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Abstract 

Limbal epithelial progenitors are stem cells located in limbal palisades of vogt. In this review, we 
present the audience with recent evidence that limbal epithelial progenitors may be a powerful 
stem cell resource for the cure of human corneal stem cell deficiency. Further understanding of 
their mechanism may shed lights to the future successful application of stem cell therapy not only 
to the eye tissue, but also to the other tissues in the human body. 
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Introduction 
The human eye, a window to the world, is our 

important photoreceptive organ. A healthy surface of 
the eye is critical for proper vision. The anterior 
surface, usually called ocular surface, is defined by 
the cornea that is surrounding by conjunctiva. And 
the important transition zone between them is limbus 
[1]. The cornea, which forms the central region of the 
ocular surface, provides more than two-thirds of the 
eye’s refractive power. And it also serves a protective 
role by providing the defense against desiccation, 
infection and injury [2]. During the eye development, 
human cornea is one of the last structures being 
formed. The human cornea is a lamellar-structured 
tissue comprised by five layers. The anterior cornea is 
composed of non-keratinized squamous epithelium. 
The substantia propria containing collagenous and 
avascular stroma is sparsely populated with 
keratocytes (fibroblasts). The inner part is a 
monolayer tissue termed endothelium. Interestingly, 
corneal stromal keratocytes and endothelial cells are 
all derived from the neural crest. Each part is 

separated by a membrane, anteriorly by Bowman’s 
layer and posteriorly by Descemets membrane [3, 4]. 
The corneal epithelium is further divided into three 
layers: basal, wing, and squames. Basal cells secrete 
matrix molecules, which is a composition of the 
basement membrane (BM). Squames can protect 
against external environment by forming lateral tight 
junctions, and wing cells play a role in wound healing 
[5]. The conjunctiva, which is divided into three zones 
(bulbar, forniceal and palpebral), is a loose and 
vascularized tissue between sclera and the epidermis 
of the eyelids [6]. The conjunctiva’s most important 
functions are secretory, facilitated by goblet cells and 
immune related, carried out by its resident 
Langerhans cells [7].  

Limbal Epithelial Stem Cells 
Stem cells are undifferentiated cells that can be 

able to provide an unlimited supply of proliferating 
cells. A large body of research indicated that there is a 
stem cell pool reside in the limbal basal region named 

 
Ivyspring  

International Publisher 



Int. J. Med. Sci. 2016, Vol. 13 

 
http://www.medsci.org 

836 

limbal epithelial stem cells (LESC). LESC share several 
features with other somatic stem cells, including small 
cell size [8], high nuclear to cytoplasmic ratio [9], and 
lack expression of differentiation markers [10, 11]. The 
key characteristics of stem cells are high capacity for 
self-renewal and poor differentiation. They have long 
cell cycle time, long life span, error-free proliferation, 
and the ability to divide in an asymmetric way. 
Asymmetric division allows one of the daughter cells 
to maintain stemness and replenish the stem cell pool, 
while the other daughter cell becomes a “transient 
amplifying cell” (TAC) that follows the path of 
differentiation. Transient amplifying cells which have 
a limited proliferative potential can divide more 
frequently than stem cells [9]. After differentiation, 
these cells become “post-mitotic cells” and finally, 
“terminally differentiated cells”, both of which are 
incapable of division [12]. 

Accumulative evidence support limbus is the 
location of LESC. The first experimental evidence for 
the location of LESC was the movement of pigment 
from the limbus towards an epithelial defect in rabbit 
wound healing model [13]. Later, Davanger [1] 
observed a similar migration and proposed that the 
Palisades of Vogt (PV) situated in the limbus 
provided the source of LESC [14]. This movement has 
been described as centripetal migration. And this 
migration results in corneal neovascularization, 
impaired corneal function and conjunctival ingrowth 
[14]. Cotsarelis et al. [15] revealed that [3H] thymidine 
labeling could retained in limbal basal epithelial cells 
(LBEC) for long periods of time, indicating a long cell 
cycle. LBEC was also found to have higher mitotic 
activity than central corneal epithelial cells [16, 17].  
This population which are small and round appear to 
be more primitive [8].  Another evidence is that 
complete [14, 18] or partial [19, 20] removal of limbal 
epithelium can lead to abnormal corneal wound 
healing, and the transplantation of LESC can improve 
epithelial healing. 

The limbal basal region is rich in stem cell 
markers and lack of differentiation markers. 
Cytokeratin 19 (CK19) is a marker expressed in both 
limbal basal cells and conjunctival epithelial cells [6]. 
ΔNp63α, well known as a progenitor cell marker, was 
identified in the LESC using western blot [21]. 
ΔNp63α and ABCG2 expressed in the floating spheres 
obtained from human central corneal cells [22]. 
ABCG2 was also found to be expressed increasingly 
from central cornea to peripheral cornea and finally 
the limbus [22, 23]. Cytokeratin15 (CK15) is a stem cell 
marker which is specifically expressed in limbal basal 
epithelial cells [24, 25]. Other examples are 
differentiation markers cytokeratin 3(CK3), 
cytokeratin 12 (CK12) and connexin 43. Stroma in 

central cornea promoted expression of CK3 while 
stroma in limbus suppressed it. Limbal basal cells and 
the adjacent conjunctiva were lack of CK3 [10]. The 
similar pattern was found in CK12, the corneal 
specific protein [26]. Connexin 43 only expressed 
when corneal epithelium was cultured with corneal 
stroma [27]. However, various scientists used 
different markers to isolate and characterize native 
limbal epithelial progenitor cells (LEPC) (Table 1). 

 

Table 1. Markers used to isolate and characterize natively exist 
LEPC 

Author 
and year 
 

Tissue Markers to 
isolate 

Markers to characterize 

+ - + - 
Ingram, 
2005 [28] 

Human 
umbilical vein 
or aortic 
endothelium 

ND ND Flk-1, CD31 
CD144,CD105, 
CD146, vWF 

CD45  
CD14 

Werner, 
2003 [29] 

Mouse spleen  PKH-26 ND CD34, c-Kit, Flk-1 
Sac-1 

 

Bearzi, 
2009 [30] 

Human 
myocardium 

Flk-1 ND Flk-1, c-Kit CD31, 
vWF 

ND: Not Defined. 
 
 
Apart from those natively existing LEPC in the 

perivascular niche, LEPC could differentiate from 
ESC in vitro, with the markers used various from 
study to study (Table 2), implying a highly 
heterogeneity of such multipotent progenitor cells. 
LEPC can be differentiated from LESC spontaneously 
when cultured in vitro [31], while the presentation of 
BMP4 could promote such differentiation 
dramatically [32, 33] [31]. LEPC could be further 
differentiated into LECs (Table 2). It remains unclear 
whether limbal stromal niche cells, which is believed 
to be derived from LNCs expressing LESC markers, 
can differentiate into LEPC and pericytes, and 
whether such differentiation requires BMP4 signaling.  

The induction from LEPC to LEC in vitro, focus 
on medium and surface, have been summarized in 
Table 3.  

Limbal Stem Cell Niche 
Stem cell (SC) niche is defined in a highly 

specialize microenvironment consist of cellular 
components of extracellular matrix (ECM) and 
secreted growth factors. Collagenase can, but dispase 
cannot, isolate the entire limbal basal epithelial 
progenitors and subjacent mesenchymal cells from 
the limbal stroma [38-40]. In addition, collagenase in 
MESCM is the best known method to isolate the LNCs 
because collagenase in MESCM maintains the 
expression of the SC markers in fresh isolated LNCs 
[39]. Furthermore, the collagenase isolated limbal SCs 
as well as surrounding stromal cells, which are 
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identified as niche cells that support SCs [38-44]. 
These isolated vimentin+ LNCs express embryonic 
and other SC markers and have a differentiation 
potential into vascular endothelial progenitors [41] 
and mesenchymal stem cells which can differentiate 
into osteoblasts, chondrocytes, and adipocytes [41]. 
Interestingly, these cells also possess the pericyte 
phenotype to stabilize the vascular tube-like network 
formed by HUVEC in 3D Matrigel [41]. The 
progenitor status of LNCs [39] and their close contact 
[38, 40] with LEPC is critical to prevent corneal 
differentiation and to retain the limbal epithelial 
progenitors. Cell aggregation may lead to 
mesenchymal condensation as the first step of 
chondrogenesis and subsequent osteogenesis [45-47]. 
Aggregation of human mesenchymal stem cells 
(MSCs) into 3D spheroids enhances the effect of 
anti-inflammation and efficacy of treatment of the 
diseases characterized by sterile tissue injury and 
unresolved inflammation [48]. It remains unclear 
whether such aggregation of NCs mediates 
quiescence, self-renewal, and progeny production of 
stem cells. 

Cumulative evidence showed that self-renewal 
of adult stem cells (SC) are regulated in a specialized 
in vivo microenvironment, termed ‘‘niche’’ [49, 50]. 
The limbal SC niche (LSCN) has both anatomic and 

functional dimensions. It is important and necessary 
to know where LSCN is before functional dimension 
is addressed. Anatomically, the LSCN is located at a 
wave-like structure called “Palisades of Vogt”. It has 
an undulated appearance with invaginations and 
projections into the deeper layers of the corneoscleral 
rim around cornea and also, with basal lamina 
structures. These structures are called limbal crypts 
[51], which provide a specific environment for limbal 
stem cells. This structure is highly pigmented due to 
the presence of melanocytes [1, 52, 53]. Similar to the 
function of human skin bulge area, melanocytes here 
may produce melanin pigments and transport it to 
epithelial cells, which can minimize ultraviolet 
irradiation damage [54]. Moreover, Palisades of Vogt 
is surrounded by a vascular network [54] which 
enables the infiltration of suppressor T-lymphocytes 
[55] and antigen-presenting Langerhan’s cells [56]. 
The highly vascularized structure provides the SC 
with nutrient and oxygen [57]. Unlike that of the 
cornea, the percentage of limbal basal cell membranes 
with hemidesmosomes was significantly less [58]. 
And the basement membrane of the limbus is 
undulating with papillae of stroma extending upward 
[58] and fenestrated [51, 59]. These features suggest 
that LESC might interact with underlying limbal 
stroma cells closely.  

 

Table 2. Induction from ESC to EPC and mature ECs (conditions and markers) 

Author  Origin  From LESC to LEPC From LEPC to mature LECs  Mature ECs identifying 
assay Medium Base Inducer Markers  Medium Base Inducer 

Park 2004  
[34] 

human hybridoma medium BMP4 VEGF  Flk-1, CD31 hybridoma medium BMP4 
VEGF 

Flk-1, CD31 

Ferreira 2007 
[31] 

Human  EGM-2 FBS Flk-1, CD34, CD31, CD133 EGM-2 VEGF  CD31, CD34 and Flk-1 

Lee 2008 
[35] 

Murine  hybridoma medium BMP4 Flk-1, CD31, CD133 Methyl-cellulose 
medium cytokines 

VEGF Flk-1, CD144 

Purpura 2008  
[36] 

Human  DMEM 
 

BMP4 
10ng/mL  

Flk-1, CD34  differentiation media VEGF  CD34 Flk1  

Goldman 2009 
[33] 

Human  DMEM with KO SR BMP4 Flk-1, CD34, CD31, CD144 EGM-2 
cytokine 

BMP4 
VEGF 

Flk-1, CD31, CD144, 
CD34, and CD133 

Noghero 2011 
[37] 

Murine  N2B27 medium BMP4  Flk-1, CD31, CD133, 
CD144 

N2B27  
  

hFGF2, 
VEGF-A165 
BMP4 

Flk-1, CD31, CD144 

Park 2010 
[32] 

 Human  ECSM 
DMEm/F12  
KO serum 
bFGF 

BMP4 
PD98059  
VEGF 
bFGF 

Flk-1, CD34, CD31, CD133 EGM-2 medium  
 

VEGF 
bFGF 

CD31, CD144 

 

Table 3. Induction from LEPC to LEC in vitro, focus on medium and surface 

Author and year  Origin  Induction of LEPC to LEC  Mature EC Assay 
Medium Base GFs Surface 

Goldman 2009 
[33] 

Human  EGM-2 
With cytokine cocktail 

VEGF 50ng/ml 24well plate with 
coated Matrigel 

CD31, CD144, CD34 

Park 2010 
[32] 

 Human  EGM-2 medium  
 

VEGF bFGF coated Matrigel 
dishes 

Typical morphologies, express CD31, CD144, 
vWF, form vascular like structure on Matrigel, 
and took up acegylated-LDL.  
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Little is known about the characteristics of the 
primary precursor cells in vivo, since it has not yet 
been possible to isolate the most primitive 
mesenchymal cell from bulk cultures. One of the 
hurdles has been the inability to prospectively isolate 
MSCs because of their low frequency and the lack of 
specific markers. Recently, some groups have 
reported the identification and prospective isolation 
of the most primitive mesenchymal progenitors, both 
in murine and human adult BM, based on the 
expression of specific markers like SSEA-1, SSEA-3, 
SSEA-4, STRO-1, the low affinity nerve growth factor 
receptor (CD271), mesenchymal stem cell antigen-1 
(MSCA-1), CD56 and PDGFR-β. (Table. 4) Despite the 
identification of these new MSC markers, none of the 
markers are the true characteristic mesenchymal 
progenitors. Indeed, MSCs may be composed by 
different cell subsets which might be responsible for 
specific functions and characterized by different cell 
surface markers. Therefore, further research in this 
field is warranted in order to identify an MSC-specific 
marker; this will hopefully allow to dissect the 
developmental hierarchy of MSCs and will facilitate 
the generation of homogenous cellular products [60]. 
However, CD271bright/PDGFR-β+ bone marrow 
derived cells has been proved to have the ability to 
give rise to CFU-F [61], and human endometrium 
derived MSC are characterized as 
CD146+/PDGFR-β+, thus PDGFR-β may serve as a 
marker for MSC precursor cells. Chen et al have 
prospectively identified and purified vascular 
pericytes in multiple human organs and shown that 
these cells are potent mesodermal progenitors that 
give rise to genuine MSC in culture [62, 63]. 

 

Table 4. CD34+ or PDGFR-β+ are identified as typical MSC 
progenitor markers 

Author and 
year 

Citations 

Corselli 2012 
[64] 

These novel MSC ancestors, which have been typified as 
CD34+CD146- cells, can differentiate in culture into 
CD34-CD146+ pericytes.  

Katare 2011 
[65] 

CD34+ cells, located around the vasa vasorum in the 
adventitia of arteries and veins, also express typical pericyte 
markers (NG2, PDGFR-β, and RGS5) together with 
mesenchymal (CD44, CD90, CD73, CD29) and stemness 
antigens (Oct-4and Sox-2). This adventitial subset contains 
progenitor cells that may contribute to angiogenesis. 

Campagnolo 
2010 
[66] 

Total vessel wall cell isolates contain CD34+/CD31− cells 
which upon culture express pericyte/mesenchymal markers. 
Integrate into vascular networks in vitro and in vivo 

Traktuev 2008 
[67] 

A population of multipotent CD34+ positive adipose stromal 
cells share pericyte and mesenchymal surface markers, reside 
in a periendothelial location, and stabilize endothelial 
networks.  

Schwab 2007 
[68] 

CD146+PDGFR-β+ cells from human endometrium 
underwent differentiation into adipogenic, osteogenic, 
myogenic and chondrogenic lineages. 

 
 

A population of limbal NCs from 
collagenase-digested clusters and cultured on plastics 
coated with Matrigel in modified ESCM (ESCM plus 
4ng/ml bFGF and 10ng/ml LIF), termed MESCM, 
was successfully used for expansion. Such expanded 
limbal NCs at P4 could reversible express ESC 
markers, when reseeded on 3D Matrigel. Specifically, 
they restored expression of all ESC markers, but 
further elevated expression of CD34, which is an 
important marker for angiogenesis progenitors [32, 
67, 69]. Dravida et al [70] isolated limbal 
fibroblast-like cells (LFLC) from the human limbal 
explants using SSEA4 magic beads and noted that 
LFLC does not express CD34 while 90% of the LFLC 
express CD31, suggesting that such expanded cells on 
coated Matrigel might turn into EPC. Dravida used 
SSEA4 magnetic beads to select LFLC, and cultured 
them on 1% Matrigel coated plate. In contrast, we 
expanded the limbal NCs directly from collagenase 
digested clusters using 5% Matrigel coated plate. As 
mentioned in introduction, both LEPC and pericytes 
could be induced from ESC if given the appropriate 
condition, thus we speculated that 3D Matrigel could 
help induce limbal NCs expanded from collagenase 
digested clusters into angiogenesis progenitors, i.e. 
LEPC and pericytes. 

Conclusion 
Limbal epithelial progenitors are corneal 

epithelial stem cells, a powerful stem cell resources for 
cure of human corneal stem cell deficiency. Further 
studies of their mechanism are required for the future 
successful application of stem cell therapy to human 
eye diseases. If successful, such research may impact 
on the entire field of stem cell research and their 
clinical applications. 
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