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Abstract 

Progress in genomics and proteomics attended to the door for better understanding the 
recent rapid expanding complex research field of metabolomics. This trend in biomedical 
research increasingly focuses to the development of patient-specific therapeutic approaches 
with higher efficiency and sustainability. Simultaneously undesired adverse reactions are 
avoided. In parallel, the development of molecules for molecular imaging is required not only 
for the imaging of morphological structures but also for the imaging of metabolic processes 
like the aberrant expression of the cysteine protease cathepsin B (CtsB) gene and the activity 
of the resulting product associated with metastasis and invasiveness of malign tumors. Finally 
the objective is to merge imaging and therapy at the same level. The design of molecules which 
fulfil these responsibilities is pivotal and requires proper chemical methodologies. In this 
context our modified solid phase peptide chemistry using temperature shifts during synthesis 
is considered as an appropriate technology. We generated highly variable conjugates which 
consist of molecules useful as diagnostically and therapeutically active molecules. As an ex-
ample the modular PNA products with the complementary sequence to the CtsB mRNA and 
additionally with a cathepsin B cleavage site had been prepared as functional modules for 
distinction of cell lines with different CtsB gene expression. After ligation to the modular 
peptide-based BioShuttle carrier, which was utilized to facilitate the delivery of the functional 
modules into the cells’ cytoplasm, the modules were scrutinized. 

Key words: Click Chemistry; Diels Alder Reactioninverse (DARinv); Fluorescence Imaging; Peptide 
Nucleic Acid (PNA); PNA building block functionalization 

Introduction 

A search for the very first documentations of 
peptide nucleic acids (PNA) led to Miller’s and Urey’s 
experiments in the year 1953. They verified the hy-
pothesis of the appearance of organic molecules under 
reducing atmospheric conditions [1]. The PNA’s role 
as a pivotal prebiotic molecule in the RNA world 
which acts as a template for the polymerization of the 

complementary nucleotide phosphoroimidazoles was 
postulated [2-6]. The focus lies on Nielsen’s successful 
pioneering work in the PNA syntheses [7]. Contribu-
tions were made by the introduction of the Mer-
riefield’s solide phase peptide synthesis [8] and 
Carpino’s protecting group methodologies [9]. Addi-
tionally further parameters like the micro-
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wave-assistance [10, 11], the choice of the solvents 
[12], the manual and automated procedures as well as 
the selection of resins and linkers [13, 14] ameliorated 
the SPPS methodology concerning the yields, purity, 
and reaction times are comprehensively documented 
by Martinez [15]. 

All this enabled the use of PNAs useful in many 
ways, for instance as antisense molecules in pro- as 
well as in eukaryotic organisms [16, 17], and as triplex 
forming oligonucleotides (TFO) for antigenic strate-
gies [18-20]. From this point of view the use as thera-
peutic and diagnostic agents was documented [21]. 
Further, PNAs have applications in analysis of bio-
sensor chips for identification of nucleic acids [22]. 
The structural and the physico-chemical properties of 
PNAs as well as the different synthesis methodologies 
are well documented [23-30]. They reveal similarities 
to the native nucleic acids whose phospho-ribose 
backbone is substituted by a backbone of 
poly-2-aminoaethyl glycine with nucleobases con-
nected via an acetate linker [31-34].  

The use of PNA molecules is not restricted to its 
role as a DNA derivative. Derivatizations permit fur-
ther functionalizations of the PNA polyamide back-
bone as demonstrated [35, 36]. Finally the nucleobases 
were substituted with functional molecules as reac-
tion partners for chemical reactions, for instance as a 
ligation partner in the “click-chemistry” [37-40]. 
Manifold ligation reactions like the copper catalyzed 
alkine-azide cycloadditions introduced by Sharpless 
[41] are well reviewed by El-Sagheer and Brown [42]. 
Here for instance, we used as ligation technology the 
Diels Alder Reaction with inverse electron demand 
(DARinv) introduced by Lindsay [43] and comprehen-
sively investigated by Sauer [44] and Bertozzi [45, 46]. 
The potential of the DARinv is well documented, un-
doubted and underlines multifaceted applications in 
the medical science. It is an attractive platform for 
active agents in therapy [47-50] as well as for imaging 
components in diagnostics [51, 52]. The combination 
of different drugs and different diagnostic molecules 
in optimized ratios [52] allows the design of molecules 
ready to use for bi- tri- and multi-modal strategies. 
These can be considered as promising molecules in 
the personalized medicine and in the increasing field 
of theranostics [53]. Our variant, a heat-assisted ap-
proach of the solid phase peptide synthesis is consid-
ered as an indispensable methodology which realizes 
a proper chemistry of PNA-based backbones func-
tionalized multifold with a great potential to contrib-
ute to the diagnostics’ precision and to the better 
therapy’s success.  

We tested the synthesized PNAs implemented 
into the drug delivery and targeting system called 

BioShuttle [54] as functional modules for hybridiza-
tion in the cells with target sequences in the cathepsin 
B (CtsB) mRNA reacting in case of the existence of the 
activated CtsB enzyme in the cells [55]. After enzy-
matic cleavage in the cytoplasm the fluorescent dye 
Rhod110 is transported and detectable in the cell nu-
cleus. 

Chemical Procedures & Results 

PNA synthesis 

For the PNA synthesis of the sequences (I) 
cagcgctgcag-C, (II) ctgcagcgctg-C, and (III) 
agcgctgagct-C (listed in the column D of Table 1) we 
used a manual synthesizer, PetiSyzer® from HiPep 
Laboratories, Kyoto, Japan. On this instrument we 
performed low cost simultaneous synthesis in dis-
posable polypropylene reactors. An assembly of five 
disposable reactors is connected to a polytetrafluoro-
ethylene tube (PTFE) manifold via PTFE two-way 
valves and are fixed on to a rack that can be shaken by 
a vortex-like mixer. The five reactors make contact 
with an aluminium block whose temperature is con-
trolled by either an electric heater or cooled by the 
circulation of chilled liquid. In peptide synthesis it is 
known that elevated temperatures in the coupling 
reaction can overcome some coupling difficulties and 
shorten the coupling time. However it is also known 
that Fmoc-removal with piperidine at elevated tem-
peratures results in racemization. Thus temperature 
control is required for such reactions. For the present 
PNA synthesis we intended to minimize aggregation 
and sterical hindrance by raising the temperature 
during the coupling time as it is known from peptide 
synthesis [56]. We used 9-fluorenylmethoxycarbonyl 
chloride (Fmoc)-building blocks with blocked side 
chains of Adenine A, Cytosine C, and Guanine G by 
benzhydroxylcarbonyl (Bhoc) groups. The syntheses 
were performed in an 2 µmol scale on a 
H-Cys(Trt)-HMPB-ChemMatrix® resin loading 0.19 
mmol/g. In the first step the Fmoc-group was cleaved 
with 20% piperidine in dimethylformamide (DMF) for 
5 min at 20°C. After that, the resin was washed 5 times 
with DMF. For the coupling reaction the temperature 
was raised to 80°C and the coupling reaction was 
performed with 2-(1H-7-azabenzotriazol-1-yl)- 
1,1,3,3-tetramethyl uronium hexafluorophosphate 
(HATU) and diisopropylethylamine (DIPEA) for 40 
min. After the coupling all free amino groups were 
capped with acetic acid anhydride in DMF and the 
resin was washed with DMF. Before the next 
Fmoc-deprotection step the reaction vessel was cooled 
to 20°C and the resin was treated with 20% piperidine 
in DMF. At the end of the PNA synthesis, the last step 
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was a cleavage of the N-terminal protecting group 
with piperidine. 

A small sample of each PNA was cleaved with 
TFA (90%) and scavanger thriethylsilan/water 
(2.5%/2.5%) for 2.5 h at room temperature. The PNA 
was precipitated in ether and lyophilized. Analysis 

was carried out with HPLC and MS. By using differ-
ent temperatures (20°C for Fmoc-protection (avoid 
racemization) and 80°C for the coupling reaction we 
could improve coupling efficiency compared to use of 
elevated temperature for the whole synthesis. 

Table 1. The schematic structure of the CtsB-BioShuttle (upper part) accentuates the modular construction which consists of the 

following functional units: CPP module (red) is responsible for the passage across cell membranes (the amino acid sequence is 

shown in the column F). The PNA module (yellow) harbours the sequences for the hybridization (column D, line 1 – antisense; line 

2 – sense; line 3 – random) with the target-sequence inside of the CtsB mRNA’s Exon I. After the enzymatic cleavage  (red) of 

the disulfide bridge (column E) inside of the cytosol, the CtsB cleavage module (column C, highlighted in grey)  covalently 

coupled to the NLS module (column B, red/blue) is cut. This in turn is connected to the Rhod110 (column A) fluorescent dye as a 

cargo (green) is illustrated. In the lines 1-3 the BioShuttle conjugates used for experiments are described. 

 
 
 

PNA I - cag cgc tgc ag-C 

 

Figure 1. shows the structural formula of the PNA I (upper part). The lower part demonstrates the graphs of HPLC (left) 

and mass (right). 
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C120H151N67O34S: 
Found mass: 3106.2; (M-2H)2+ 1553.21; (M+3H)3+ 1035.3 
Exact mass: 3106.19 (Mol. Wt.: 3107.98);  
m/e: 3107.19 (100.0%), 3108.19 (94.4%), 3106.19 (74.8%), 3109.19 (29.6%), 3109.20 (28.7%), 3107.18 (18.5%),  
3110.20 (14.5%), 3110.19 (14.0%), 3111.20 (6.9%), 3108.18 (5.8%), 3111.19 (4.6%), 3109.18 (4.0%), 3112.20 (2.3%), 
3108.20 (1.7%), 3110.18 (1.5%), 3112.19 (1.1%) 
C, 46.37; H, 4.90; N, 30.19; O, 17.50; S, 1.03 

 
 
 
 
 

PNA II - ctg cag cgc tg-C 

 

Figure 2. shows the structural formula of the PNA II (upper part). The lower part demonstrates the graphs of HPLC (left) 

and mass (right). 

 
C120H152N64O36S: 
Found mass: 3097.0; (M-2H)2+ 1548.5; (M+3H)3+ 1032.3 
Exact mass: 3097.18; (Mol. Wt.: 3098.96) 
m/e: 3098.18 (100.0%), 3099.18 (95.9%), 3097.18 (75.2%), 3100.19 (28.8%), 3100.18 (24.9%), 3098.17 (18.4%), 3101.19 
(14.5%), 3101.18 (13.9%), 3100.17 (8.3%), 3102.19 (7.1%), 3099.17 (5.6%), 3102.18 (3.9%), 3103.19 (1.9%), 3101.17 
(1.6%), 3103.18 (1.5%), 3102.17 (1.0%) 
C, 46.51; H, 4.94; N, 28.93; O, 18.59; S, 1.03 

 



Int. J. Med. Sci. 2012, 9 

 

http://www.medsci.org 

5 

PNA III – agc gct gag ct-C 

 

Figure 3. shows the structural formula of the PNA III (upper part). The lower part demonstrates the graphs of HPLC (left) 

and mass (right). 

 
C121H152N66O35S; 
Found mass: 3123.2; (M-2H)2+ 1561.6; (M+3H)3+ 1040.6 
Exact mass: 3121.19; Mol. Wt.: 3122.99 
m/e: 3122.19 (100.0%), 3123.19 (94.7%), 3121.19 (74.2%), 3124.19 (29.7%), 3124.20 (29.1%), 3122.18 (18.1%), 3125.20 
(14.7%), 3125.19 (14.0%), 3126.20 (7.1%), 3123.18 (5.7%), 3126.19 (4.6%), 3124.18 (3.9%), 3127.20 (2.4%), 3123.20 
(1.7%), 3125.18 (1.6%), 3127.19 (1.1%) 
C, 46.54; H, 4.91; N, 29.60; O, 17.93; S, 1.03 

 
 
 

Peptide synthesis 

The peptides C-RQIKIWFQNRRMKWKK 
[pAnt43-58], VKRKKP-GFGRK- cagcgctgcag-C, 
VKRKKP-GFGRK-ctgcagcgctg-C, and VKRKKP- 
GFGRK-agcgctgagct-C were synthesized in an 
automated multiple synthesizer Syro II (MultiSyn 
Tech, Germany) using Fmoc chemistry under 
atmospheric conditions at room temperature using 
the Fmoc-Lys(Boc)-HMPB-ChemMatrix® resin 
loading 0.50 mmol/g. For amino acid coupling a 
fivefold excess of the Fmoc-protected amino acid was 
activated in situ with 5 equivalents 
2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 
hexafluorophosphate (HBTU) and DIPEA (0.5M) in 
DMF. The coupling time was 40 min. The Fmoc-group 

was cleaved with piperidine (20%) in DMF for 3 min 
and 10 min. After each step the resin was washed 5 
times with DMF. 

The Rhodamine 110 marker was inserted into the 
peptide by a manual coupling procedure. A threefold 
excess of this marker was activated in situ with 3 
equivalents HATU and 2 equivalents DIPEA and 
added to the resin bound peptide for one hour reac-
tion time. Afterwards the resin was washed three 
times with DMF, dichloromethane (DCM) and iso-
propanol and dried. The following cleavage of the 
peptide from the resin and of the side chain protecting 
groups was performed with trifluoroacetic acid (TFA) 
(90%) and as scavenger triethylsilan/water 
(2.5%/2.5%) for 2.5 h at room temperature was used. 
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Synthesis of the pAnt43-58 – cell penetrating peptide (CPP) 

 

Figure 4. shows the structural formula of the pAnt43-58 (upper part). The lower part demonstrates the graphs of HPLC 

(left) and mass (right). 

C107H174N35O21S2; 

Found mass:2349.305; 
Exact Mass: 2349.3; Mol. Wt.: 2235.77 
m/e: 2350.30 (100.0%), 2351.31 (77.8%), 2353.31 (43.9%), 2354.31 (19.8%), 2355.26 (2.4%), 2356.31 (0.7%), 2357.31 
(0.18%), C, 55.33; H, 7.53; N, 20.67; O, 13.60; S, 2.87 

 
 

 
 

Figure 5. shows exemplarily the HPLC and MS plots of the CtsB-BioShuttle construct 1 (shown in Table 1) containing the 

antisense PNA I after synthesis. 

 
Found mass: 
Exact mass: MW Cal: 6006.21 1501.37 (M+4H)4+; 1201.39 (M+5H)5+; 1001.28 (M+6H)6+ 
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Purification of pAnt43-58 and Rhoda-

mine-peptide-PNA conjugates 

The crude material was purified by preparative 
HPLC on a Kromasil 100–10C 18 µm reverse phase 
column (30´ 250mm) using an eluent of 0.1% tri-
fluoroacetic acid in water (A) and 80% acetonitrile in 
water (B). The peptide was eluted with a successive 
linear gradient of 10% B to 80% B in 30 min at a flow 
rate of 23 ml/min. The fractions containing the puri-
fied protein were lyophilized. The purified material 
was characterized with analytical HPLC and matrix 
assisted laser desorption mass spectrometry 
(MALDI-MS) (Figure 1 - 5Figure 1). 

Ligation via disulfide bridge formation 

The disulfide bridge between the N-terminal 
cysteine of pAnt43-58 and the N-terminal cysteine 
residue of the NLS was achieved by the activation of 
one cysteine using 2,2’-dithiopyridine and the sub-
sequent coupling to the cysteine of the other module. 
The coupling reaction was carried out in an etha-
nol / water buffer at 60°C.  

The individual components and the complete 
modules were validated using LCMS (Shimadzu 
LC-10 and LCQ electrospray, Finnigan-Mat, (Thermo 
Fischer Scientific GmbH, Bremen, Germany). The pu-
rity levels were generally >90%.  

After ligation the reaction products were tested 
in the following cell study; the ultimate conjugates are 
listed Table 1. 

Cell culture & CtsB-BioShuttle 

FFM-measurements 

In order to characterize the CtsB-BioShuttle 
conjugates we used HeLa [57, 58] and MDA-MB-231 
[59, 60], human cell lines which are characterized by 
their different CtsB expression and activity of the gene 
product. CtsB considered as a genetic marker is 
strongly expressed during proteolysis’ and apoptosis’ 
processes [61-63]. Therefore the CtsB mRNA was 
chosen as a target for a fluorescent imaging test of our 
CtsB-BioShuttle constructs. 

In GenBank with the accession number M14221 
the human cathepsin B mRNA sequence was 
searched. This sequence describes the total CtsB 
mRNA.  

The bases sequences of the three investigated 
PNAs are represented as follows:  

The PNA I is the corresponding antisense mol-
ecule and possesses the antiparallel complementary 
sequence of the CtsB mRNA Exon I at the position 
70-80. As a control we synthesized the PNA II which 
is identical with the sequence of the CtsB mRNA at 

the end of the Exon I position 70-80 [64]. The PNA 

III’s sequence is randomized. 
The MDA-MB-231 cell line was cultivated in 

Dulbeco’s modified Eagles Medium (DMEM) (Invi-
trogen Life Technologies, Carlsbad, USA) with 10% 
fetal calf serum and 1% Glutamine (Biochrom, Ger-
many). The HeLa cells were cultivated in RPMI 1640 
(GIBCO, Invitrogen) supplemented with 10% fetal 
Calf serum. All cell lines were cultivated without 
phenol red and maintained at 37°C in 5% CO2 with 
high atmospheric humidity.  

24 hours before fluorescence measurement 
studies the cells were washed in Hank’s Balanced 
Salts (PAN-Biotech, Germany), after treatment with 
trypsin/EDTA solution (0.5/0.2 %) harvested and 
suspended in fresh medium. Cell suspension (400 µl) 

were transferred to chambers of the Lab-Tek 
Chamber Slides (Nunc, USA) and incubated under 
identical conditions as described above. For meas-
urement studies the MDA-MB-231 cells were treated 
with the CtsB-BioShuttle conjugates PNA I, PNA II, 
and PNA III (final concentration 100 nM) for 1 h. Fi-
nally, the medium was removed and the cells were 
washed with Hank’s and fresh medium was added. 
The HeLa cells were treated identically with the 
CtsB-BioShuttle PNA I variant (as a negative control). 
After 24 hours, the samples were measured as shown 
in Figure 6. 

Discussion and outlook 

Progresses in both, the genome - and in the in-
formatics research established proteomics and 
metabolomics and influenced the pharmaceutical re-
search in diagnostic as well as in therapeutic areas 
[65-70]. “Old fashioned” diagnostic molecules and 
drugs are highly effective but not sensitive enough, 
hamper the therapeutic success and result in discon-
tinuation of treatment. It is beyond controversy that 
these drugs, which represent the old paradigm “one 
size fits all”, is not really up-to-date anymore [71, 72]. 

The Blockbusters’ importance seems to approach 
perpetually its end, in parallel, the time for individual 
therapeutic interventions started [73, 74]. The situa-
tion changed and the new paradigm delineates the 
“patient specific medicine” [75]. This “personalized 
medicine” is based on the generation and application 
of the patient-specific drug [76, 77]. The development 
of such components is deemed to be a global chal-
lenge for “Big Pharma”. In consideration of quality 
and specificity the biotech industry seems to have 
advances in providing breakthrough products more 
efficiently than pharmaceutical industrial manufac-
turing [78]. The recombinant chemistry together with 
the solid phase peptide synthesis chemistry (SPPS) 
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represent two methodologies to fulfil the demands of 
crucial criteria (high quality & high variability) for 
biotechnology products [79] and the synthesis of 
molecules designed for the patient’s genetic disposi-
tion.  

Here we discuss a SPPS variant featuring these 
properties which is based on the classical solid phase 
strategy but focuses on the temperature as physical 
parameter. However, folding processes after peptide 
syntheses can hamper the prolongation of the peptide 
bond formation during the solid phase synthesis. 

Microwave heat assisted syntheses, however at 
elevated reaction temperature resulted in increased 
racemization [80, 81]. We circumvented this drawback 
using a concept based on a personal synthesizer, used 
for peptide synthesis and also for organic chemical 
syntheses that involves heating, cooling and filtration 
procedures [82]. A microwave methodology provid-
ing synthesis conditions avoiding racemization is still 
under investigation by the Nokihara group, HiPep 
Laboratories, Kyoto (unpublished data).  

The temperature is assumed to be the critical 
parameter in limiting the peptide synthesis as docu-
mented in 1988 by Merrifield [83]. A heat-induced 
unfolding of peptide chains can be understood as an 

initial point for the successful construction of large 
proteins, shown by the Dolphin group [56]. Here we 
studied this methodology in the solid phase synthesis 
of peptide nucleic acids as an initial step for the entry 
into “personalized medicine” in oncology using ex-
emplarily the cathepsin B gene (CtsB) and the corre-
sponding mRNA as molecular target. The SPPS, the 
attachment of a fluorescence dye and the following 
ligation of the modules by disulfide formation result 
in the final CtsB-BioShuttle conjugate designed for 
fluorescence imaging in the selected cell lines. HeLa 
cells were used as a control and the imaging of the 
CtsB mRNA was documented [55]. Here we con-
firmed the data of the non-invasive HeLa cervix car-
cinoma and the invasive MDA-MB-231 the breast 
cancer cell lines differentially expressing the CtsB 
(Figure 6). The CtsB-BioShuttle on MDA-MB-231 re-
sulted in strong signal using the construct with the 
complementary PNA I. This would be the direct way 
to detect tumor cells and treat with patient specific 
PNA at the same time. Insistently, the complexity of 
the pharmaceutical research and in biotechnology, the 
dedicated chemical methodologies like the SPPS hold 
a key role in the development of patient-specific 
drugs and imaging agents. 

 
 

 

Figure 6. The figure shows FFM-measurement pictures the of the cell lines: MDA-MB-231 cells 24 hours after treatment 

(final concentration 100 nM) with the CtsB-BioShuttle conjugates PNA I, PNA II and PNA III, and HeLa control cells (right 

picture) treated with the PNA I (antisense). The fluorescence signals can be observed inside of both lines and indicate an 

uptake of all tested CtsB-BioShuttle conjugates. Whereas the fluorescence signal intensity inside of the cytoplasm of the 

MDA-MB-231 cells treated with PNA III (random) is hardly visible related to the signal intensities inside of the cytosol of 

MDA-MB-231 cells which are treated with PNA I and PNA II. Solely in the nuclei of the MDA-MB-231 cells treated with the 

PNA I clear morphologic structures with high fluorescence intensities are recognizable. The HeLa control cells treated with 

the PNA I (antisense) did not show fluorescence signals. 
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