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Abstract 

Akt2 is considered as a potential target for cancer therapy. In order to find novel Akt2 inhibitors 
which have different scaffolds, structure-based pharmacophore model and 3D-QSAR pharma-
cophore model were built and validated by different methods. Then, they were used for chemical 
databases virtual screening. The selected compounds were further analyzed and refined using 
drug-like filters and ADMET analysis. Finally, seven hits with different scaffolds were picked out for 
docking studies. These seven hits were predicted to have high inhibitory activity and good ADMET 
properties, they may act as novel leads for Akt2 inhibitors designing. 
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Introduction 
Akt, also known as Protein Kinase B (PKB), is a 

serine/threonine kinase that plays a crucial role in the 
regulation of the PI3K/Akt pathway [1]. Akt as a 
downstream target of PI-3 kinase can induce a variety 
of biological responses. Many growth factors such as 
IGF-1 and PDGF bind to their receptors and lead to 
activation of PI-3 kinase. PI-3 kinase phosphorylates 
the Ptdlns to generate Ptdlns-3-phosphates, 
Ptdlns(3)P, Ptdlns(3, 4)P2, and Ptndlns(3, 4, 5)P3. The 
Ptdlns-3-phosphates cause the transportation of Akt 
from the cytoplasm to the plasma membrane [2, 3]. 
Then, Akt is activated when residues Thr308 and 
Ser473 are phosphorylated by PDK1 and PDK2. Ac-
tive Akt inhibits apoptosis and stimulates cell cycle 
progression by phosphorylating numerous targets in 
various cell types. [4] 

Three isoforms of Akt are known to exist, 
namely Akt1, Akt2 and Akt3, which exhibit an overall 
homology of 80% [5]. All three Akt isoforms are either 
overexpression or activated in a variety of human 

tumors, such as lung, breast, prostate, ovarian, gastric, 
and pancreatic carcinomas [6-7]. Besides, multiple ob-
servations point that Akt can act as an important 
cancer drug discovery target, including: (1) the tumor 
suppressor PTEN, a negative regulator of Akt kinase 
activity, is mutated or deleted at high frequency in 
solid human cancers and several cancer susceptibility 
syndromes; (2) Akt is activated via growth factor re-
ceptors or ligands that are up-regulated in a wide 
variety of solid human tumors; (3) AKT gene ampli-
fication has been reported in several cancer lines [8]. 
So, inhibition of the enzyme through small molecule 
could potentially sensitize cancer cells to undergo 
apoptosis. 

So far, high-throughput screening has been used 
for finding Akt inhibitors, but it was mainly used for 
Akt1. In order to search high active Akt2 inhibitors 
which have different scaffolds, we developed 
3D-QSAR pharmacophore model as well as struc-
ture-based pharmacophore, the obtained pharmaco-
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phore models are expected to identify the crucial 
pharmacophore features of potent Akt2 inhibitors. 
Then these two kinds of pharmacophore models were 
used together as 3D search queries for chemical 
compound databases. The selected compounds were 
retrieved from databases, and were further analyzed 
and refined using drug-like filters and ADMET anal-
ysis. At last, seven hits were selected, they have dif-
ferent scaffolds, high estimated activity, and good 
ADMET properties. Molecular docking was carried 
out to study the bind modes of these hits and Akt2. 
All the studies show that the seven hits may act as 
novel leads for Akt2 inhibitors designing. 

Materials and methods 
Generation of structure-based pharmaco-
phore model 

Structure-based pharmacophore modeling can 
effectively be used where there is insufficient infor-
mation on ligands that are experimentally proved to 
block or induce the activity of a particular therapeutic 
target. It can also be used to extract more information 
from the receptor side which can enable a medicinal 
chemist to have a deeper insight [9]. In our study, a 
crystal structure (PDB codes: 3E8D) of Akt2 com-
plexed with a known inhibitor was employed to gen-
erate structure-based pharmacophore model. In order 
to get more information about the active site of the 
enzyme and the binding mode of Akt2 and inhibitors, 
other crystal structures were also taken into account 
during the pharmacophore generation process, such 
as 3E88, 3D0E and 2JDR. This step was carried out by 
using DS 2.5 program. A sphere within 7 Å distance 
from the inhibitor was generated using Binding Site 
tool, Interaction Generation protocol of DS was ap-
plied to generate pharmacophoric features corre-
sponding to all the possible interaction points at the 
active site. And then Edit and Cluster pharmaco-
phores tool was utilized to edit the redundant and 
pharmacophoric features with no catalytic im-
portance. Only the representative features with cata-
lytic importance were selected. Finally, exclusion 
volume was added to the pharmacophore. After these 
operation, a structure-based pharmacophore model 
(PharA) comprising the most important pharmaco-
phoric features was built. 

Generation of 3D QSAR pharmacophore 
model 

Accelrys Discovery studio v2.5 was used to 
generate the hypothesis. A set of 63 compounds were 
collected from Merck Research Laboratories [10-15], the 
activity represented as IC50 of all the compounds were 

measured by using the same method. And their ac-
tivity spans over 5 orders. 23 compounds of them 
were chosen as the training set to generate the phar-
macophore model, structures of these training set 
compounds were given in Figure 1. Other compounds 
were chosen as the test set to validate the developed 
model. 3D structures of these molecules were built by 
ChemBioOffice version 2010, and energies of all the 
structures were minimized by Minimization protocol 
in DS. Then a series of energetically reasonable con-
formations of each training set compound were gen-
erated using Generate Conformations protocol. The 
related parameters were chosen for generating con-
formations as following: conformation method: 
maximum conformations: 255, best energy threshold: 
20 kcal/mol. Then whole diverse conformations of 
these training set compounds were used to generate 
pharmacophore models using 3D-QSAR Pharmaco-
phore Generation Protocol.  

Pharmacophore validation 
Pharmacophore validation was to test whether 

or not our models are good enough to predict the ac-
tive compounds. Three validation methods were used 
in this step: Fischer’s method; test set and decoy set. 
Structure-based pharmacophore PharA was validated 
by test set and decoy set, and 3D-QSAR pharmaco-
phore were validated by all the three methods. For the 
3D-QSAR pharmacophore, the test set was composed 
by 40 molecules. But all the 68 collected active com-
pounds were included in the test set of the struc-
ture-based parmacophore. The decoy set consisted of 
2000 molecules which comprised of 1980 molecules 
with unknown activity and 20 known inhibitors of 
Akt2. 

Virtual screening 
The purpose of virtual screening is to find po-

tential leads with different scaffolds and high inhibi-
tory activity to Akt2. We used the structure-based 
pharmacophore and the best 3D-QSAR pharmaco-
phore as 3D query for searching potent compounds 
from two chemical databases, including Nature 
Products (199,806) and Asinex database (508494) 
which were downloaded from Zinc database.  

Drug-likeness and ADMET analysis 
The compounds which fitted not only the fea-

tures of the structure-based pharmacophore but also 
the best 3D-QSAR pharmacophore model were ex-
tracted, further filtered by Lipinski’s rule, and then, 
ADMET (absorption, distribution, metabolism, elim-
ination, toxicity) analysis was carried out. Only these 
molecules which in accordance with Lipinski’s rule 



Int. J. Med. Sci. 2013, Vol. 10 

 
http://www.medsci.org 

267 

and have good predicted activity and good ADMET 
properties can be considered as hits. Besides, in order 
to compare the ADMET properties between the 
known inhibitors and the hits, all the 68 active mole-
cules we collected were also taken into ADMET 
analysis. 

 

Docking study 
In order to understand how these ligands bind to 

the enzyme, hits molecules and training set molecules 
were taken for docking studies by using GOLD 5.0 
program. Crystal structure 3E8D was used to define 
the interaction. The binding energies of Akt2 with hits 
were predicted using ChemScore which is taken as 
the negative of the sum of the component energy 
terms. [16] 

 
Figure 1. Structures of the training set compounds. 
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Results and discussion 
Structure-based pharmacophore generation 
and validation 

The final structure-based pharmacophore hy-
pothesis (PharA) comprised seven pharmacophoric 
features (Figure 2), two hydrogen bond acceptors, one 
hydrogen bond donor and four hydrophobic groups, 
besides, eighteen exclusion volume spheres are also 
taken into consideration. All the pharmacophoric 
features are around the important active site of Akt2. 
Hydrogen bond acceptor 1 (HA1) is near the amino 
group of Ala232. There is a short distance between 
HA2 and the amino group of Phe294 and Asp293. The 
hydrogen bond donor (HD) is just at the neighbor-
hood of the carboxyl of Asp293. Groups in line with 
these pharmacophoric features may form hydrogen 
bonds with adjacent amino acids. Hydrophobic fea-
ture 1 (HY1) is located in a hydrophobic pocket com-
posed by Phe439, Met282 and Ala178. The second 
hydrophobic feature (HY2) is located in another hy-
drophobic pocket constituted by Gly159, Val166, 
Gly164 and Gly161. HY3 is near Met229 and Lys181. 
HY3 is very close to Phe294. HY4 is close to hydro-
phobic amino acids Phe163 and Lys181. Groups in 
line with these hydrophobic features may result in 
hydrophobic interaction between the small molecule 
and the enzyme. So, compounds mapping on some of 
these identified features may have potential to inhibit 
Akt2 with high affinity. 

In order to verify the reliability of this struc-
ture-based pharmacophore, test set validation and 
decoy set validation were used. 63 active compounds 

collected from literatures were put together to build 
up the test set. After validation, all active molecules 
can mapped with any six of the seven pharmaco-
phoric features of the structure-based pharmacophore 
model. It means the result of test set validation is very 
good. The result of test set validation could only in-
dicate that this pharmacophore model can pick out 
the active molecules, but can not ensure that com-
pounds without inhibitory activity would be exclud-
ed. The main reason to validate the pharmacophore 
by decoy set is to validate how well it predicts active 
molecules from inactive molecules [17]. A decoy set 
including 1980 molecules with unknown activity and 
20 active compounds is prepared for this step. En-
richment Factor (EF) and Goodness of Hit Score (GH) 
were calculated to evaluate PharA. EF and GH were 
calculated using below equations: 

)]/()(1[*)}4/()]3(*{[
)//()/(

ADHaHtHtAHtAHaGH
DAHtHaEF

−−−+=
=

 
where Ht is the number of hits retrieved, Ha is the 
number of active molecules in the hit list, A represents 
the number of active molecules present in the data-
base and D stands for the total number of molecules in 
the decoy set. The GH score ranges from 0, which 
indicates the null model, to 1, which indicates the 
ideal model. When GH score is higher than 0.7, the 
model is very good [18]. In this validation, 16 active 
compounds and 7 molecules with unknown activity 
were selected out. The EF and GH are found to be 
69.57 and 0.72, indicates PharA is rational for virtual 
screening. 

 
Figure 2. Chemical features of PharA with the nearby amino acids. HA stands for hydrogen acceptor; HD stands for hydrogen donor; HY 
means hydrophobic feature. 
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3D-QSAR pharmacophore generation and 
validation 

Ten top-score pharmacophore hypotheses were 
generated based on the activity values of 23 training 
set compounds. Total cost values, correlation coeffi-
cient, RMS deviation and pharmacophore features of 
all the hypotheses are summarized in Table 1. All the 
hypotheses have three kinds of features: hydrogen 
bond acceptor (HA), aromatic ring (R), and hydro-
phobic (HY). The fixed cost which represents the 
simplest model that fits data perfectly is 83.1856. The 
null cost is 181.465.  

Hypo1 (Figure 3) has three pharmacophoric 
features: one hydrogen bond acceptor, one hydro-
phobic feature, and an aromatic ring. The difference 
between total cost and null cost of Hypo1 is 82.5448, 
this large cost difference indicates that the pharma-
cophore model could be considered as a good hy-
pothesis, because when the difference is greater than 
70 bits, it indicates over 90% statistics of the model is 
significant. RMSD value of Hypo1 is 0.986925, and 
coefficient value is 0.952600, the important factor con-
figuration value is 15.2906. These data also shows that 
Hypo1 may be a good model. All the training set 
compounds were classified into three activity scales 
based on their activity values: high active, IC50 ≤ 
100nM; moderate active, 100nM ＜ IC50 ≤ 1000nM; low 
active, IC50 ＞ 1000nM. Only two molecules in the 
training set were estimated out of their scales.  

 

 
Figure 3. Chemical features of Hypo1. Green color represents 
hydrogen bond acceptor, blue means hydrophobic feature, and 
orange represents aromatic ring. 

 
Fischer’s randomization was applied to validate 

the statistical relevance of Hypo1. The confidence 
level was set to 95%, a total of 19 random spread-
sheets were created when generated pharmacophore 
model. Result of this validation is shown in Figure 4. 
For Hypo1, the total cost value is 98.9202 and the 
correlation is 0.952602, while the total cost value of 19 
random spreadsheets range from 118.462 to 141.867, 
correlation of these random spreadsheets are between 
0.706275 and 0.894389. In summary, total cost of all 
random spreadsheets are higher than the originally 
pharmacophore and the correlation are lower. So, 
Hypo1 passed the Fischer’s randomization validation. 

  
 

Table 1. Statistical parameters of the top ten pharmacophore hypotheses of pharmacophore generation process. 

Hypothesis Total cost Cost difference RMSD (Å) Correlation  Features 
Hypo1 98.92 82.55 0.99 0.95 HA, H, R 
Hypo2 104.61 76.86 1.31 0.91 HA, H, R 
Hypo3 105.91 75.56 1.34 0.91 HA, H, R 
Hypo4 107.04 74.43 1.31 0.91 HA, H, R 
Hypo5 107.89 73.58 1.44 0.89 HA, H, R 
Hypo6 108.20 73.27 1.37 0.90 HA, H, R 
Hypo7 109.86 71.61 1.49 0.88 HA, H, R 
Hypo8 110.07 71.4 1.43 0.89 HA, H, R 
Hypo9 110.39 71.08 1.48 0.89 HA, H, R 
Hypo10 110.56 70.91 1.45 0.89 HA, H, R 
Cost difference = Null cost – total cost; Null cost = 181.47; Fixed cost = 83.19; Configuration = 15.29; HA: hydrogen bond acceptor; H: hydrophobic; R: aromatic 
ring. 
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Figure 4. (a): The difference in total cost of hypotheses between the initial hypothesis (Hypo1) spreadsheet and 19 random spreadsheets. 
(b): The difference in correlation values of hypotheses between Hypo1 spreadsheet and 19 random spreadsheets. 

 
The test set method was used for verifying 

whether the pharmacophore model is capable of pre-
dicting the activity values of compounds not included 
in the training set. The test set contains 40 active 
compounds. Experimental and estimated activity 
values of the test set compounds are given in Table 2 
as well as the 23 training set compounds. In order to 
corroborate the predictive capacity of Hypo1, we 
classified the 40 active compounds into three activity 
scales like the training set compounds, 1 high active, 5 
moderate active and 2 low active molecules out of 
their scales when predicted by Hypo1, and the error 
values of all the compounds are lower than 8. Regres-
sion analysis shows that: experimental and estimated 
activity predicted using Hypo1 of the training set ob-
tains a high correlation coefficient of 0.8996, and the 
test set obtains a correlation coefficient of 0.836. The 
correlation coefficient plot between experimental and 
estimated activity of training set and test set shows in 
Figure 5. 

Decoy set validation were also used to verify 
Hypo1. The decoy set was same with that used in the 
structure-based pharmacophore validation. The EF 
value of Hypo1 is 42.86 and GH value is 0.50. This 
result is not very satisfactory. But if we used PharA to 
screen the decoy set first, and then, the selected mol-
ecules were screened by Hypo1 again, the EF in-
creases to 80.00 and the GH value turns into 0.79. In 
order to obtain accurate predictive capability and 
high GH value at the same time, we choose PharA and 
Hypo1 together as the model to screen the database at 
last. 

 

 
Figure 5. Plot of the correlation (r) between the experimental 
and the Hypo1 estimated activity values of the 23 training set 
compounds (square) and 40 test set compounds (ring). 

 
In order to displace how these active molecules 

map on PharA and Hypo1, Figure 6 gives the align-
ment of these models on the most active compound 37 
and the most inactive compound 16. All the chemical 
features of Hypo1 map well on the corresponding 
functional groups of compound 37. The most inactive 
compound 16 maps on all features of Hypo1 too, but 
it’s fitvalue is lower than compound 37. Compound 37 
misses a hydrogen bond donor feature of PharA and 
compound 16 misses a hydrogen bond donor of 
PharA. 
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Virtual screening 
Nature Products (199,806) and Asinex database 

(508494) downloaded from Zinc database were used 
for virtual screening in our study. Structure-based 
pharmacophore PharA was firstly used to screen da-
tabases, then, Hypo1 was applied to screen the se-
lected molecules. After these two steps, 128 com-
pounds were picked out.  

Drug-likeness analysis 
Drug-likeness properties are usually used for 

selecting compounds for vitro inhibition studies. 
Here, Lipinski’s rule of five was slightly modified 
according to the properties of existing inhibitors. The 
restrictions were as follows: AlogP ≤ 7.5, molecular 
weight ≤ 550D, hydrogen bond acceptors should be 
less than 10, hydrogen bond donors should be less 
than 5, and rotated bonds must be less than 10. After 
drug-likeness screening, 128 molecules reduce to 41 
compounds. 

 

Table 2. Experimental and estimated IC50 values of the training set and test set compounds based on pharmacophore model 
Hypo1. 

Name Activity (IC50, nM) Error Name Activity (IC50, nM) Error 
Experimental Estimated Experimental Estimated 

1* 15700 13426.4 -1.2 33 22 42.6 1.9 
2* 4517 3472.1 -1.3 34 73 46.2 -1.6 
3* 325 367.2 1.1 35 16 19.1 1.2 
4* 281 227.7 -1.2 36 23 30.8 1.3 
5* 388 181.3 -2.1 37* 6 26.7 4.5 
6 65 18.2 -3.6 38 31 18.7 -1.7 
7* 144 82 -1.8 39 11410 1696.4 -6.7 
8* 332 94.8 -3.5 40 9.4 21.9 2.3 
9* 300 221.5 -1.4 41* 6.7 29.3 4.4 
10* 210 146.7 -1.4 42 10.4 20.3 2 
11 3139 617.2 -5.1 43 24.1 20.1 -1.2 
12* 4811 3185.7 -1.5 44 10 20.8 2.1 
13 6650 1781.2 -3.7 45 14.6 19.8 1.4 
14 8740 1689 -5.2 46* 10.5 25.5 2.4 
15 13000 2439.5 -5.3 47 38 55 1.4 
16* 18360 12433.6 -1.5 48 28 81.8 2.9 
17* 157 299 1.9 49 22 49.4 2.2 
18* 248 603.4 2.4 50* 90 45.7 -2 
19* 422 660.3 1.6 51 51 51.2 1 
20 1501 204.3 -7.3 52 73 57.1 -1.3 
21 262 95.3 -2.7 53 30 27.5 -1.1 
22* 93 73.4 -1.3 54 370 271.8 -1.4 
23 43 46.1 1.1 55 64 171.7 2.7 
24 45 39.4 -1.1 56 2746 582.5 -4.7 
25* 102 154.4 1.5 57 40 19.2 -2.1 
26* 297 136.9 -2.2 58 55.1 21.1 -2.6 
27 77 48.4 -1.6 59 77.9 18 -4.3 
28 25 38.7 1.5 60 280 52.7 -5.3 
29 27 47.7 1.8 61 260 48.3 -5.4 
30 138 32 -4.3 62* 1600 1649.1 1 
31 154 45.2 -3.4 63* 12500 13814.5 1.1 
32 67 46.2 -1.5     
* The compounds were used to build training set. Error indicates the difference between the experimental and estimated values. “+” represents that estimated 
value is higher than experimental activity. “-” represents that estimated IC50 is lower than experimental IC50. 
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Figure 6. (a): Pharmcophore model PharA aligns to the most active compound (compound 37); (b) Hypo1 aligns to compound 37; (c): 
PharA aligns to the most inactive compound (compound 16); (d) Hypo1 aligns to compound 16. 

 
ADMET analysis 

ADMET (absorption, distribution, metabolism, 
elimination, toxicity) analysis is important in drug 
design. Some properties including human intestinal 
absorption, aqueous solubility levels, BBB penetration 
levels, CYP2D6 inhibition and hepatotoxicity of these 
41 compounds were analyzed. Molecules only with 
the following properties can be selected out as hits. 
Their Brain-Blood ratio must be less than 0.3 : 1, and 
they must be unlikely to inhibit CYP2D6 enzyme, 
unlikely to cause dose-dependent liver injuries, 
aqueous solubility level log(Sw) must be more than 
-4.0 and less than 0.0, and should have moderate or 
good intestinal absorption. After adding these re-
strictions, only 7 molecules meet the conditions. The 
information of these seven hits is listed in Table 3. 

32 molecules in the training and test set belong to 
the high active inhibitors, ADMET analysis shows 
that only 4 compounds of them are predicted to have 
moderate or good human intestinal absorption. 

However, the 4 compounds are predicted to have the 
possibility to cause liver injury. These results indicate 
that although there have been some high active in-
hibitors of Akt2, their ADMET properties are not sat-
isfactory. It may be troublesome to use them for fur-
ther experiments in vivo.  

Molecular docking studies 
In order to understand the binding mode, 7 hits 

retrieved from virtual screening and 23 training set 
compounds were docked to the crystal structure of 
Akt2 binding site using GOLD program. Compound 
37, the most active compound in the training set, has 
scored 27.90. Here, the two most active hits com-
pounds are used as examples to display the bind 
modes. 

The most active hit ZINC02110020 scored 24.28, 
the interaction between it and Akt2 is shown in Figure 
7a. And Figure 7b shows how it maps on the struc-
ture-based pharmacophore model. Oxygen of the 
carbonyl group near the nitrogen-containing 
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six-membered ring forms two hydrogen bonds with 
the protein, one is with E279 and another one is with 
E236. This part of the compound maps well on the 
pharmacophoric feature HA2 of PharA. Besides, res-
idue E236 also acts as a hydrogen bond acceptor, and 
forms another hydrogen bond with hydrogen atom of 
the imino group of the hit. In addition to hydrogen 
bond interaction, hydrophobic interaction also plays 

an important role in the binding mode. The benzene 
ring of the compound is a hydrophobic group, it can 
forms hydrophobic interaction with residues around 
it, such as F439, M282, A232, Y231, A179, Y178, V166, 
L158. Nitrogen-containing six-membered ring can 
also forms hydrophobic interaction with residues 
F443, F163, F294.  

Table 3. Information of the seven hits. 
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Figure 7. (a): The interaction between ZINC02110020 and Akt2 active site residues; (b): ZINC02110020 maps on the pharmacophore 
model PharA; (c): The binding mode of ZINC13505894 and Akt2 active sites; (d): ZINC13505894 aligns to PharA. 

 
 
Bind mode and pharmacophore mapping situa-

tion of the second active hit ZINC13505894 are shown 
in Figure 7c and Figure 7d respectively. There are two 
hydrogen bonds between the ligand and the protein. 
One is between D293 and the amide of ZINC13505894. 
Another amide of the hit forms hydrogen bond with 
E279. The oxygen-containing five-membered ring on 
the hit compound is very close to F443, benzene ring 
of the F443 may have influence on the ring. The aro-
matic ring of the ligand is located in a hydrophobic 
environment, many hydrophobic residues are around 
here, such as F439, L158, V166, L168, A179, A232, 
Y231. 

Conclusions 
In this study, two kinds of pharmacophores were 

built to screen novel and potent Akt2 inhibitors. 
PharA, the structure-based pharmacophore, is com-
posed of seven chemical features including two hy-

drogen bond acceptors, one hydrogen bond donor, 
and four hydrophobic features. Hypo1, the 3D-QSAR 
pharmacophore, has three pharmacophoric features, 
one hydrogen bond acceptor, one aromatic ring cen-
ter, and one hydrophobic feature. Both generated 
pharmacophore models were validated for its quality 
to identify new reliable chemical compounds. The 
validation procedure included three methods: test set 
validation, decoy set validation and Fischer’s ran-
domization. All the training set compounds have 
mapped all the features of Hypo1 but they did not 
map all the features of PharA. So we have selected 
compounds from two databases mapping all chemical 
features of Hypo1 and six or more chemical features 
of PharA. The selected compounds were further ana-
lyzed and refined using drug-like filters and ADMET 
analysis. At last, seven hits were selected out. Molec-
ular docking procedure was carried out for these hits 
to understand the interaction between these hits and 
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the target protein. In summary, all the studies show 
that, these seven hits may act as good leads against 
Akt2. 
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