A197; 
KT807496, KT827329 for tick 14-5A201A; and 
KX011448 for tick 15-5A79A. In phase 3, nucleotide 
sequences for the fla gene were obtained from an 
unfed nymph (16-5A36A) and an unfed female 
(16-5A10F4), and the GenBank accession numbers are 
KX459422 and KX459423, respectively. 

Results 
Tick collection. All host-feeding life stages 

(larvae, nymphs, adults) of I. scapularis were collected 
from Corkscrew Island. In total, 130 I. scapularis adults 
were gathered by flagging low-level vegetation 
during a 3-yr period (Figure 2A, B). In addition, we 
gleaned 15 unfed, questing I. scapularis nymphs from 
the forest floor by flagging leaf litter contiguous to bur 
oaks during the late spring (28 May to 19 June 2016) 
(Figure 2C). An I. scapularis larva was collected from a 
juvenile deer mouse, which captured in a domestic 
mouse trap on 3 September, 2016; several unfed, 
questing larvae were also obtained by flagging leaf 
litter around bur oaks in September and early October 
2016. 

In addition, an I. scapularis female was removed 
from an adult human female in mid-October 2013 and 

an I. scapularis male was detached from an adult 
human male in May 2016; these adult ticks were both 
attached to seasonal cottagers on Corkscrew Island. 

We found that the ecotone and open canopy had 
the most I. scapularis ticks. During flagging, we found 
a close correlation between bur oak and questing I. 
scapularis. We estimate that 90% of the I. scapularis 
nymphs and adults were collected within 3 m of the 
trunks of bur oaks.  

For the overwinter survival study (2015-2016), 13 
(93%) of 14 I. scapularis males and females 
overwintered successfully in an outdoor wooded area 
(a single female died). Because we have collected I. 
scapularis adults, each spring, for 3 years, we have 
documented the overwintering of I. scapularis adults 
at this site for 3 consecutive winters.  

A sample of 20 adult American dog ticks, 
Dermacentor variabilis, was collected but not tested for 
B. burgdorferi s.l. because this tick species is not a 
competent vector of Lyme disease spirochetes. 
Ecologically, we found that American dog ticks are 
sympatric with blacklegged ticks on Corkscrew 
Island. Two unfed nymphs of the rabbit tick, 
Haemaphysalis leporispalustris, were collected from the 
leaf litter by flagging in late spring. As well, several H. 
leporispalustris larvae were collected by flagging leaf 
litter in late summer. 

Spirochete detection. Of 130 I. scapularis adults 
collected, 60 (73%) of 82 were positive for B. 
burgdorferi s.l. (Table 1). Overall, flagging was 
conducted for 18.0 hours, which averaged 7.2 I. 
scapularis males and females per hour (range, 3 to 28 
adults/h). Using DNA sequencing, B. burgdorferi s.s. 
was characterized. A live culture of B. burgdorferi s.l. 
was obtained from one of the I. scapularis females 
(14-5A134B) during Phase 1 (JFA); however, it was not 
sent for DNA sequencing.  

 

Table 1. Detection of B. burgdorferi s.l. in I. scapularis adults 
collected by flagging on Corkscrew Island, Ontario, 2014-2016 

Collection  
period  

No. of  
ticks tested 

Ticks testing  
PCR-pos. (%) 

Spring 2014 4 3 (75) 
Fall 2014 15 12 (80) 
Spring 2015 35 23 (66) 
Fall 2015 10 7 (70) 
Spring 2016 18 15 (83) 
Total 82 60 (73) 
PCR-pos., Borrelia burgdorferi s.l.-positive 

 
 
Of the I. scapularis nymphs tested, 6 (43%) of 14 

were positive for B. burgdorferi s.l. This infection 
prevalence is the highest ever reported for I. scapularis 
nymphs in Canada. Since transovarial transmission of 
B. burgdorferi s.l. in I. scapularis is not present, larvae 
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were not tested for B. burgdorferi s.l. The collection of 
all host-feeding stages (larva, nymph, adult) of I. 
scapularis underpins the presence of an established 
population of I. scapularis on Corkscrew Island. In 
addition, the two H. leporispalustris nymphs were 
tested for B. burgdorferi s.l., but were negative. 

Discussion 
Significant epidemiological findings. We 

document a hyperendemic area for Lyme disease on 
Corkscrew Island, and validate that I. scapularis ticks 
overwinter successfully on this island. At the same 
time, we report the most northern Lyme disease 
endemic area in Ontario. All three host-feeding life 
stages were collected in a single year, and these 
collections confirm an established population of 
blacklegged ticks. The infection prevalence for adult 
B. burgdorferi s.l. was 73%; this is the highest infection 
prevalence reported anywhere in Canada. 
Additionally, 43% of I. scapularis nymphs were 
infected with Lyme disease spirochetes; this is the 
highest nymphal infection rate for I. scapularis 
reported in Canada. Our findings show that people 
frequenting Corkscrew Island should take 
precautions to avoid contracting Lyme disease and 
associated tick-borne diseases.  

Establishment on Corkscrew Island of I. 
scapularis. There are several possible ways that B. 
burgdorferi s.l.-infected I. scapularis could have become 
established on Corkscrew Island. Geographically, the 
closest point between the island and the mainland is 
1.5 km (Figure 1). White-tailed deer are good 
swimmers, and can easily make the crossing; in fact, a 
Sitka black-tailed deer, Odocoileus hemionus sitkensis, 
was reported to have swum 22.5 km from one island 
to another island along Alaska's southeastern coast 
[32]. In late fall and spring, white-tailed deer have 
hollow hair, which adds buoyancy for long-distance 
crossings. When Lake of the Woods freezes in late 
December and early January for several months each 
winter, large mammals (i.e., white-tailed deer, black 
bear, gray wolves) can cross the ice from the 
mainland, unhindered. However, I. scapularis ticks are 
not questing in this frigid weather when sub-zero 
temperatures and snow cover prevail. Therefore, I. 
scapularis would not be introduced during the winter. 
With an overwinter survival of 93% at this site, we 
show that I. scapularis is well adapted to withstand 
cold climes. Black bears are also good swimmers, and 
have been seen swimming to Corkscrew Island. Black 
bears could, likewise, bring I. scapularis ticks to the 
island [33]. Additionally, a person with a companion 
animal, such as a dog, could introduce all 3 
host-feeding life stages of I. scapularis. If a gravid 
female is introduced by a transient mammal from the 

mainland, it could oviposit in the leaf litter on 
Corkscrew Island; however, the progeny would not 
be infected with B. burgdorferi s.l. Transovarial 
transmission of B. burgdorferi s.l. is not present in I. 
scapularis ticks. Alternatively, a heavily-infested 
songbird with I. scapularis immatures could start an 
established population of I. scapularis [34]. Since 
songbirds transport B. burgdorferi s.l.-infected I. 
scapularis immatures, it is most likely avian hosts were 
the original mode of establishing a Lyme disease 
endemic area on Corkscrew Island. 

A high prevalence of B. burgdorferi s.l. in an 
established population of I. scapularis indicates that 
Lyme disease spirochetes have likely been present for 
many years. For example, this phenomenon is borne 
out at Point Pelee National Park, Ontario, at the 
southern tip of Canada; there, Banerjee et al. [35] 
found that the B. burgdorferi s.l. infection prevalence in 
1997 was nil. Later, Thorndyke [36] revealed that the 
prevalence of B. burgdorferi s.l. in I. scapularis adults 
shifted gradually and incrementally from 5.5% (2005) 
to 27.4 (2012). Although there was a fluctuation of B. 
burgdorferi s.l. presence from year to year, there was 
an increase in infection prevalence with time. 
Historically, Watson and Anderson [37] provide the 
first account of an established population of I. 
scapularis in Canada; field studies in 1972 and 1973 
revealed all host-feeding life stages of I. scapularis at 
Long Point, Ontario. Because the infection prevalence 
(73%) of B. burgdorferi s.l. in I. scapularis adults on 
Corkscrew Island is higher than Long Point, Ontario 
(60%), we suggest that the I. scapularis breeding 
colony on Corkscrew Island pre-dates the one at Long 
Point, but was overlooked. 

There is anecdotal evidence that patients have 
contracted Lyme disease on Corkscrew Island and the 
surrounding area. These patients developed multiple 
clinical symptoms indicative of Lyme disease, 
including progressive arthritis, neurological deficits, 
and profound fatigue. Of medical significance, 
Scrimenti [38] described an erythematous rash on a 
patient (a physician), who was bitten by a tick while 
grouse hunting in the fall of 1969 in Wisconsin; he 
represents the first recognized case of Lyme disease in 
North America in modern history. The attached tick 
was most likely an I. scapularis female because 
American dog ticks (D. variabilis) do not quest in 
October in this geographic area.  

Based on accumulated degree-days and the 
placement of I. scapularis ticks in outdoor housing 
units, Lindsay et al. [39] postulated that the climate in 
the Kenora District, Ontario was not warm enough for 
I. scapularis to survive and become an established 
population. These researchers stated that I. scapularis 
would be limited to areas of Ontario south of an 
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imaginary line between North Bay and Thunder Bay, 
and westward to the Rainy River District, which is 
south of Kenora. Conversely, our study clearly shows 
that there are adequate degree-days for I. scapularis to 
thrive on Corkscrew Island. In the present study, 
blacklegged tick adults were winter hardy for 3 
consecutive winters (2014, 2015, 2016). What was once 
considered by some researchers as a hostile 
environment for I. scapularis has turned out to be one 
of the most hyper endemic areas for Lyme disease in 
Canada. 

Blacklegged ticks have an innate ability to 
withstand weather extremes [40]. Based on historical 
annual weather data, the maximum extreme high at 
Kenora was recorded at 36ºC, whereas the minimum 
extreme low was -44ºC. The normal accumulated 
snow cover is 22 cm (Environment Canada). 
Blacklegged ticks are adapted to these conditions 
because they have antifreeze-like compounds 
(glycoproteins) in their bodies [41]. Since sub-zero, 
ambient air temperatures prevail at Corkscrew Island 
throughout the winter, I. scapularis can survive in the 
leaf litter under an insulating blanket of snow. During 
hot summer days, they descend into the cool, moist 
leaf litter, and re-hydrate. Based on our studies, harsh 
ambient air temperatures are not a limiting factor in 
the survival of I. scapularis in the Kenora District.  

High prevalence of B. burgdorferi s.l. On 
Corkscrew Island, there are several biotic factors that 
could contribute to the exceptionally high prevalence 
of B. burgdorferi s.l. in I. scapularis. Small mammals, 
which are reservoir-competent hosts for B. burgdorferi 
s.l. include: deer mice [42, 43], northern short-tailed 
shrew [44, 45], eastern chipmunks [46, 47], meadow 
voles [48], and southern red-backed voles [49]. 
Although white-tailed deer are incompetent 
reservoirs of B. burgdorferi s.l. [50], they act as 
amplifying hosts of I. scapularis ticks, and support 
their reproduction. Alternate hosts for I. scapularis 
adults include: woodchuck, American red squirrel, 
raccoon, red fox, gray wolf, and American black bear 
[51, 52]. Blacklegged tick males and females 
commonly mate on deer and, when females become 
fully engorged, they drop from their hosts into the 
leaf litter of tick-conducive habitats. Because 
blacklegged ticks are subject to desiccation, they 
favour sheltered woodlands and shady ecotones, and 
employ ambush strategies to parasitize their hosts.  

When small mammals transect the microhabitat 
where I. scapularis females have deposited their eggs, 
they can become highly parasitized by hundreds of 
host-seeking larvae [34]. If these small mammals are 
already spirochetemic, they can transmit B. burgdorferi 
s.l. to the larvae during feeding and, subsequently, 
these replete larvae will transstadially pass Lyme 

disease spirochetes to nymphs during the 
larva-nymph moult. During the next blood meal, 
these nymphs can transmit spirochetes to the next 
hosts. Since white-footed mice, Peromyscus leucopus, 
are not present on Corkscrew Island, the high 
prevalence of B. burgdorferi s.l. in I. scapularis 
elucidates the fact that this small mammal is not 
needed to maintain a high level of borrelial 
endemicity. With such a high prevalence of B. 
burgdorferi s.l. in I. scapularis adults on Corkscrew 
Island, we found that the enzootic transmission cycle 
of B. burgdorferi s.l. is very efficient.  

Questing activity of blacklegged ticks tied to 
oaks. In the present study, approximately 90% of the 
I. scapularis ticks were collected within 3 m of the 
trunks of bur oaks. Ostfeld et al. [53] found that 
whenever there is an abundant acorn crop, the 
number of mice significantly increased the following 
year and, likewise, the number of I. scapularis nymphs 
on white-footed mice strengthened. Large mast 
production provides highly nutritious food for both 
cricetid (i.e., deer mice) and sciurid (i.e., eastern 
chipmunks) rodents and white-tailed deer. Gravid 
females frequently drop from their hosts (i.e., 
white-tailed deer) in juxaposition to bur oaks. Stafford 
[54] discovered that I. scapularis larvae normally travel 
no more than 40 cm, but can crawl up to 2 m from the 
egg-laying site. In addition, Carroll [55] collected 
larvae on the trunks of oaks to a height of 2 m, which 
indicates that gravid females frequently drop from 
their hosts near oak trees. When we mapped the 
position of bur oaks and the sites where I. scapularis 
adults and nymphs were collected, we found that 
there was a direct correlation between these two biotic 
variables. Not only do bur oaks act as a source of high 
energy acorns, they provide a tick-conducive habitat 
for I. scapularis. As well, bur oaks act as a communal 
hub for deer and small mammals, and provide 
high-energy food for deer and reservoir-competent 
rodents. Moreover, other arboreal plants, such as 
American hazelnuts and Saskatoon berries, provide 
nutrition for rodents. 

Blacklegged ticks use chemosensilla (sense 
organs) to detect ammonia, carbon dioxide, lactic acid, 
and various phenols [56]. These compounds play a 
vital role in finding their hosts. In particular, 
blacklegged ticks are attracted to host scent trails and 
the source of ammonia, which is generated by animal 
by-products (e.g., urine, faeces). Another tick 
attractant, lactic acid, is produced by mammalian 
hosts during normal metabolism and exercise. 
Phenols are present in urine, sweat, body odor, and 
estrogen hormones (i.e., estradiol), and are also 
released from decomposing leaf litter. Moreover, 
carbon dioxide from exhaled breath stimulates ticks, 
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and activates front leg flailing. Tick chemosensilla 
continue to be active as long as there is a chance of 
parasitizing an approaching host [56]. In the spring, 
gravid females commonly lay their eggs in the leaf 
litter in close proximity to bur oaks on Corkscrew 
Island, and start a new generation of I. scapularis. 

When we flagged the leaf litter in the vicinity of 
bur oaks, we found that blacklegged tick nymphs 
were actively questing in late May through June. After 
nymphs parasitize a host and obtain a blood meal, 
they will moult to adults in 5 to 9 weeks. If they are 
not successful in parasitizing a host during the 
summer, they will overwinter and start host-seeking 
in the spring. Based on the presence of nut-producing 
oaks and highly-efficient, reservoir-competent hosts, 
Corkscrew Island has natural amenities (i.e., ideal 
microclimate, suitable hosts) to support an established 
population of I. scapularis. Moreover, the abundance 
of reservoir-competent hosts on Corkscrew Island 
helps to reinforce and sustain the enzootic 
transmission of B. burgdorferi s.l.  

Presence of I. scapularis immatures on 
Corkscrew Island. In this study, we focused on the 
collection of I. scapularis adults because they are the 
easiest to collect and they have had two previous 
blood meals and represent the highest level of B. 
burgdorferi s.l. infectivity. Over the 3-year study 
period, we allowed enough time for this tick species 
to complete its entire life cycle. Rand et al. [57] found 
that when white-tailed deer, which are 
reservoir-incompetent hosts, were completely and 
permanently eliminated from Monhegan Island, 16 
km off Maine's coast, the B. burgdorferi s.l. infection 
prevalence in I. scapularis adults dropped from 75% to 
29% in four years. Based on their findings, we can 
hypothesize that I. scapularis larvae and nymphs are 
feeding on small mammals with a high prevalence of 
spirochete infection on Corkscrew Island, and that 
these ixodid immatures become infected with B. 
burgdorferi s.l. from spirochetemic hosts. Since unfed I. 
scapularis nymphs had infection prevalence of 43%, 
terrestrial small mammals are probably acting as the 
reservoirs for spirochetal infection. Because both I. 
scapularis nymphs and adults on Corkscrew Island 
have such an elevated prevalence of B. burgdorferi s.l., 
we have substantial evidence that Lyme disease 
spirochetes are cycling enzootically within this highly 
endemic focus.  

 Small mammals are maintenance hosts and 
birds are incidental hosts in the enzootic cycle of B. 
burgdorferi s.l. [44]. Without larvae and nymphs 
feeding on highly-infected B. burgdorferi s.l. reservoirs, 
I. scapularis adults would not be able to acquire high 
infectivity, namely 73%, in our study. Scott and 
Durden [21] found that bird-feeding I. scapularis 

nymphs collected in central and eastern Canada had 
an infection prevalence of 35%. Most significantly, 
when replete B. burgdorferi s.l.-infected I. scapularis 
nymphs drop to the leaf litter from avian hosts, they 
do not double their infection prevalence, and would 
not have obtained the infection prevalence of 73%. 
Since songbird-derived I. scapularis immatures only 
generate a B. burgdorferi s.l.-infection prevalence of 
35% or less, we conclude that I. scapularis adults with 
an infection prevalence of 73% originate from 
terrestrial reservoir hosts on Corkscrew Island. In 
order for a high B. burgdorferi s.l. prevalence to be 
maintained, there must be large mammals for I. 
scapularis females to acquire blood meals, and males 
and females to mate. White-tailed deer, black bears, 
raccoons, red fox, and gray wolves act as suitable 
hosts on Corkscrew Island to facilitate mating of I. 
scapularis adults and propagate a new generation of I. 
scapularis ticks [33]. In addition, unfed nymphs are 
actively questing in late June for highly efficient, 
reservoir-competent, small- and medium-sized hosts 
on Corkscrew Island. With respect to spirochete 
infection, an unfed nymph is one and the same as a 
replete larva; the only difference, is that it has gone 
through the larva-nymph moult. Likewise, males and 
unfed females are analogous to fully engorged 
nymphs; only, they have advanced through the 
nymph-adult moult. With the collection of all 3 
host-feeding life stages in a single year, we are 
assured that an established population of I. scapularis 
is present on Corkscrew Island. Moreover, our 
findings underpin the fact that this tick species is 
cycling through all life stages (egg, larva, nymph, 
adult). Now that we have studied I. scapularis for three 
years, and have allowed it to complete it's 2-year life 
cycle, we fulfil the criteria for an estabished 
population of I. scapularis on Corkscrew Island.  

Transportation of I. scapularis to Corkscrew 
Island by songbirds. Migratory songbirds play a key 
role in the wide dispersal of I. scapularis larvae and 
nymphs. Peak northward songbird migration in 
Canada occurs during May and early June, and this 
time of year coincides with the peak questing period 
of I. scapularis nymphs. When Neotropical and 
southern-temperate passerines make landfall at 
food-rich stopovers located along their migration 
routes, they can be parasitized by I. scapularis larvae 
and nymphs. Along the flight path, tick-infested 
songbirds could release I. scapularis immatures on 
Corkscrew Island and the surrounding islands and on 
the mainland. Anderson & Magnarelli [44] reported 
19 I. scapularis nymphs on an American Robin, Turdus 
migratorius, and 21 larvae on a Swamp Sparrow, 
Melospiza georgiana. If passerines are highly infested 
with I. scapularis immatures, they can initiate new foci 
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of I. scapularis [34]. These bird-feeding ticks can be 
infected with B. burgdorferi s.l. and other 
tick-associated pathogens. Passerines may also 
acquire I. scapularis immatures on Corkscrew Island 
and transport them to the surrounding islands and 
the mainland. 

En route to the boreal forest, passerines widely 
disperse Lyme disease vector ticks across Canada 
during northbound spring migration [16-21, 58-63]. 
Long-distance migrants transport Neotropical ticks to 
Canada from as far south as Brazil [61-63]. Notably, 
Scott and Durden [21] found that 35% of the I. 
scapularis nymphs collected from songbirds in eastern 
and central Canada were infected with B. burgdorferi 
s.l. Since the infection prevalence in the I. scapularis 
adults on Corkscrew Island is double the level of 
infection in incoming replete, songbird-transported I. 
scapularis nymphs, we suggest that this tick 
population has a long history of being established for 
decades prior to 1972 in this northern locality.  

Prevention strategies to minimize I. scapularis. 
Several attempts have been made in North America to 
minimize the presence of I. scapularis. When 
white-tailed deer were extirpated on Monhegan 
Island, Maine, the incidence of I. scapularis was 
reduced but not eliminated [57]; songbirds continue to 
introduce I. scapularis larvae and nymphs annually. 
On Corkscrew Island, birds can re-introduce I. 
scapularis immatures and, similarly, deer parasitized 
by I. scapularis adults, can swim to the island. 
Controlled burns have temporally reduced the 
number of I. scapularis ticks, but the tick population 
replenished itself within three years [64-66]. To 
survive, ticks hide in protective sites, such as topsoil 
cracks, earthworm holes, and rotten logs. In order to 
make the environment less conducive to ticks, 
seasonal cottage owners on Corkscrew Island should 
keep grass cut and leaves raked [67]. Timely acaricide 
sprays have helped to reduce the occurrence of I. 
scapularis, but have failed to completely eliminate I. 
scapularis colonies [68]. On Corkscrew Island, bur oaks 
should be cut down around cottages and outbuildings 
to deter deer and rodents. Compost bins exacerbate 
the tick problem because they attract rodents infested 
with ticks. At the end of the day, cottagers and visitors 
should do a full body tick check. If a tick is found 
attached, take a close-up, digital, colored photograph 
to document the tick bite. The attached tick should be 
removed promptly with fine-pointed stainless steel 
tweezers. Grip the hypostome (barbed mouthpart) at 
the surface of the skin, and gently and firmly pull tick 
straight out. The tick should be kept for identification 
and PCR testing. The tick can be preserved in a tightly 
sealed vial of rubbing alcohol or ethanol. 

Human and zoonotic health considerations. 

Lyme disease is a zoonotic spirochetosis that is 
typically transmitted to humans and other vertebrates 
by ixodid ticks. Transmission normally occurs 24-48 
hours after tick attachment [68]; however, Cook [69] 
reports transmission of Lyme disease spirochetes in 
less than 16 hours, especially if the tick salivary glands 
are infected. Notably, other tick-borne pathogens can 
be transmitted much quicker. For instance, Powassan 
virus can be transmitted in less than 15 minutes [70]. 
After transmission, Lyme disease spirochetes 
progress and circulate throughout the body, and can 
simultaneously affect many organs and tissues. 
Patients may have an erythematous rash (i.e., 
bull's-eye, homogenous, atypical, erythema 
multiforme); however, 42% or less, have a rash 
[71-74]. As this multisystem disease advances, 
patients can present with a diverse array of 
symptoms, including fatigue, flu-like symptoms, 
arthritis, inflammation, radicular pain, peripheral 
neuropathy, and cognitive dysfunction [75]. 
Spirochetes evade host defenses, locate intracellularly, 
and form more resistant forms [76]; they also attach 
to, invade, and kill B and T lymphocytes [77]. As the 
zoonosis advances, spirochetes produce neurotoxins 
that induce inflammatory cytokines (i.e., interleukin 1, 
interleukin 6, TNF-alpha) [78, 79], and can result in 
mitochondrial dysfunction, oxidative stress, and 
physical and hormonal abnormalities [79, 80]. If left 
untreated or inadequately treated, B. burgdorferi s.s. 
will sequester and persist in deep-seated tissue, 
including brain [81-83], bone [84], collagenous tissues 
(ligaments, tendons) [85, 86], eye [87], glial and 
neuronal cells [88, 89], muscle [90], and 
fibroblasts/scar tissue [91]. Since B. burgdorferi s.s. is 
pleomorphic, treatment must take into account 
diverse forms (i.e., spirochetes, round bodies, blebs, 
granules); collectively, they form slime-coated, 
polysaccharide matrices, called biofilms [92]. Persister 
cells, which survive antimicrobials, must be 
recognized in refractory cases [93]. Lyme disease, 
which often manifests as a chronic infection, can 
sometimes be fatal [71, 81, 94]. Since spirochetes lodge 
in human testicles, semen, and vaginal secretions, B. 
burgdorferi s.s. can be sexually transmitted [95, 96]. 
Early treatment is very important; delayed treatment 
of Lyme disease may be long and difficult [97, 98]. 

In conclusion, we collected all 3 host-feeding life 
stages of I. scapularis, and provide the first authentic 
report of an established population on Corkscrew 
Island, Kenora District. We document the 
northernmost known breeding colony of I. scapularis 
in Ontario. This northerly hyperendemic area for 
Lyme disease has a B. burgdorferi s.l. infection 
prevalence of 73%, and constitutes the highest known 
infection prevalence for B. burgdorferi s.l. in all of 



Int. J. Med. Sci. 2016, Vol. 13 

 
http://www.medsci.org 

889 

Canada. Our study reveals that white-footed mice are 
not the primary reservoirs of B. burgdorferi s.l. at this 
site or possibly at other sites in North America. Not 
only is there a well-established population of I. 
scapularis on Corkscrew Island, ticks are infected with 
B. burgdorferi s.s., which is pathogenic to humans and 
certain domestic animals. Health-care providers need 
to be aware that anyone visiting Corkscrew Island 
during the temperate months can contract Lyme 
disease. Public health officials are legally obligated to 
warn the public that this Lyme disease hotspot poses 
a major public health risk.  
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