

International Journal of Medical Sciences

2024; 21(2): 376-395. doi: 10.7150/ijms.92131

Research Paper

Altered Gut Microbiota as a Potential Risk Factor for Coronary Artery Disease in Diabetes: A Two-Sample Bi-Directional Mendelian Randomization Study

Zhaopei Zeng^{1,2*}, Junxiong Qiu^{1,2*}, Yu Chen^{3*}, Diefei Liang⁴, Feng Wei^{1, 5}, Yuan Fu¹, Jiarui Zhang¹, Xiexiao Wei⁶, Xinyi Zhang¹, Jun Tao^{1,2#\Box}, Liling Lin^{2,7#\Box}, Junmeng Zheng^{1,2#\Box}

- 1. Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- 2. Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- 3. Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- 4. Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- 5. Department of Cardiothoracic Surgery, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, China.
- 6. Department of Cardiology, Chinese PLA General Hospital, Beijing, China.
- 7. Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.

* These authors contributed equally to this work and share first authorship.

These authors share last authorship.

🖂 Corresponding authors: Jun Tao, Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. Email: taoj8@mail.sysu.edu.cn. Liling Lin, Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. Email: Linll3@mail.sysu.edu.cn. Junmeng Zheng, Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. Email: Linll3@mail.sysu.edu.cn. Junmeng Zheng, Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. Email: Linll3@mail.sysu.edu.cn. Junmeng Zheng, Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. Email: zhengjm27@mail.sysu.edu.cn.

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

Received: 2023.11.11; Accepted: 2023.12.08; Published: 2024.01.01

Abstract

The current body of research points to a notable correlation between an imbalance in gut microbiota and the development of type 2 diabetes mellitus (T2D) as well as its consequential ailment, coronary artery disease (CAD). The complexities underlying the association, especially in the context of diabetic coronary artery disease (DCAD), are not yet fully understood, and the causal links require further clarification. In this study, a bidirectional Mendelian randomization (MR) methodology was utilized to explore the causal relationships between gut microbiota, T2D, and CAD. By analyzing data from the DIAGRAM, GERA, UKB, FHS, and mibioGen cohorts and examining GWAS databases, we sought to uncover genetic variants linked to T2D, CAD, and variations in gut microbiota and metabolites, aiming to shed light on the potential mechanisms connecting gut microbiota with DCAD. Our investigation uncovered a marked causal link between the presence of Oxalobacter formigenes and an increased incidence of both T2D and CAD. Specifically, a ten-unit genetic predisposition towards T2D was found to be associated with a 6.1% higher probability of an increase in the Oxalobacteraceae family's presence (β = 0.061, 95% CI = 0.002-0.119). In a parallel finding, an augmented presence of Oxalobacter was related to an 8.2% heightened genetic likelihood of CAD (β = 0.082, 95% CI = 0.026–0.137). This evidence indicates a critical pathway by which T2D can potentially raise the risk of CAD via alterations in gut microbiota. Additionally, our analyses reveal a connection between CAD risk and Methanobacteria, thus providing fresh perspectives on the roles of TMAO and carnitine in the etiology of CAD. The data also suggest a direct causal relationship between increased levels of certain metabolites - proline, lysophosphatidylcholine, asparagine, and salicylurate — and the prevalence of both T2D and CAD. Sensitivity assessments reinforce the notion that changes in Oxalobacter formigenes could pose a risk for DCAD. There is also evidence to suggest that DCAD may, in turn, affect the gut microbiota's makeup. Notably, a surge in serum TMAO levels in individuals with CAD, coinciding with a reduced presence of methanogens, has been identified as a potentially significant factor for future examination.

Keywords: coronary artery disease, type 2 diabetes, causality, gut microbiota, metabolites, Mendelian randomization

Introduction

The diverse bacterial population within the human gut, numbering in the billions, plays a critical role in regulating host health and physiological functions [1]. This microbial community is especially significant in the development and progression of various diseases, including cardiovascular maladies, metabolic disorders, neurogenic conditions, and immune system responses, with a particular impact on type 2 diabetes mellitus (T2D) and coronary artery disease (CAD) [2, 3]. The imbalance of gut microbiota, known as dysbiosis, is increasingly acknowledged as a key contributor to metabolic imbalances, leading to persistent low-grade inflammation and oxidative stress, which are characteristic of T2D and its related health issues. Furthermore, the gut microbiota is known to participate actively in critical metabolic processes, contributing to the emergence of CAD by affecting inflammatory pathways and oxidative stress mechanisms [4]. The likelihood of developing cardiovascular conditions is influenced by a confluence of factors, such as existing health conditions, lifestyle choices, and overall health [5, 6]. Current research highlights the gut microbiota's significant role in mediating the risk and progression of CAD, particularly when it emerges as a secondary complication to diabetes [7].

Numerous studies have linked the gut microbiota to the development of T2D and CAD, highlighting the role of gut bacteria in the onset and progression of these conditions. It's well-documented that T2D significantly increases the risk of CAD, to an extent comparable to the risk associated with established heart diseases [8, 9]. T2D-related issues such as hypertension and oxidative stress can lead to metabolic disturbances and impaired lipid metabolism, which in turn can cause both small and large vessel complications. These include a range of cardiovascular conditions that impact the arteries of various organs [10]. Insulin resistance, a hallmark of T2D, is intricately connected to the composition of the gut microbiota [11]. Specific bacterial species, including Butyrivibrio crossotus, Eubacterium siraeum, Streptococcus mutans, and Eggerthella lenta, play significant roles in regulating blood sugar levels by interacting with the gut's microbial ecosystem [12-14]. Interestingly, shifts in the gut microbiome composition have been observed across different ethnic groups, including Asian and European populations, which have been shown to exhibit alterations in their gut microbiota in the context of T2D [15, 16].

Atherosclerotic cardiovascular conditions remain a leading contributor to disability and death

among individuals with T2D. There is a growing body of evidence suggesting that the gut microbiota plays a crucial role in the development of atherosclerotic plaques [17, 18]. The progression of atherosclerosis and CAD appears to be intricately linked to how the gut microbiota manages essential metabolic functions, notably affecting purine and lipid metabolism, as well as pathways related to oxidative stress and inflammation [5, 19].

The dynamic interplay between the gut microbiota's composition and diabetic coronary artery disease (DCAD) demands thorough investigation to establish direct causal links [20]. It's increasingly critical to unravel how T2D enhances the susceptibility to CAD. Establishing causality in this domain is crucial not just for maintaining microbial equilibrium in the gut but also for developing strategies to prevent CAD.

Randomized controlled trials (RCTs) stand as the gold standard in epidemiological studies to determine causative relationships. However, their practical application can be restricted by logistical and ethical considerations. An alternative method, Mendelian randomization (MR), circumvents these limitations by employing genetic variants as proxies to draw causal inferences from observational data, thus minimizing confounder effects [21, 22]. Leveraging the capabilities of MR, our research adopted a bidirectional twosample MR method to substantiate the causal relationships between the gut microbiota and both T2D and CAD. Recent insights suggest that the interaction between gut microbiota and arterial health may play a role in how a lipid-rich diet contributes to atherosclerosis. Our MR examination of metabolites provides insights into their possible causative links with T2D and CAD [23].

Materials and Methods

Study Design

Our research aimed to explore the genetic underpinnings of gut microbiota profiles and their influence on the incidence of T2D and CAD. By implementing a bidirectional two-sample Mendelian Randomization (MR) model, we assessed combined datasets from extensive genome-wide association studies (GWAS), with this process depicted in Figure 1 and elaborated upon in Supplementary Table S1. Furthermore, we conducted a one-way two-sample MR analysis to probe into the interactions between specific metabolites and the occurrence of T2D and CAD, along with their impact on the composition of the gut microbiota.

Figure 1: Framework for Bidirectional MR Analysis. This diagram details the methodological structure of our bidirectional Mendelian Randomization (MR) investigation, examining the cause-and-effect dynamics between gut microbiota and diseases such as type 2 diabetes (T2D) and coronary artery disease (CAD). Genetic data was primarily extracted from populations of European ancestry. The principal analysis method was inverse variance weighting (IVW), supplemented by sensitivity tests to ensure the reliability of the MR findings. After applying Bonferroni corrections, we identified significant causal links between three gut microbiota characteristics and T2D, and seven with CAD (P < 0.025, adjusted for two hypotheses). Notably, after adjustment for multiple testing (P < $2.36 \times 10^{\Lambda}$ -4, adjusted for 211 outcomes), no significant causal effect was observed between T2D/CAD and gut microbiota, although indicative causal links were noted.

Ethical Considerations and Methodological Conformance

This study incorporates data derived from GWAS databases that have undergone rigorous ethical scrutiny and received clearance for research utilization. The methodology adheres to the protocols established by Burgess and colleagues, and is in compliance with the recommendations outlined in the STROBE-MR guidelines for reporting observational research with Mendelian Randomization frameworks [24, 25].

Data Acquisition and Genetic Marker Selection for T2D Analysis

For our investigation into T2D, we extracted data from a genome-wide association study (GWAS) by Xue et al. [26], which utilized samples from the DIAGRAM, GERA, and UKB cohorts. This pivotal study provided deeper insights into the genetic underpinnings of T2D and pinpointed potential gene loci for more in-depth functional studies. The findings from Xue et al. emphasized the significant impact of rare genetic variations on the risk associated with T2D. Our selection of genetic markers was based on a significance cut-off of 5×10-8, and we incorporated a linkage disequilibrium (LD) filter with an r² value above 0.01 within a 5000 kb range. We calculated F-statistics for individual SNPs to confirm the strength of the genetic instruments, ensuring that each had an F-value well above 10, which is indicative of their reliability for use in MR analysis.

Data Compilation for Coronary Artery Disease Investigation

For the assessment of CAD, we sourced information from an extensive GWAS meta-analysis undertaken by Nikpay et al. [27]. This meta-analysis incorporated data from 48 distinct studies, totaling a cohort of 141,217 participants and close to 8.6 million SNPs. Instrumental variables selection for CAD mirrored the parameters set in the T2D analysis to maintain uniformity in our methodological approach.

Genomic Insights into Gut Microbiota

For our analysis of gut microbiota, we utilized data from the mibioGen initiative [28], noted for being the most comprehensive GWAS collection to date. This repository includes data from 24 cohort studies, primarily involving individuals of European ancestry. It provides GWAS results for 211 different bacterial groups, spanning 9 phyla, 16 classes, 20 orders, 35 families, and 131 genera. The selection of instrumental variables for this aspect of the study was determined with a P-value threshold of less than 1×10⁻⁵, considering the relatively small pool of loci detected.

We adopted the same linkage disequilibrium clumping strategy as in our analyses of T2D and CAD to ensure the genetic markers' validity [29].

Compilation and Refinement of Metabolomic Data

We obtained our metabolomic data from a genome-wide association study by Rhee et al. [30], which analyzed blood metabolite profiles from 2,076 individuals of European descent participating in the Framingham Heart Study. This study focused on the relationship between gut microbiota and various host metabolites, taking into account numerous confounding factors such as age, gender, systolic blood pressure, antihypertensive drug use, body mass index (BMI), smoking status in diabetics, prevalence of cardiovascular diseases, and kidney function. These factors were adjusted to evaluate the correlations with 217 distinct metabolite concentrations in the dataset. For the subgroup analysis of metabolites, we set a P-value threshold of less than 1×10^{-5} , consistent with the thresholds established in our prior analyses [31].

Methodology for Statistical Analysis and Deduction of Causality

We utilized the inverse-variance weighted (IVW) method to assess causal links between 211 microbiome characteristics and both T2D and CAD. This assessment was conducted within the framework of a two-sample bidirectional MR, leveraging paired GWAS summary statistics. To address the concerns of multiple hypothesis testing and the possibility of horizontal pleiotropy - the scenario where genetic variants might affect disease outcomes via multiple pathways - our analysis incorporated supplementary MR methodologies, including MR-PRESSO, the weighted median approach, and MR Egger. We rigorously tested for the presence of multi-trait pleiotropy using the MR-PRESSO global tests and Cochrane's Q-statistics [32].

Causal relationships inferred from the gut microbiota's impact on T2D and CAD were quantified using beta coefficients, complete with 95% confidence intervals. We implemented the Bonferroni method for correcting multiple comparisons, considering causal effects as significant at P-values less than 0.025 for two specific outcomes and less than 2.36×10^{-4} for the broader 211 outcomes. P-values falling between 0.05 and the Bonferroni threshold were interpreted as suggestive of potential causal links.

The robustness of the MR findings was quantified using the mRnd1 online tool. All harmonized data pertinent to our study are accessible in Supplementary Material Data 1, while Supplementary Material Data 2 elaborates on the comprehensive outcomes of the bidirectional MR analysis, encompassing the gut microbiota, T2D, CAD, and related metabolites. Our MR analyses were conducted in the R statistical framework (version 4.2.2), using the TwoSampleMR (version 0.5.6) and MRPRESSO (version 1.0) packages. The TwoSampleMR package was instrumental in integrating exposure and outcome information, based on a thorough compilation of SNP data, including allele information, effect magnitudes, allele frequencies, and standard error metrics.

Results

SNP Selection for T2D and CAD Analysis

In our study, we rigorously filtered SNPs, excluding those within a 5000-kilobase pair range showing linkage disequilibrium (LD) with an r^2 value exceeding 0.01, and also removed any duplicates. This stringent selection process identified 1,745 SNPs linked to T2D and 2,801 SNPs associated with CAD, each meeting a significance threshold of P < 1×10⁻⁵. Following this, our bidirectional two-sample MR analysis provided substantial evidence indicating an elevated risk of CAD in the context of T2D, as elaborated in Supplementary Table S2.

Our MR analysis identified a total of 81 causal links, including those with potential associations where P < 0.05. This included five gut microbiota traits connected to T2D and ten to CAD, along with 16 metabolite traits associated with each condition. These findings were confirmed using MRPRESSO and leave-one-out analysis techniques, effectively ruling out instances of pleiotropy or heterogeneity. The reliability of these associations was further underscored by the F-statistics for the SNPs used in the MR analysis (see Tables 1-2, and Supplementary Tables S3-S4). A scatter plot in our report illustrates the trends and directionality of effects across different MR methodologies (see Figure 2).

In the bidirectional MR framework where T2D was considered as the exposure factor influencing CAD, a significant P-value of less than 0.05 was observed. While this result did not meet the criteria of the Cochran's Q test for heterogeneity, the existence of a P-value below 0.05 in a multiplicative random effects model pointed to a potential causal relationship between T2D and CAD, as noted in Supplementary Table S2.

Impact of Gut Microbiota on T2D and CAD

In our investigation, we discerned nine distinct microbial taxa, spanning various taxonomic levels, that exhibit a positive causal relationship with both T2D and CAD. Regarding T2D, a genetic predisposition towards a greater abundance of the genera *Lachnoclostridium*, Streptococcus, Actinomyces, and the *Streptococcaceae* family was linked to a higher risk of the disease. Notably, a marked increase in *Lachnoclostridium* (β = 0.206, 95% CI = 0.095–0.316, P = 0.0002) was observed, indicating a significant rise in T2D risk (refer to Table 1). For CAD, elevated levels of *Oxalobacter, Turicibacter,* the *Clostridium innocuum* group, and *Bifidobacterium* were found to have a causative association with an increased risk, with Turicibacter showing a notable effect (β = 0.119, 95% CI = 0.076–0.163, P = 0.006), implying a considerable risk escalation for CAD (as shown in Table 2).

On the other hand, we identified that certain gut microbiota characteristics exhibit an inverse correlation with CAD risk. Specifically, the *Lentisphaeria* class, *Victivallales* order, *Clostridiales vadin BB60* family, and *Butyricicoccus* genus demonstrated a protective effect, as evidenced by beta coefficients ranging from -0.234 to -0.008, suggesting they may mitigate CAD progression.

While our data analysis didn't reveal any significant negative causal effects of gut microbiota on T2D, it did indicate that certain microbes are associated with a reduced CAD risk, pointing towards their potential protective influence against the condition, as detailed in Table 2.

Effect of T2D and CAD on Gut Microbiota Dynamics

Our study explored the causal impact of T2D and CAD on the composition of gut microbiota, assessing causal links across 210 microbiotas for T2D and 211 for CAD. Four gut microbiotas exhibited positive causal links with T2D as a genetic factor, including the genera Catenibacterium, Olsenella, and *Erysipelotrichaceae* UCG-003, as well as the Oxalobacteraceae family. A genetic inclination towards T2D correlated with a heightened presence of these groups (Catenibacterium β = 0.096, 95% CI = 0.020-0.172, P = 0.013; Olsenella β = 0.074, 95% CI = 0.008-0.140, P = 0.027; Erysipelotrichaceae UCG-003 β = 0.140, 95% CI = 0.004–0.276, P = 0.043; Oxalobacteraceae β = 0.061, 95% CI = 0.002-0.119, P = 0.043), as indicated in Table 1. For CAD, an augmentation in several gut microbiota genera and families was noted, implying a possible connection post-Bonferroni adjustment (refer to Table 2).

In contrast, the *Butyrivibrio* genus showed a decrease in abundance with T2D, hinting at a possible protective role. Regarding CAD, a diminution in the abundance of certain gut microbiotas, such as *Butyricicoccus* and *Methanobacteriaceae*, was evident. Notably, the *Methanobacteria* genus displayed a significant reduction in abundance, suggesting a substantial protective influence against CAD.

To validate these conclusions, we conducted various sensitivity analyses, including MR-PRESSO, Cochrane's Q-test, and MR-Egger intercept tests. These procedures did not reveal any signs of heterogeneity or horizontal pleiotropy, thereby confirming the reliability of the identified causal relationships. Additionally, the F-values of the SNPs showing statistical significance consistently exceeded the threshold of 10, adding further credibility to our findings (as detailed in Supplementary Table S5).

Table 1. Bidirectional MR Results of Type 2 diabetes and gut microbiota

Level	Exposure	Outcome	Method	NSNP	Beta(95%CI)	Р	Directional pl	eiotropy	Cochrane's	Steiger P
	-						Egger intercept (P)	MRPRESSO RSSobs (P)	Q-statistic (P)	0
T2D on (Gut microbiota									
Genus	T2D	Butyrivibrio	MR Egger	124	-0.108(-0.278,0.061)	0.212	0.001	151.361	143.251	6.51E-211
			Weighted median	124	-0.067(-0.195,0.061)	0.305	(0.870)	(0.115)	(0.102)	
			IVW	124	-0.096(-0.169,-0.022)	0.011				
Genus	T2D	Catenibacterium	MR Egger	114	0.046(-0.127,0.22)	0.603	0.004	126.627	121.413	1.51E-202
			Weighted median	114	0.044(-0.096,0.184)	0.537	(0.530)	(0.378)	(0.277)	
			IVW	114	0.096(0.02,0.172)	0.013				
Genus	T2D	Olsenella	MR Egger	124	0.011(-0.14,0.162)	0.886	0.005	135.497	122.308	5.77E-220
			Weighted median	124	0.058(-0.072,0.188)	0.379	(0.363)	(0.416)	(0.501)	
			IVW	124	0.074(0.008,0.14)	0.027				
Family	T2D	Oxalobacteraceae	MR Egger	125	0.124(-0.011,0.258)	0.073	-0.005	154.722	136.319	1.47E-212
			Weighted median	125	0.065(-0.037,0.167)	0.215	(0.307)	(0.106)	(0.212)	
			IVW	125	0.061(0.002,0.119)	0.043				
Genus	T2D	Erysipelotrichaceae	MR Egger	14	0.203(-0.418,0.823)	0.534	-0.004	23.752	20.351	2.09E-15
		UCG003	Weighted median	14	0.173(0.011,0.334)	0.036	(0.842)	(0.097)	(0.087)	
			IVW	14	0.14(0.004,0.276)	0.043				
Gut mic	robiota on T2D									
Genus	Lachnoclostridium	T2D	MR Egger	8	0.524(0.044,1.005)	0.076	-0.019	6.420	4.971	1.16E-23
			Weighted median	8	0.179(0.03,0.328)	0.019	(0.230)	(0.706)	(0.664)	
			IVW	8	0.206(0.095,0.316)	0.000				
Genus	Streptococcus	T2D	MR Egger	11	0.118(-0.239,0.474)	0.533	0.002	19.848	13.161	4.19E-37
			Weighted median	11	0.116(-0.013,0.245)	0.077	(0.874)	(0.147)	(0.215)	
			IVW	11	0.146(0.046,0.246)	0.004				
Genus	Actinomyces	T2D	MR Egger	5	0.289(-0.185,0.763)	0.318	-0.016	3.149	2.163	4.13E-18
			Weighted median	5	0.113(-0.008,0.234)	0.067	(0.514)	(0.837)	(0.706)	
			IVW	5	0.114(0.023,0.205)	0.014				
Family	Streptococcaceae	T2D	MR Egger	13	0.122(-0.218,0.462)	0.497	-0.002	18.677	13.621	1.25E-44
			Weighted median	13	0.087(-0.029,0.203)	0.143	(0.867)	(0.269)	(0.326)	
			IVW	13	0.093(0.006,0.18)	0.035				
Genus	unknown genus id.2041	T2D	MR Egger	6	0.204(-0.072,0.48)	0.222	-0.010	10.065	6.910	8.97E-19
			Weighted median	6	0.058(-0.056,0.172)	0.319	(0.472)	(0.311)	(0.227)	
			IVW	6	0.099(0.006,0.192)	0.037				

MR, mendelian randomization; T2D, Type 2 diabetes; IVW, inverse variance weighted; NSNPs, number of single nucleotide polymorphisms; beta, mendelian randomization effect estimate

Metabolomic Influences on T2D and CAD

In conducting a MR study, coupled with Bonferroni adjustments for dual hypotheses (setting the significance threshold at P < 0.025), we identified a subset of 22 metabolites from a total of 217, which were genetically associated with a reduced risk of T2D. This selection encompassed a diverse array of metabolite classes, including but not limited to sphingomyelin (specifically SM14_0), selected amino acids, lysophosphatidylcholine (notably LPC18_2), triacylglycerol (specifically TAG58_8), certain adenosine derivatives, salicylurate, and glycerol. These metabolites demonstrated beta effect sizes in the range of -0.072 to -0.010, indicating their inverse relationship with T2D risk. In contrast, an increase in specific metabolites such as taurocholate, phosphatidylcholine (particularly PC36_1), and suberic acid was found to be genetically correlated with an elevated risk of T2D, with beta effect sizes ranging from 0.011

to 0.067.

Metabolite-Gut Microbiota Interactions and CAD

In an analysis utilizing unidirectional MR, refined through Bonferroni adjustments (threshold set at P < 2.36×10^{-4}), we were able to pinpoint four metabolites exhibiting causative links with both T2D and CAD. This assessment uncovered a negative causal association between proline levels and the presence of *Eubacterium xylanophilum* (yielding a beta coefficient of -0.038, within a 95% confidence interval of -0.058 to -0.019, and a P-value of 1.18×10^{-4}). Furthermore, *LPC18_2* demonstrated a causal relationship with alterations in four distinct gut microbiota taxa. Significantly, an inverse correlation was observed between asparagine and the genus *Desulfovibrio* (beta coefficient of -0.059, 95% CI between -0.090 and -0.028, P = 1.80×10^{-4}), while the

Bacteroidales S24-7 group showed a positive correlation. Additionally, *salicylurate* was identified as having causative connections with both the *Christensenellaceae* family and the genus Coprococcus1, as detailed in Supplementary Data 2.

Metabolite Associations with CAD

Utilizing a directional two-sample MR approach, followed by a Bonferroni correction accommodating dual hypotheses (establishing a significance threshold at P < 0.025), our analysis discerned associations of 16

metabolites with CAD. Within this group, seven metabolites, notably *LPC18_2* and asparagine, were found to be genetically correlated with an increased predisposition to CAD. This correlation was quantified with beta effects spanning from 0.008 to 0.057. In contrast, a set of nine metabolites, which included amino acids like lysine and proline, exhibited a negative genetic association with CAD risk. The beta effect values for these metabolites varied from -0.067 to -0.007, as depicted in Figure 3.

Table 2. Bidirectional MR Results of Coronary artery disease and gut microbiota

Level	Exposure	Outcome	Method	NSNP	Beta(95%CI)	Р	Directional p	leiotropy	Cochrane's	Steiger P
	-						Egger intercept (P)	MRPRESSO RSSobs (P)	Q-statistic (P)	Ū.
Gut Mic	robiota on CAD									
Genus	Oxalobacter	CAD	MR Egger	11	0.184(-0.075,0.444)	0.197	-0.016	12.740	4.155	1.30E-36
			Weighted median	11	0.085(0.013,0.156)	0.020	(0.447)	(0.496)	(0.940)	
			IVW	11	0.082(0.026,0.137)	0.004				
Genus	Turicibacter	CAD	MR Egger	10	0.042 (-0.143, 0.226)	0.827	0.008 (0.676)	14.681 (0.478)	7.201 (0.616)	5.77E-40
			Weighted median	10	0.085 (0.029, 0.142)	0.132				
			IVW	10	0.119 (0.076, 0.163)	0.006				
Genus	Butyricicoccus	CAD	MR Egger	8	-0.197(-0.381, -0.014)	0.080	0.007 (0.426)	10.029 (0.494)	4.227 (0.753)	5.00E-24
			Weighted median	8	-0.138(-0.279,0.003)	0.056	. ,	. ,		
			IVW	8	-0.131(-0.234, -0.028)	0.012				
Genus	unknown genus id.2071	CAD	MR Egger	16	-0.392(-0.764, -0.02)	0.058	0.024 (0.139)	28.083 (0.141)	13.176 (0.589)	9.07E-51
			Weighted median	16	-0.119(-0.23, -0.008)	0.036		· · ·	`	
			IVW	16	-0.101(-0.18, -0.021)	0.013				
Family	Clostridiales vadin BB60	CAD	MR Egger	15	-0.144(-0.345,0.057)	0.184	0.006	9.383	7.743	2.85E-50
	group		Weighted median	15	-0.086(-0.177,0.004)	0.062	(0.536)	(0.945)	(0.902)	
			IVW	15	-0.083(-0.153, -0.013)	0.021				
Genus	unknown genus	CAD	MR Egger	15	-0.144(-0.345,0.057)	0.184	0.006	9.383	7.743	2.85E-50
	id.100000073		Weighted median	15	-0.086(-0.175,0.003)	0.057	(0.536)	(0.940)	(0.902)	
			IVW	15	-0.083(-0.153, -0.013)	0.021				
Genus	Clostridium innocuum	CAD	MR Egger	9	0.094(-0.262,0.45)	0.620	-0.002	14.581	8.562	1.10E-28
	group		Weighted median	9	0.028(-0.06,0.115)	0.537	(0.924)	(0.30)9	(0.381)	
			IVW	9	0.077(0.011,0.142)	0.022				
Class	Lentisphaeria	CAD	MR Egger	8	-0.135(-0.371,0.1)	0.303	0.009	5.244	3.979	3.79E-29
			Weighted median	8	-0.061(-0.152,0.031)	0.194	(0.625)	(0.908)	(0.782)	
			IVW	8	-0.076(-0.144, -0.008)	0.028				
Order	Victivallales	CAD	MR Egger	8	-0.135(-0.371,0.1)	0.303	0.009	5.244	3.979	3.79E-29
			Weighted median	8	-0.061(-0.145,0.024)	0.160	(0.625)	(0.897)	(0.782)	
			IVW	8	-0.076(-0.144, -0.008)	0.028				
Genus	Bifidobacterium	CAD	MR Egger	14	0.087(-0.147,0.321)	0.482	0.000	18.136	11.777	3.50E-58
			Weighted median	14	0.125(0.014,0.235)	0.027	(0.972)	(0.464)	(0.546)	
			IVW	14	0.091(0.008,0.173)	0.031				
CAD on	Gut Microbiota									
Genus	CAD	Veillonella	MR Egger	36	0.023(-0.13,0.177)	0.77	0.009	34.134	29.682	1.80E-85
			Weighted median	36	0.095(-0.001,0.192)	0.052	(0.243)	(0.812)	(0.722)	
-			IVW	36	0.108(0.045,0.171)	0.001				
Genus	CAD	Butyricicoccus	MR Egger	36	-0.088(-0.199,0.024)	0.134	0.002	29.168	23.637	8.15E-91

Int. J. Med. Sci. 2024, Vol. 21

Level	Exposure	Outcome	Method	NSNP	Beta(95%CI)	р	Directional n	leiotropy	Cochrane's	Steiger P
Level	Exposure	Outcome	Method	INDINE	Deta(9570C1)	r	Egger intercept (P)	MRPRESSO RSSobs (P)	Q-statistic (P)	Steiger I
			Weighted median	36	-0.063(-0.131,0.005)	0.069	(0.678)	(0.934)	(0.928)	
			IVW	36	-0.066(-0.112, -0.019)	0.005				
Family	CAD	Christensenellaceae	MR Egger	10	0.05(-0.367,0.468)	0.819	0.01	17.859	11.086	4.40E-14
			Weighted median	10	0.14(-0.005,0.285)	0.059	(0.609)	(0.182)	(0.27)	
			IVW	10	0.159(0.046,0.272)	0.006				
Genus	CAD	Ruminococcaceae UCG004	MR Egger Weighted	36 36	0.007(-0.142,0.156) 0.074(-0.023,0.171)	0.928 0.134	0.008 (0.281)	34.257 (0.784)	30.473 (0.686)	5.60E-87
			median	26	0.082(0.021.0.145)	0.000				
Conus	CAD	Haamanhilua	IV W	36	0.083(0.021, 0.145)	0.009	0.002	12 824	25 797	7 455 94
Genus	CAD	Haemophilus	Weighted median	36	0.028(-0.071,0.128)	0.438	(0.774)	(0.453)	(0.431)	7.05E-04
			IVW	36	0.085(0.02,0.149)	0.010				
Class	CAD	Gammaproteobacteria	MR Egger	36	0.109(-0.008,0.225)	0.076	-0.005	38.906	28.717	3.77E-86
			Weighted median	36	0.085(0.016,0.154)	0.016	(0.408)	(0.609)	(0.764)	
			IVW	36	0.063(0.015,0.111)	0.010				
Family	CAD	Prevotellaceae	MR Egger Weighted median	36 36	0.098(-0.024,0.219) 0.023(-0.055,0.101)	0.124 0.563	-0.004 (0.533)	31.991 (0.865)	26.465 (0.85)	9.13E-91
			IVW	36	0.062(0.012.0.112)	0.015				
Genus	CAD	Coprococcus1	MR Egger	36	0.039(-0.074.0.153)	0.5	0.002	33.98	26.142	1.19E-89
Centus		coprococcuor	Weighted median	36	0.045(-0.024,0.114)	0.203	(0.74)	(0.803)	(0.86)	1.172 07
			IVW	36	0.057(0.01,0.104)	0.017				
Genus	CAD	Lachnospiraceae	MR Egger	35	-0.08(-0.256,0.096)	0.38	0	42.248	33.612	1.43E-83
		UCG008	Weighted median	35	-0.117(-0.223, -0.011)	0.03	(0.973)	(0.401)	(0.486)	
6			IVW	35	-0.083(-0.156, -0.01)	0.025	0.000	22.55	20 522	1 425 00
Genus	CAD	Family XIII UCG001	MR Egger	36	-0.082(-0.211,0.046)	0.217	0.002	33.55	30.732	1.43E-89
			median	36	-0.068(-0.144,0.009)	0.082	(0.099)	(0.019)	(0.074)	
Genus	CAD	Methanobrevibacter	MR Egger	34	-0.006)	0.02	0.024	37.82	32.384	6.55E-78
			Weighted	34	-0.073) -0.141(-0.304,0.021)	0.088	(0.083)	(0.596)	(0.498)	
			median IVW	34	-0.117(-0.224,	0.032				
					-0.01)					
Genus	CAD	Lachnospiraceae UCG010	MR Egger Weighted modian	36 36	-0.053(-0.188,0.082) -0.033(-0.115,0.048)	0.447 0.42	-0.001 (0.934)	40.419 (0.522)	38.02 (0.333)	3.35E-85
			IVW	36	-0.058(-0.113, -0.003)	0.038				
Class	CAD	Methanobacteria	MR Egger	34	-0.352(-0.647, -0.057)	0.026	0.023 (0.099)	40.407 (0.493)	35.488 (0.352)	1.44E-76
			Weighted median	34	-0.166(-0.337,0.005)	0.057	. ,	`	. ,	
			IVW	34	-0.114(-0.223, -0.004)	0.042				
Family	CAD	Methanobacteriaceae	MR Egger	34	-0.352(-0.647, -0.057)	0.026	0.023 (0.099)	40.407 (0.494)	35.488 (0.352)	1.44E-76
			Weighted median	34	-0.166(-0.332,0)	0.05				
0.1			IVW	34	-0.114(-0.223, -0.004)	0.042	0.022	10,107	25 (99	
Order	CAD	Methanobacteriales	MK Egger	34	-0.352(-0.647, -0.057)	0.026	(0.023 (0.099)	40.407 (0.451)	35.488 (0.352)	1.44E-76
			weighted median	34	-0.100(-0.331,	0.048				
			IVW	34	-0.114(-0.223, -0.004)	0.042				
Family	CAD	Lachnospiraceae	MR Egger	36	-0.11(-0.219, -0.001)	0.055	0.007 (0.217)	25.906 (0.969)	21.433 (0.965)	3.95E-95
			Weighted median	36	-0.06(-0.125,0.004)	0.066				
			IVW	36	-0.046(-0.091, -0.002)	0.042				
Family	CAD	Pasteurellaceae	MR Egger	36	0.037(-0.127,0.201)	0.66	0.003	45.756	39.428	1.81E-83
			vveighted	36	0.012(-0.089,0.113)	0.822	(0.092)	(0.349)	(0.270)	

Level	Exposure	Outcome	Method	NSNP	Beta(95%CI)	Р	Directional p	leiotropy	Cochrane's	Steiger P
							Egger intercept (P)	MRPRESSO RSSobs (P)	Q-statistic (P)	
			median						_	
			IVW	36	0.068(0.001,0.134)	0.047				
Order	CAD	Pasteurellales	MR Egger	36	0.037(-0.127,0.201)	0.66	0.003	45.756	39.428	1.81E-83
			Weighted median	36	0.012(-0.083,0.106)	0.81	(0.692)	(0.324)	(0.278)	
			IVW	36	0.068(0.001,0.134)	0.047				
Genus	CAD	Prevotella9	MR Egger	36	0.024(-0.123,0.172)	0.748	0.004	26.219	20.101	2.75E-95
			Weighted median	36	0.039(-0.048,0.127)	0.377	(0.604)	(0.979)	(0.979)	
			IVW	36	0.06(0,0.121)	0.05				

MR, mendelian randomization; CAD, Coronary artery disease; IVW, inverse variance weighted; NSNP, number of single nucleotide polymorphisms; beta, mendelian randomization effect estimate

A.Metabolites used for MR estimation of T2D

Outcome	NSNPs	be	eta	beta(95%−CI)	Р
SM 14_0 salicylurate proline LPC 18_2 citrulline glycerol ornithine taurocholate adenosine monophosphate cystathionine serotonin asparagine adenosine TAG 58_8 PC 36_1 suberic acid	68 56 24 41 14 38 72 58 24 25 46 8 37 22 4	╺ ╺ ╺ ╺ ╺ ╺ ╸ ↓ + + + + + + + + + + + + +		-0.031[-0.041; -0.020] -0.024[-0.035; -0.013] -0.034[-0.050; -0.017] -0.035[-0.052; -0.018] -0.057[-0.087; -0.027] -0.025[-0.039; -0.011] -0.020[-0.031; -0.009] 0.015[0.006; 0.025] -0.028[-0.046; -0.010] -0.030[-0.049; -0.011] -0.034[-0.057; -0.010] -0.040[-0.074; -0.007] -0.020[-0.036; -0.003] 0.022 [0.003; 0.041] 0.046 [0.006; 0.086]	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.002 0.002 0.002 0.005 0.013 0.019 0.019 0.022 0.023
		(C		

A.Metabolites used for MR estimation of CAD

Outcome	NSNPs	be	ta	beta(95%-CI)	Р
3-phosphoglyceric acid lysine alpha_ketoglutarate LPC 18_2 CE 18_2 guanosine diphosphate proline carnitine hypoxanthine salicylurate aspartate anthranilic acid UDP glucose; UDP galactose allantoin quinolinic acid asparagine	43 12 42 44 15 47 39 71 21 59 17 46 50 32 72 49	* * * *		-0.030[-0.001; -0.049] -0.051[-0.078; -0.025] -0.027[-0.043; -0.011] 0.029[0.011; 0.047] 0.042[0.014; 0.070] -0.020[-0.034; -0.006] -0.021[-0.036; -0.007] -0.014[-0.024; -0.004] 0.029[0.008; 0.050] 0.013[0.003; 0.023] 0.024[0.006; 0.043] 0.021[0.005; 0.037] -0.018[-0.032; -0.003] -0.019[-0.035; -0.003] -0.013[-0.024; -0.002] 0.017[0.003; 0.032]	< 0.001 < 0.001 0.002 0.003 0.004 0.005 0.007 0.008 0.010 0.011 0.015 0.017 0.020 0.021

Figure 3: Forest Plots of MR-Derived Causal Estimates. Displayed here are the results from inverse variance-weighted MR analyses, examining the causal effects of different metabolites on T2D and CAD. Beta coefficients, along with 95% confidence intervals (CI), are shown, illustrating the variation in disease risk associated with each 10-unit increase in metabolite concentration. Analyzed metabolites include sphingomyelin (SM), lysophosphatidylcholine (LPC), triacylglycerol (TAG), phosphatidylcholine (PC), and cholesterol ester (CE).

0

Table 3. Particulars of SNPs used in MR analyses of gut microbiota

	0.75	-			ő				T
Exposure traits	SNPs	EA	OA	Beta	Se	samplesize	P-value	R ²	F-statistic
Type 2 diabetes (P<1×10 ⁻¹²)	rs2296173	G	А	0.065	0.0087	62892	7.65773E-14	0.001	55.820
	rs340874	С	Т	0.0626	0.0073	62892	8.40621E-18	0.001	73.536
	rs2972144	G	А	0.0913	0.0075	62892	2.55094E-34	0.002	148.190
	rc2/13010	C C	т	0.0566	0.0071	62802	2 28081E 15	0.001	63 550
	13243017	c	т	0.0000	0.0071	(2802	E 15041E 21	0.001	03.330
	rs/80094	C	I	0.0692	0.0074	62692	5.15941E-21	0.001	07.440
	rs17334919	Т	С	-0.1398	0.0128	62892	6.68652E-28	0.002	119.287
	rs13389219	Т	С	-0.0722	0.0074	62892	2.1062E-22	0.002	95.194
	rs6808574	С	Т	0.0552	0.0076	62892	4.38531E-13	0.001	52.753
	rs11708067	G	А	-0.0965	0.0086	62892	5.93335E-29	0.002	125.909
	rs6795735	т	C	-0.0558	0.0073	62892	1.63005E-14	0.001	58 428
	m7(E1000	Ċ	<u>د</u>	0.1204	0.0076	(2802	2.85205.57	0.001	250.072
	rs/651090	G	A	0.1204	0.0076	62692	3.8339E-37	0.004	250.972
	rs1899951	Т	C	-0.1118	0.0109	62892	1.63682E-24	0.002	105.204
	rs1496653	G	А	-0.0769	0.0088	62892	2.57217E-18	0.001	76.364
	rs1801214	Т	С	0.0903	0.0074	62892	5.51569E-34	0.002	148.906
	rs459193	G	А	0.0711	0.0083	62892	8.80846E-18	0.001	73.381
	rs7729395	Т	C	0 1373	0.016	62892	1 10103E-17	0.001	73 638
	ro7756002	C	<u>د</u>	0.1207	0.0078	62802	5 00020E 62	0.001	276 407
	187750992	G	A	0.1297	0.0078	62692	3.99929E-02	0.004	2/0.49/
	rs1063355	G	1	0.0709	0.0079	62892	3.71535E-19	0.001	80.545
	rs17168486	Т	С	0.0742	0.0094	62892	2.17721E-15	0.001	62.309
	rs2191348	Т	G	0.0652	0.0073	62892	3.44429E-19	0.001	79.772
	rs13234269	А	Т	-0.0583	0.0078	62892	6.9775E-14	0.001	55.866
	rs849135	А	G	-0.0999	0.0072	62892	1.04112E-43	0.003	192,516
	rc3802177	^	C	0.1217	0.008	62892	2 32113E 52	0.004	231 420
	153602177	A	G	-0.1217	0.008	62692	2.32113E-32	0.004	231.420
	rs516946	C	1	0.0824	0.0085	62892	3.15864E-22	0.001	93.976
	rs10974438	С	Α	0.0591	0.0075	62892	3.01301E-15	0.001	62.094
	rs10811661	С	Т	-0.1569	0.0098	62892	4.13238E-58	0.004	256.327
	rs2796441	А	G	-0.0715	0.0073	62892	1.962E-22	0.002	95.933
	rs1063192	А	G	0.0634	0.0073	62892	3.29837E-18	0.001	75.428
	rc4018706	C	т	0.0623	0.0086	62892	4.01328E 13	0.001	52 478
	154910790	T	ſ	0.0023	0.0000	(2892	4.01328E-13	0.001	172 522
	rs7923866	1	C	-0.0972	0.0074	62892	9.33684E-40	0.003	172.532
	rs11257655	Т	С	0.0737	0.0087	62892	1.96607E-17	0.001	71.762
	rs7903146	Т	С	0.3059	0.0077	62892	1E-200	0.024	1578.256
	rs10830963	G	С	0.0909	0.008	62892	5.84655E-30	0.002	129.106
	rs1552224	С	А	-0.1034	0.0101	62892	8.63575E-25	0.002	104.809
	re5215	т	C	-0.0678	0.0073	62892	2.08882E-20	0.001	86 261
	10040004	T	c	-0.0070	0.0075	(2002	1.01E00E 1(0.001	(0.005
	rs10842994	1	C	-0.0755	0.0091	62892	1.01508E-16	0.001	68.835
	rs2261181	Т	С	0.0985	0.0118	62892	9.1791E-17	0.001	69.680
	rs825476	Т	С	0.0524	0.0073	62892	6.80456E-13	0.001	51.525
	rs61953351	Т	G	-0.07	0.0091	62892	1.97606E-14	0.001	59.172
	rs1359790	А	G	-0.0796	0.008	62892	2.79512E-23	0.002	99.003
	rs7177055	Δ	G	0.0647	0.0079	62892	2 746E-16	0.001	67.074
	137177033	6	4	0.1056	0.0079	(2002	1 500015 47	0.001	07.074
	rs/185/35	G	A	0.1056	0.0073	62892	1.59001E-47	0.003	209.258
	rs77258096	A	С	-0.1171	0.0134	62892	1.7832E-18	0.001	76.367
	rs8068804	А	G	0.0587	0.0078	62892	4.41062E-14	0.001	56.635
	rs9894220	G	А	-0.0585	0.0079	62892	1.51705E-13	0.001	54.835
	rs8108269	G	Т	0.0644	0.0079	62892	3.11387E-16	0.001	66.453
coropary artery disease (P<1×10-10)	rs67180937	G	т	0.078807	0.0110551	42457	1.01E-12	0.001	50.816
coronary artery disease (r <1×10 ⁻⁷)	1307 100 507	0	1	0.070007	0.0110001	42457	1.07E 22	0.001	00.405
	rs/528419	G	A	-0.11453	0.011482	42457	1.97E-23	0.002	99.495
	rs9970807	Т	С	-0.12575	0.016695	42457	5.00E-14	0.001	56.734
	rs115654617	А	С	0.137846	0.0158314	42457	3.12E-18	0.002	75.814
	rs12202017	G	А	-0.066813	0.0099612	42457	1.98E-11	0.001	44.988
	rs55730499	Т	С	0.316641	0.0242403	42457	5.39E-39	0.004	170.631
	rs186696265	т	Ċ	0 550351	0.0481949	42457	3 35E-30	0.003	130.400
	0240270	Ċ	<u>د</u>	0.121926	0.000(527	42457	1.91E 40	0.003	196 520
	rs9349379	G	А	0.131836	0.0096527	42457	1.81E-42	0.004	186.539
	rs2107595	А	G	0.073415	0.0112951	42457	8.05E-11	0.001	42.246
	rs11556924	Т	С	-0.072569	0.0110605	42457	5.34E-11	0.001	43.048
	rs2891168	G	А	0.193401	0.0091877	42457	2.29E-98	0.010	443.102
	rs2487928	А	G	0.062633	0.0095049	42457	4.41E-11	0.001	43.422
	rs1870634	G	т	0.075878	0.0097113	42457	5 55E-15	0.001	61.049
	131070034	т	ſ	0.075070	0.000/113	42457	5.55E-15	0.001	47 (20
	rs1412444	1	Ċ	0.066612	0.0096809	42437	5.15E-12	0.001	47.650
	rs2128739	С	Α	-0.065565	0.0100568	42457	7.05E-11	0.001	42.503
	rs2681472	G	А	0.074114	0.0113331	42457	6.17E-11	0.001	42.766
	rs4468572	С	Т	0.077234	0.0095277	42457	4.44E-16	0.002	65.711
	rs4420638	G	А	0.091906	0.0140977	42457	7.07E-11	0.001	42,500
	rc56290921	^	 C	0 12241	0.0170415	42457	A AAE 15	0.001	61 470
	1500209021	A .	9	-0.13301	0.01/0413	42437	4.446-13	0.001	01.470
	rs28451064	А	G	0.12/5/1	0.015952	42457	1.33E-15	0.002	63.955
genus Lachnoclostridium id.11308 (P<1×10-5)	rs12566975	Т	С	-0.0468097	0.0105787	14306	9.57194E-06	0.001	19.580
	rs1528479	А	G	0.0497799	0.0111919	14306	9.63984E-06	0.001	19.783
	rs615997	Т	С	0.0511752	0.0106491	14306	2.0268E-06	0.002	23.094
	rs62285313	А	G	0.0864203	0.0181565	14306	1.58332E-06	0.002	22.655
	rc1031500	т	C	0.079407	0.0175444	14304	6 31370E 00	0.001	20.030
	rc2821000	ı C	4	0.070027	0.01/3044	14204	6 72040E 00	0.001	20.039

https://www.medsci.org

Int	r	Mad	Cai	2024	Val	21	
INT.	Ι.	ivied.	SCI.	2024,	VOI.	21	

Exposure traits	SNPs	EA	OA	Beta	Se	samplesi	ize P-value	R ²	F-statistic
	rs4738679	А	G	0.0520267	0.011404	14306	4.41754E-06	0.001	20.813
	rs1997204	С	Т	0.108075	0.0242022	14306	5.97077E-06	0.001	19.941
	rs62028349	G	С	0.0469989	0.0105971	14306	9.17044E-06	0.001	19.670
	rs72829893	G	Т	0.117472	0.0268103	14306	5.57763E-06	0.001	19.198
	rs78068103	А	G	0.0886199	0.0194248	14306	3.66522E-06	0.001	20.814
	rs2385421	А	G	0.0746186	0.0180734	14306	7.13724E-06	0.001	17.046
	rs789029	С	Т	-0.0641288	0.0137974	14306	3.75327E-06	0.002	21.603
	rs6112314	А	С	-0.0561715	0.0108174	14306	2.43215E-07	0.002	26.964
genus Streptococcus id.1853 (P<1×10-5)	rs11720390	G	А	0.107024	0.0228121	14306	3.59484E-06	0.002	22.011
	rs6806351	Т	С	-0.0633829	0.0136647	14306	4.93867E-06	0.002	21.515
	rs57646748	G	А	-0.0907696	0.0200344	14306	5.47545E-06	0.001	20.527
	rs10028567	С	Т	-0.0921167	0.0191881	14306	7.30348E-06	0.002	23.047
	rs395407	С	G	0.0792781	0.0173697	14306	4.36506E-06	0.001	20.832
	rs77558518	Α	G	-0.103999	0.0229714	14306	4.70858E-06	0.001	20.497
	rs11764382	А	G	-0.0695345	0.0143671	14306	1.28632E-06	0.002	23.424
	rs17708276	Α	G	-0.0793955	0.0170628	14306	3.04096E-06	0.002	21.652
	rs10448310	А	G	-0.0517935	0.0111324	14306	3.30704E-06	0.002	21.646
	rs71481756	Т	G	0.0931048	0.0207949	14306	6.51478E-06	0.001	20.046
	rs7916711	А	G	0.102891	0.0217362	14306	0.000002717	0.002	22.407
	rs1918540	А	G	-0.059639	0.0128148	14306	2.44068E-06	0.002	21.659
	rs11110281	Т	С	-0.137519	0.0227398	14306	2.58315E-09	0.003	36.572
	rs2370083	G	Т	-0.0816836	0.0185851	14306	9.75237E-06	0.001	19.317
	rs72739637	А	G	0.0959942	0.0193213	14306	1.03307E-06	0.002	24.684
	rs6563952	С	G	-0.0827344	0.0180035	14306	5.8213E-06	0.001	21.118
	rs4968759	А	G	-0.0515109	0.0112068	14306	3.7812E-06	0.001	21.127
	rs9903102	С	А	-0.0709483	0.0155275	14306	4.17994E-06	0.001	20.878
genus Actinomyces id.423 (P<1×10-5)	rs71315246	А	G	-0.0969809	0.021925	14306	9.82969E-06	0.001	19.566
	rs34583783	G	Т	0.126596	0.0268461	14306	4.48528E-06	0.002	22.237
	rs4073240	G	А	0.0749687	0.0167368	14306	7.94273E-06	0.001	20.064
	rs35011108	А	G	0.232634	0.0512044	14306	6.33826E-06	0.001	20.641
	rs4146653	G	А	0.0985224	0.0214182	14306	4.49645E-06	0.001	21.159
	rs10787984	G	С	0.094316	0.0213513	14306	9.62299E-06	0.001	19.513
	rs7915461	С	Т	-0.18776	0.0401636	14306	5.91984E-06	0.002	21.855
	rs2715439	Т	С	-0.0746684	0.0164822	14306	6.27004E-06	0.001	20.523
family Streptococcaceae id.1850 (P<1×10-5)	rs77968078	G	А	-0.0993013	0.0224788	14306	7.93341E-06	0.001	19.515
	rs76717940	Т	А	0.150606	0.0334079	14306	3.08937E-06	0.001	20.323
	rs6806351	Т	С	-0.0619209	0.0135744	14306	6.93793E-06	0.001	20.808
	rs10028567	С	Т	-0.0934027	0.0190343	14306	3.72495E-06	0.002	24.079
	rs57646748	G	А	-0.088021	0.019876	14306	7.88352E-06	0.001	19.612
	rs395407	С	G	0.0826855	0.0172536	14306	1.32559E-06	0.002	22.967
	rs77558518	А	G	-0.104239	0.022806	14306	3.72195E-06	0.001	20.891
	rs957755	Т	G	-0.0642449	0.0142702	14306	7.41515E-06	0.001	20.268
	rs2952251	G	А	0.0639298	0.0126525	14306	3.72237E-07	0.002	25.530
	rs28718126	А	G	0.109069	0.0246868	14306	9.41044E-06	0.001	19.520
	rs7916711	А	G	0.0959639	0.021545	14306	6.32732E-06	0.001	19.839
	rs16950051	А	G	0.107008	0.0236973	14306	5.33814E-06	0.001	20.391
	rs11110281	Т	С	-0.130554	0.0225943	14306	1.40136E-08	0.002	33.387
	rs2370083	G	Т	-0.0842751	0.0184509	14306	4.25667E-06	0.001	20.862
	rs72739637	А	G	0.0927983	0.0192021	14306	1.82163E-06	0.002	23.355
	rs6563952	С	G	-0.0801931	0.0178576	14306	8.70583E-06	0.001	20.166
	rs35344081	G	А	0.0609349	0.0129703	14306	2.63846E-06	0.002	22.072
	rs9903102	С	А	-0.0693015	0.0154096	14306	4.91802E-06	0.001	20.226
	rs4968759	А	G	-0.0544035	0.0111271	14306	8.91887E-07	0.002	23.905
unknown genus id.2041 (P<1×10-5)	rs1032598	G	А	-0.0886426	0.0189039	14306	4.07587E-06	0.002	21.988
0	rs16843660	А	G	0.234697	0.04907	14306	1.75344E-06	0.002	22.876
	rs11941716	А	G	0.101243	0.0224414	14306	9.0663E-06	0.001	20.353
	rs249459	А	G	0.0737341	0.0165018	14306	8.12307E-06	0.001	19.965
	rs553072	G	А	0.109193	0.0230198	14306	3.69097E-06	0.002	22.500
	rs1962916	G	А	-0.0737876	0.0162232	14306	6.13847E-06	0.001	20.687
	rs35703006	G	Т	0.0926669	0.0190779	14306	9.00762E-07	0.002	23.593
	rs921383	G	А	0.0723153	0.0159706	14306	7.72894E-06	0.001	20.503
	rs2651663	А	G	-0.0762556	0.0168635	14306	5.64144E-06	0.001	20.448
	rs2336448	Т	С	0.0773742	0.0160883	14306	1.42899E-06	0.002	23.130
	rs7187855	А	С	0.199941	0.0418308	14306	2.20602E-06	0.002	22.846
	rs6514318	Т	C	0.128198	0.0281765	14306	5.37675E-06	0.001	20.701
genus Oxalobacter id.2978 (P<1×10-5)	rs4428215	G	A	0.130293	0.0242237	14306	7.51069E-08	0.002	28.931
	rs36057338	G	Т	0.207847	0.0421439	14306	8.79812E-07	0.002	24.323
	rs1569853	Т	С	-0.138078	0.0296981	14306	3.64502E-06	0.002	21.617
	rs6993398	G	A	0.127217	0.0278855	14306	7.12771E-06	0.001	20.813
	rs10464997	G	A	0.137691	0.0294804	14306	3.29754E-06	0.002	21.814
	rs12002250	А	C	0.217122	0.0466317	14306	1.41504E-06	0.002	21.679
	rs736744	Т	Č	-0.117882	0.0211262	14306	2.57472E-08	0.002	31.135
	rs3862635	С	Т	-0.172142	0.0394026	14306	9.18692E-06	0.001	19.086

Exposure traits	SNPs	EA	OA	Beta	Se	samplesize	P-value	R ²	F-statistic
	rs11108500	А	G	-0.199099	0.0427327	14306	3.74283E-06	0.002	21.708
	rs111966731	Т	С	0.213114	0.047162	14306	7.29861E-06	0.001	20.419
	rs6071435	т	Δ	-0.105512	0.021489	14306	1.07431E-06	0.002	24 109
	150071455	1	л т	-0.100012	0.021409	14300	1.07451E-00	0.002	24.109
	rs6000536	C	1	-0.130992	0.0253804	14306	2.06054E-07	0.002	26.637
genus Turicibacter id.2162 (P<1×10-5)	rs149744580	А	G	0.169883	0.0315478	14306	7.00971E-08	0.002	28.998
	rs4869133	G	А	0.131186	0.027197	14306	2.5537E-06	0.002	23.267
	rs2221441	G	С	0.0710364	0.015343	14306	3.45669E-06	0.001	21.436
	rs3734633	G	А	-0.120957	0.02683	14306	5.31912E-06	0.001	20.325
	rs55756211	т	C	-0 115115	0 0240708	14306	2 8053E-06	0.002	22 871
	rc2052020	1	C	0.0759019	0.0165764	14306	5.63313E.06	0.001	20.966
	182952020	A	G	0.0759019	0.0105764	14306	5.65515E-06	0.001	20.966
	rs61265175	G	C	-0.0858591	0.0185778	14306	4.13676E-06	0.001	21.359
	rs11054680	Т	С	-0.104751	0.0226997	14306	2.30978E-06	0.001	21.295
	rs4247078	G	С	-0.0710377	0.0155221	14306	5.46072E-06	0.001	20.945
	rs11649454	G	С	0.0950891	0.0203433	14306	3.26625E-06	0.002	21.848
	rs7199484	G	А	-0.0731428	0.0160172	14306	5.7666E-06	0.001	20.853
	rs12603364	Т	C	0 110861	0.0225598	14306	8 66603E-07	0.002	24 148
	rc11666533	C C	т	0 111680	0.0248436	14306	7 37106E 06	0.001	20.211
	1511000555	T	ſ	-0.111009	0.0246436	14306	7.37106E-06	0.001	20.211
	rs2834977	1	C	-0.0959995	0.0208261	14306	3.95585E-06	0.001	21.248
genus Butyricicoccus id.2055 (P<1×10 ⁻⁵)	rs12034718	G	А	-0.0701199	0.0158213	14306	9.57679E-06	0.001	19.643
	rs10084203	G	А	-0.0549699	0.0123563	14306	8.58638E-06	0.001	19.791
	rs56221232	Т	С	0.0828027	0.0167401	14306	7.61939E-07	0.002	24.467
	rs2017189	Т	G	0.0506956	0.011024	14306	3.87258E-06	0.001	21.148
	rs62478070	т	G	0 224039	0 0494959	14306	5 93772E-06	0.001	20 488
	rc4962426	т	C	0.0614216	0.0135979	14306	7 38482E 06	0.001	20.100
	194902420	1	G	-0.0014210	0.0133979	14306	7.30402E-00	0.001	20.403
	rs7322368	C	Т	-0.0815733	0.0183167	14306	5.51785E-06	0.001	19.834
	rs12585793	Т	С	-0.262206	0.0564729	14306	5.79189E-06	0.002	21.558
	rs75238760	Т	А	0.0619423	0.0139942	14306	6.79704E-06	0.001	19.592
unknown genus id.2071 (P<1×10-5)	rs4644504	Т	С	-0.0969321	0.0216146	14306	5.81969E-06	0.001	20.111
o (),	rs11809762	G	А	-0.0934634	0.0190198	14306	1.68287E-06	0.002	24.147
	rs11904514	Δ	G	0 109498	0.0249839	14306	7 89951E-06	0.001	19 208
	ro1800126	C	C	0.0004504	0.0249039	14206	9 26080E 06	0.001	19.002
	151609156	C	G	-0.0994594	0.0226656	14306	6.36969E-06	0.001	18.925
	rs16823675	С	Т	-0.0767515	0.0149973	14306	2.33346E-07	0.002	26.191
	rs11684166	А	G	-0.0769635	0.0168349	14306	3.49116E-06	0.001	20.900
	rs10200320	Т	С	-0.0641139	0.0142769	14306	5.6607E-06	0.001	20.167
	rs2898979	G	С	0.0901515	0.0202199	14306	7.67291E-06	0.001	19.879
	rs35740166	C	т	-0 112246	0 0226824	14306	8 39982E-07	0.002	24 489
	rc17086536	C	1	0.100851	0.022432	14306	3 3638E 06	0.001	20.213
	rs1/086556	C	A	-0.100651	0.022432	14306	3.3636E-06	0.001	20.215
	rs34985298	G	A	-0.0623526	0.013772	14306	8.33758E-06	0.001	20.498
	rs1455639	А	G	-0.0760307	0.0169831	14306	7.83899E-06	0.001	20.042
	rs11195523	С	А	-0.0689278	0.0145351	14306	2.40121E-06	0.002	22.488
	rs2939766	А	G	-0.0591611	0.013042	14306	7.01148E-06	0.001	20.577
	rs76532867	Т	C	0 112353	0 0242364	14306	2 55859E-06	0.001	21 490
	rc56075773	т	۵ ۵	0.112000	0.0248859	14306	7.65491E-06	0.001	20.721
	10147506	I C	л	0.113282	0.0240000	14300	7.03491E-00	0.001	20.721
	rs1214/596	C	I	-0.0719818	0.0141609	14306	2.86207E-07	0.002	25.838
	rs72700702	Т	C	-0.091726	0.0189005	14306	1.59272E-06	0.002	23.553
	rs72707147	С	Т	0.110109	0.0244644	14306	6.84022E-06	0.001	20.257
	rs6007642	С	Т	-0.0791412	0.0177958	14306	9.95543E-06	0.001	19.777
family Clostridiales vadin BB60 group id.11286	rs7538034	Т	G	-0.078598	0.0165982	14306	2.36706E-06	0.002	22.423
(P<1×10 ⁻⁵)	rs6588624	А	G	0.0662317	0.0138147	14306	1 79287E-06	0.002	22 985
(1 11 10)	ro12400122	^	C	0.165410	0.0252154	14206	4 2722E 06	0.002	22.965
	1513409132	A	G	-0.103419	0.0352134	14306	4.3723E-00	0.002	22.005
	rs2191834	1	G	-0.0746375	0.0159136	14306	2.50196E-06	0.002	21.998
	rs6755871	С	G	-0.0613825	0.0138976	14306	9.33061E-06	0.001	19.508
	rs989682	А	G	0.070194	0.0155364	14306	6.84715E-06	0.001	20.413
	rs10517600	G	Т	-0.0626993	0.0139364	14306	6.82763E-06	0.001	20.241
	rs34088226	А	G	-0.117807	0.026924	14306	7.66214E-06	0.001	19.145
	re7725895	Δ	G	-0.116224	0.0240367	1/1306	3 94357E-06	0.002	23 380
	ro66714085	^	C	0.116008	0.0250447	14206	4 95222E 06	0.002	23.300
	1500714903	A	C	0.110908	0.0252447	14306	4.65555E-06	0.001	21.440
	rs118104867	C	1	0.214464	0.0455098	14306	3.43598E-06	0.002	22.207
	rs10904722	С	Т	-0.0672314	0.0147123	14306	5.04836E-06	0.001	20.883
	rs17121075	G	А	0.0769254	0.0172234	14306	7.91425E-06	0.001	19.948
	rs55682560	С	Т	-0.131519	0.0261319	14306	4.97038E-07	0.002	25.330
	rs28691777	С	Т	0.137134	0.0266996	14306	6.95697E-07	0.002	26.380
	rc7226487	<u>^</u>	C	0.0643687	0.0138701	14306	3 58286E 06	0.002	21 537
	13/22040/	C	c	0.0040002	0.0150001	14204	1.05271E.04	0.002	22.007
1	1599/96/4			-0.0738925	0.0150911	14300	1.052/1E-06	0.002	23.9/3
unknown genus id.1000000073 (P<1×10-5)	rs6588624	А	G	0.0662317	0.0138147	14306	1.79287E-06	0.002	22.985
	rs7538034	Т	G	-0.078598	0.0165982	14306	2.36706E-06	0.002	22.423
	rs2191834	Т	G	-0.0746375	0.0159136	14306	2.50196E-06	0.002	21.998
	rs13409132	А	G	-0.165419	0.0352154	14306	4.3723E-06	0.002	22.065
	rs6755871	C C	G	-0.0613825	0.0138076	14306	9 33061E-06	0.001	19 508
	rc080407	<u>۸</u>	C	0.070104	0.01552/4	1/204	6 8471EE 00	0.001	20.412
	15707002	n C	G	0.0/0194	0.010004	14300	0.04/13E-06	0.001	20.413
	rs10517600	G	Т	-0.0626993	0.0139364	14306	6.82763E-06	0.001	20.241
	rs7725895	А	G	-0.116224	0.0240367	14306	3.94357E-06	0.002	23.380
	rs34088226	А	G	-0.117807	0.026924	14306	7.66214E-06	0.001	19.145

Int. J. Med. Sci. 2024, Vol. 21

n=n671898 A C 0.110498 0.022427 14/00 432898-04 0.002 2.237 n=110149727 C T 0.21447 14/06 343987-06 0.002 2.237 n=170149727 C T 0.007231 14/06 343987-06 0.001 19488 n=55082560 C T 0.13719 0.022 2.538 0.002 2.5380 n=55082560 C T 0.13719 0.22494 14/06 5.695975-0 0.002 2.5380 n=25082560 C T 0.147145 0.0249870 14/06 0.0022 2.5380 n=0797874 G C 0.0048870 14/06 14/06 0.0012 2.1490 n=14056 C T 0.112044 0.001207 14/06 0.0012 2.1490 n=4007600 C T 0.12044 0.007376 14/06 0.0012 2.1490 n=60767677 T C 0.140749 0.027376 <	Exposure traits	SNPs	EA	OA	Beta	Se	samplesiz	e P-value	R ²	F-statistic
n:1000670CT0.2144010.047020.40700.40800.40800.2200.2307n:100070CN0.07902540.01721.0380.0121.03810.0121.0381n:1500707CN0.137140.02601.03860.0120.23810.0121.0381n:25091777CC0.0138900.018911.0380.38084-000.022.037n:2508177CC0.0138900.018971.0388.40012-000.01971.039n:1508175CC1.0128400.0138911.0388.40012-000.01282.037n:1608175CT0.12840.013911.0388.40012-000.0122.139n:1608175CT0.12840.031971.0388.40012-000.012.139n:1608175CT0.12840.027141.0388.40012-000.012.139n:1608175CT0.12740.027141.0388.40012-000.012.139n:1608175AC0.11740.027141.0388.40012-000.012.139n:1608175AC0.11720.027141.0388.40012-000.012.139n:1608175AC0.11720.027451.0388.40012-000.012.139n:1716443CC0.11720.027451.0388.40012-000.012.139n:1716443CC0.117		rs66714985	А	С	0.116908	0.0252447	14306	4.85333E-06	0.001	21.446
Partial <t< td=""><td></td><td>rs118104867</td><td>С</td><td>Т</td><td>0.214464</td><td>0.0455098</td><td>14306</td><td>3.43598E-06</td><td>0.002</td><td>22.207</td></t<>		rs118104867	С	Т	0.214464	0.0455098	14306	3.43598E-06	0.002	22.207
prime		rs10904722	С	Т	-0.0672314	0.0147123	14306	5.04836E-06	0.001	20.883
n=58e3260CT0.131590.02013914360.47038-070.020.330n=789774CC0.0438280.013870114360.58286-060.022.337genus Clostridum innecuum group id.137n=778448C0.020.03780114361.6020.022.337genus Clostridum innecuum group id.137n=687866CA0.104250.03088714365.6129-060.022.367genus Clostridum innecuum group id.137n=687866CT0.124640.03110214365.6129-060.022.367genus Clostridum innecuum group id.137CT0.1246410.03116214365.6129-060.012.469genus Clostridum innecuum group id.137CT0.1246410.02218614366.0012.367genus Clostridum innecuum group id.137TA-0.1267460.022746714365.6302-060.0112.135genus Clostridum innecuum group id.137AA-0.1267460.022746714365.6302-060.0112.135genus Clostridum innecuum group id.1371TA-0.1267400.02871814365.6302-060.0112.135genus Clostridum innecuum group id.1371FA-0.1277100.02871814365.6302-060.0112.135genus Clostridum innecuum group id.1371GC-0.1197200.02871814365.6302-060.0112.135genus Clostridum innecuum group id.1371 <td></td> <td>rs17121075</td> <td>G</td> <td>А</td> <td>0.0769254</td> <td>0.0172234</td> <td>14306</td> <td>7.91425E-06</td> <td>0.001</td> <td>19.948</td>		rs17121075	G	А	0.0769254	0.0172234	14306	7.91425E-06	0.001	19.948
model		rs55682560	С	Т	-0.131519	0.0261319	14306	4.97038E-07	0.002	25.330
n=226437AGACAABABABABABB </td <td></td> <td>rs28691777</td> <td>С</td> <td>Т</td> <td>0.137134</td> <td>0.0266996</td> <td>14306</td> <td>6.95697E-07</td> <td>0.002</td> <td>26.380</td>		rs28691777	С	Т	0.137134	0.0266996	14306	6.95697E-07	0.002	26.380
enspanseenspans		rs7226487	А	G	-0.0643682	0.0138701	14306	3.58286E-06	0.002	21.537
genus Clostricitum innocuum groupi Lil 29766°A0.1044250.005800.2038.40011-000.0012.156r49656CT0.126860.00112121.2008.61291-000.0122.156r49657CT0.124240.0311211.2007.24351-000.022.156r48697.33GA-0.1305910.0495551.3007.24351-000.012.157r48697.35GA-0.1305910.0495551.3007.24351-000.012.157r156433TA-0.1267460.0274571.3008.40021-060.012.157r1575433GC-0.114980.0257181.3008.40021-060.012.157r1575433GC-0.114980.0257181.3008.60421-660.012.150r1571433GC-0.1312770.0385711.3068.60421-660.012.157r2711433GC-0.1312770.0385711.3068.60421-660.012.157r2711433GG-0.131270.0285711.3064.10552460.0112.152r2711433GG-0.1014310.0248071.3001.3075460.0212.157r2711433GG-0.1014310.0248071.3001.3052460.0112.124r2711433GG-0.1014310.0248071.3001.3052460.0122.127r2711433GG <td></td> <td>rs9979874</td> <td>G</td> <td>С</td> <td>-0.0738925</td> <td>0.0150911</td> <td>14306</td> <td>1.05271E-06</td> <td>0.002</td> <td>23.975</td>		rs9979874	G	С	-0.0738925	0.0150911	14306	1.05271E-06	0.002	23.975
(1=1-10)* n1949423 T A -0.108859 0.0232 12.00 3.494062-40 0.002 2.1.60 n45990135 C T -0.113424 0.021102 1406 8.6152-66 0.002 2.3.69 n45990133 G A -0.10244 0.021798 1406 7.2153-66 0.001 2.0.357 n10074000 T C -0.10244 0.022758 1436 6.99991-66 0.001 2.0.25 n21056088 A G -0.01748 0.022758 1436 8.40216-66 0.001 2.1.01 n3193277 G A -0.15798 0.023758 14306 5.8560-66 0.001 2.1.31 class Lentispharia id 220 (N<1×10*)	genus Clostridium innocuum group id.14397	rs6577484	G	А	0.160425	0.0360857	14306	8.40601E-06	0.001	19.764
 n+40656 C T 0.12504 0.02112 1.300 8.15291-00 0.010 2.1.40 nes997185 C C 0.103240 0.02485 1.300 7.24351-06 0.01 2.3.87 1.300 1.202480 0.02485 1.300 7.24351-06 0.01 2.3.87 1.3105000 T C 0.102480 0.027457 1.300 7.244313 T A 0.1029480 0.027457 1.300 7.24423-06 0.01 2.1.51 1.31506088 A C 0.114993 0.023718 1.300 8.40621-06 0.01 2.1.01 1.315 1.31506-36 0.01 2.1.01 1.315 1.316 1.31661-56 0.01 2.1.01 2.1.	(P<1×10 ⁻⁵)	rs1948423	Т	А	-0.108859	0.023425	14306	3.49406E-06	0.002	21.596
rse800185CT-0.113420.023137112281-000.00223.69rs1007400TC-0.1026480.022768713066.99935-000.012.387rs1057403TA-0.102746713066.99935-000.012.181rs1059055AG-0.102748713068.92142-000.012.181rs105978TC-0.117980.02738714365.5850F-040.012.133rs179578TC-0.117980.02148714365.5850F-040.012.133rs1717847GA-0.157980.021487143065.5850F-040.012.133rs1717847GA-0.157880.041477143065.5850F-040.012.133rs1717847GA-0.157880.041477143065.5850F-040.012.065rs1717847GA-0.152870.024897143065.85876-00.012.133rs1717847CT-0.104380.024897143061.90734-060.022.1707rs1717847CT-0.104380.023322143064.80845-060.012.234rs1012941AG-0.125870.023487143065.85876-060.012.234rs1012947AG-0.125870.023487143065.18385-060.012.256rs1177847AG-0.125870.024845143061.81385-06		rs40656	С	Т	0.142664	0.0311021	14306	8.61529E-06	0.001	21.040
nst860733GA0.188970.04099501.24857.000.010.14.84n77564.33TC0.1012640.0227361430678001.600.012.285n71566.43TC0.1019900.022192143068.466.211.600.012.195n75745.73AC0.147980.023187143068.466.211.600.012.101n8127707TC0.147980.023187143068.466.211.600.012.133n812871GA0.1012170.038187143066.86438.060.012.133n7246280AC0.1014310.024897143064.24356.600.012.135n8277184GC0.1014310.024897143064.24356.600.012.135n8277184GC1.0194310.024897143061.09731.600.022.135n8277184GG0.10221800.034861143061.0921.600.022.135n8277184GG0.10221800.034861143061.0921.600.022.135n8277184GG0.10221801.4361.4365.660.012.135n97114848GG0.10221.801.43661.8485.660.012.135n97114848GG0.1024.550.134861.43661.6360.022.102n9711448GG0.1024.550.134861.43660.012.136 </td <td></td> <td>rs6890185</td> <td>С</td> <td>Т</td> <td>-0.113424</td> <td>0.0233137</td> <td>14306</td> <td>1.12243E-06</td> <td>0.002</td> <td>23.669</td>		rs6890185	С	Т	-0.113424	0.0233137	14306	1.12243E-06	0.002	23.669
r:10074000TC-0.1025840.022796143066.99995.000.0012.0357r:7154533AG0.019770480.021926143068.924127.610.0012.1181r:67784539AG-0.114990.023787143068.924127.610.0012.1381r:67784539AC-0.114990.023787143065.55097-600.0012.1381r:67784539CA-0.15739143065.65097-600.0012.533r:67313483TA-0.1043830.024897143065.65087-600.0012.565r:7313483TA-0.1043830.024897143065.65337-600.0012.565r:7317444CT0.1043130.024897143061.907241-600.0022.107r:81717443CT0.1043130.024897143061.907241-600.0022.207r:81717443CT0.1052570.023484143061.816327-600.0022.207r:81717443AG0.1252770.032487143061.816327-600.0022.502r:8102941AG0.2129720.0481691.816327-600.0022.502r:8102941AG0.1023270.028491143061.816327-600.0022.502r:8102941AG0.212970.034849143061.816327-600.0022.502r:8102941AG0.212574 </td <td></td> <td>rs4869133</td> <td>G</td> <td>А</td> <td>-0.180591</td> <td>0.0409505</td> <td>14306</td> <td>7.24453E-06</td> <td>0.001</td> <td>19.448</td>		rs4869133	G	А	-0.180591	0.0409505	14306	7.24453E-06	0.001	19.448
split		rs10074000	Т	С	-0.102648	0.0227508	14306	6.99939E-06	0.001	20.357
int 10366038 A G 0.0970948 0.0271926 1336 8.24021-66 0.001 20.344 int 7781539 A G -0.114930 0.0257186 1306 8.406211-66 0.001 21.010 int 9125778 T C 0.114788 0.0331875 1306 4.06548-06 0.001 21.010 int 9125711 G A -0.157938 0.04187 1306 4.06548-06 0.001 21.331 int 9125711 G C -0.104348 0.022693 14306 1424556-06 0.001 21.351 int 77731343 C T 0.104313 0.022493 14306 142356-06 0.001 21.921 int 77739476 A G 0.125260 0.0233481 14306 143856-06 0.001 22.94 int 102911 A G -0.10525 0.023446 14306 143856-06 0.001 22.94 int 102911 A G -0.10527 0.048164 14306		rs71564433	Т	A	-0.126746	0.0274657	14306	7 8001E-06	0.001	21 295
rs7745159 A C -0.11493 0.0257186 4306 8.40021E.06 0.001 19.992 rs61269798 T C 0.14748 0.0034187 1306 5.58698-26 0.001 21.331 class Lentispheeria id.2250 (P<1×19)		rs10506058	A	G	0.0997048	0.0221926	14306	8 92442E-06	0.001	20.184
rsi61267978 T C A 0.14708 0.0320875 1436 5.58809E-06 0.01 21.01 rsi942571 G A 0.0157938 0.0314197 1436 5.58809E-06 0.01 21.333 rsi73113433 T A 0.0157938 0.034197 1436 5.58809E-06 0.01 20.513 rsi73113433 T A 0.0131217 0.028873 1436 5.86343E-06 0.001 20.565 rsi73113433 C T 0.0104311 0.023497 1436 4.43456-06 0.012 21.335 rsi1770434 C T 0.0104311 0.023497 1436 1.43724-06 0.002 21.707 rsi62570196 C T 0.010431 0.023486 14306 1.0792E-06 0.002 21.707 rsi62570196 C T 0.01236 0.0239386 14366 1.0792E-06 0.002 22.073 rsi17170434 C A 0.0122368 0.023032 14366 4.38258E-06 0.001 20.249 rsi7171448 G A 0.0122377 0.023432 14366 4.4356E-06 0.001 20.249 rsi7171448 G A 0.0152377 0.023432 14366 8.14356E-06 0.001 20.234 rsi7759476 A G C 0.230292 0.048161 14306 1.84582E-06 0.001 20.234 rsi7759476 A G C 0.023092 0.048161 14306 1.84582E-06 0.001 20.254 rsi771343 T A G 0.0129271 0.028450 14306 1.84582E-06 0.001 20.513 rsi7113483 T G C 1.0109431 0.028943 14306 1.84532E-06 0.001 20.513 rsi7113483 T C 0.01094316 0.028973 14306 4.2436E-06 0.001 20.513 rsi7113483 T 0 0.0109431 0.023647 14306 1.9479E-06 0.002 21.707 rsi255714 A G 0.0129417 0.028945 14306 1.9479E-06 0.002 21.707 rsi255714 A G 0.0109431 0.023497 14306 1.9729E-06 0.002 21.707 rsi255714 A G 0.0109431 0.023495 14306 1.9729E-06 0.002 21.707 rsi255714 A G 0.01094318 0.023931 14306 1.9598E-06 0.001 20.494 rsi215700 G A 0.059356 0.013397 14306 1.9598E-06 0.001 20.494 rsi21570 G C T 0.0673356 0.013397 14306 1.72211E-06 0.002 22.568 rsi566780 T C 0.0619356 0.013397 14306 1.72211E-06 0.002 22.568 rsi566780 T C C 0.0693450 0.012324 14306 1.72211E-06 0.002 22.569 rsi568780 T C C 0.0693450 0.013219 14306 1.72211E-06 0.002 22.569 rsi568780 T C C 0.0673430 0.013205 14306 1.72211E-06 0.002 22.569 rsi568780 T C C 0.0673440 0.013205 14306 1.72211E-06 0.002 22.569 rsi568780 T C C 0.0673430 0.013205 14306 1.72211E		rs77845139	A	G	-0 114993	0.0257186	14306	8.40621E-06	0.001	19 992
class Lentisphaeria id 2250 (P<1×10*) rs194271 class Lentisphaeria id 2250 (P<1×10*) rs72401280 rs72401280 rs72501282 rs725131343 rs1170843 rs2731543 rs7250179 rs62770196 rs7250179 rs62770196 rs7250179 rs62770196 rs7250178 rs		rs61267978	Т	C	0.14708	0.0320875	14306	5 58509E-06	0.001	21.010
class Lentisphaeria id 2250 (P<1×10*) class Lentisphaeria id 2250 (P<1×10*) r57311343 r57311343 r57311343 r57311343 r57311343 r57311343 r57311343 r57311343 r57311343 r57311343 r57311343 r5731343 r5731343 r5731343 r5731343 r5731343 r5731343 r5731343 r5731343 r5731343 r5731343 r5731344 r5731344 r5731344 r5739476 r5739476 r57254020 r572574 r57254020 r572574 r57254020 r572574 r57254020 r572574 r57254020 r572574 r57254020 r572574 r57254020 r572574		rs1942371	G	Δ	-0.157938	0.034187	14306	4.0634E-06	0.001	21.010
calast Exintegraterial (a.E.E.S. (a. F-1-N.S.) 15/3000000 17 A -0.13217 0.0088713 14306 8.66348E-86 0.001 20.555 rs2731843 G C -0.109438 0.0268971 14306 8.66348E-86 0.001 20.556 rs2731843 G C T 0.00431 0.0224879 14306 4.24356E-46 0.002 2.1.77 rs62570196 C T 0.01431 0.0224879 14306 4.05864E-46 0.002 2.2.073 rs1012941 A G -0.105025 0.023484 14306 1.0582E-46 0.001 2.0.25 order Victivallales id 2254 (P<1>10*9) rs73113483 T A -0.13741 0.0289713 14306 8.66343E-46 0.001 2.0.566 rs73113483 T A -0.13741 0.0289713 14306 8.66343E-46 0.001 2.0.566 rs7313483 T A -0.13741 0.028491 14306 8.66343E-46 0.001 2.1.355	class Lentisphaeria id 2250 (P<1x10-5)	rs72640280	Δ	G	0.220207	0.0486196	14306	5.18036E-06	0.001	20.513
is 371.1303 is 371.1303 is 371.1303 is 371.1303 is 371.1304		rc73113483	т	^	0.131217	0.0288713	14306	8.66343E.06	0.001	20.515
genus Bifidobacterium id.436 (P<1×10)		rc2731834	I C	A C	-0.131217	0.0286713	14306	4 24356E 06	0.001	20.000
isi11/0843 C 1 0.109401 0.0049407 14300 1.507.3200 0.002 24.192 rs62571166 C T 0.212368 0.00270329 14306 0.4382681-06 0.002 22.073 rs1012812 A G 0.122368 0.027329 14306 0.4382681-06 0.002 22.073 rs1029411 A G 0.105025 0.023444 14306 1.861321-06 0.002 22.302 rs7599476 A G 0.22027 0.048016 14306 1.561321-06 0.002 22.368 order Victivallales id.2254 (P<1×10*)		rs11770842	G	т	-0.109438	0.023093	14306	4.24330E-00	0.001	21.555
genus Bifidobacterium id.436 (P<1×10*)		rs11770845	C	T	0.109431	0.0234679	14306	1.9073E-06	0.002	21.707
rs:00:12.2 A C 0.12208 0.027029 14306 4.35628-06 0.001 20.390 rs:1714848 G A 0.152377 0.0324323 14306 4.056641-06 0.002 22.073 rs:07099476 A G 0.013721 0.028344 14306 8.181321-06 0.002 22.068 rs:75799476 A G 0.013711 0.0289214 14306 1.861321-06 0.001 20.556 rs:7311343 T A 0.0120127 0.028931 14306 6.663431-06 0.001 21.335 rs:11770843 C T 0.109431 0.023697 14306 4.23561-06 0.001 21.377 rs:017114848 G A G 0.023697 14306 1.90734-06 0.002 21.707 rs:002911 A G 0.0120239 14306 1.80361-06 0.001 21.492 rs:002914 A G 0.0122362 0.023432 14306 1.80821-06 0.002 22.073 rs:002914 A G 0.021655 <td< td=""><td></td><td>1562570196</td><td>C A</td><td>I C</td><td>-0.21655</td><td>0.0439866</td><td>14306</td><td>1.07924E-06</td><td>0.002</td><td>24.192</td></td<>		1562570196	C A	I C	-0.21655	0.0439866	14306	1.07924E-06	0.002	24.192
rs1002941 A G -0.105025 0.023432 14306 8.14386-06 0.002 22.03 order Victivallales id.2254 (P<1×10-9)		rs2031282	A	G	0.122368	0.0270329	14306	4.38258E-06	0.001	20.490
rstn0:2941 A G -0.105U2 0.023484 14306 8.14836E-06 0.001 2.24 rs77599476 A G 0.230292 0.0481068 1306 1.72211E-06 0.002 22.568 order Victivallales id.2254 (P<1×10*)		rs1/114848	G	A	0.152377	0.0324332	14306	4.05864E-06	0.002	22.073
rs/2014/0 A G 0.013741 0.0289246 14306 1.781122-10 0.002 2.568 order Victivallales id.2254 (P<1×10°)		rs1002941	A	G	-0.105025	0.0233484	14306	8.14836E-06	0.001	20.234
rsz825/14 A G -0.13741 0.028924 14306 1.72211E-00 0.002 22.588 order Victivallales id.2254 (P<1×10°) rs72640280 A G 0.220207 0.0486196 14306 5.1306E-06 0.001 20.553 rs73113483 T A -0.131217 0.028479 14306 4.23356E-06 0.001 21.335 rs17170843 C T -0.010431 0.0224879 14306 4.23356E-06 0.001 20.234 rs17170843 C T -0.21635 0.043986 14306 1.4356E-06 0.001 20.234 rs1709470 A G -0.105025 0.0324432 14306 4.385E-06 0.001 20.234 rs17714848 G A G -0.015025 0.0324432 14306 1.8436E-06 0.002 2.2568 genus Bifidobacterium id.436 (P<1×10°) rs1202129 A G -0.017310 0.032432 14306 1.527211E-06 0.002 2.2568 gen		rs77599476	A	G	0.230292	0.0480168	14306	1.86132E-06	0.002	23.002
order Victivaliales id.2254 (I ^{<[X]} [X]0 ⁻⁵) if X2640280 A G 0.2021/ 0.0148196 14306 5.18036-06 0.001 20.53 rs73113433 T A 0.0131217 0.028873 14306 4.24356E-06 0.001 20.656 rs2731834 G C T 0.109438 0.023693 14306 4.24356E-06 0.002 21.707 rs62570196 C T 0.024131 0.0234879 14306 1.07924E-06 0.002 21.707 rs62570196 C T 0.012436 0.0270329 14306 4.24356E-06 0.001 20.499 rs1002941 A G 0.105257 0.0233484 14306 8.14836E-06 0.001 20.294 rs11714848 G A 0.152377 0.0324332 14306 4.05864E-06 0.002 22.073 rs7759476 A G 0.230292 0.0480168 14306 1.7221E-06 0.002 22.568 rs7255714 A G 0.230292 0.0480168 14306 1.7221E-06 0.002 22.568 rs1202129 A G 0.013936 0.0138937 14306 7.965E-06 0.001 19.872 rs1961273 C T 0.0674036 0.0138937 14306 7.965E-06 0.001 25.949 rs191020688 G A 0.0562696 0.0122617 14306 4.07258E-06 0.001 25.949 rs191020688 G A 0.0562696 0.0122617 14306 1.27221E-06 0.002 22.568 rs182549 T C 0 -0109703 0.0127294 14306 1.2725E-20 0.006 88.429 rs6218170 G A 0.0562064 0.0112921 14306 1.2725E-20 0.006 88.429 rs6218170 G A 0.0562084 0.0117923 14306 1.2725E-20 0.006 88.429 rs6218170 G C A 0.0562084 0.0117923 14306 1.2725E-20 0.002 22.665 rs4567981 T A 0.0562084 0.0117923 14306 1.2725E-20 0.002 22.675 rs4567981 T G 0.00540439 0.0121139 14306 6.67022E-06 0.002 22.675 rs4567981 T G 0.0054043 0.0131203 14306 1.92832E-06 0.002 22.665 rs4567961 T G 0.0054043 0.0117923 14306 1.92832E-06 0.002 22.665 rs4567981 T G 0.0054049 0.0117923 14306 1.92832E-06 0.001 20.379 rs4957061 T G 0.0054043 0.011792 14306 6.67022E-06 0.001 20.379 rs4957061 T G 0.0054045 0.01141 14306 3.95667E-06 0.001 20.379 rs4957064 C T 0.0070741 0.015792 14306 1.438157E-06 0.001 20.379 rs4957064 C T 0.0070741 0.015792 14306 1.438157E-06 0.001 20.379 rs4957867785 T G G 0.00546055 0.0184003 14306 3.95667E-06 0.001 20.770 rs7534418 C G 0.00534239 0.0117431 14306 3.95667E-06 0.001 20.770 rs76671854 C G T 0.0070741 0.015792 14306 1.64321-06 0.001 20.770 rs76671854 C G T 0.0070741 0.015792 14306 1.64321-06 0.001 20.275 rs764849 T C 0.0070741 0.0157924 14306 1.64321-06 0.00		rs2825714	A	G	-0.13741	0.0289246	14306	1.72211E-06	0.002	22.568
rs/3113483 I A -0.10438 0.0288/13 14306 8.68343E-06 0.001 21.335 rs2371384 C T 0.109431 0.0234879 14306 1.24356-06 0.002 21.707 rs62570196 C T 0.109431 0.0234879 14306 1.3972E-06 0.002 21.707 rs62570196 C T 0.212358 0.0439866 14306 8.14836E-06 0.001 20.490 rs1002941 A G 0.122368 0.027032432 14306 4.3825E+06 0.001 20.291 rs1114848 G A 0.152277 0.0324332 14306 4.3856E+06 0.002 22.073 rs75799476 A G -0.105025 0.023487 14306 1.86132E+06 0.002 22.584 rs2825714 A G -0.013741 0.028946 14306 1.86052E+06 0.001 21.879 rs12022129 A G -0.0619356 0.0132319 14306 1.2721E+06 0.002 22.780 rs182549 T C	order Victivallales id.2254 (P<1×10-5)	rs/2640280	A	G	0.220207	0.0486196	14306	5.18036E-06	0.001	20.513
rs17170843 C C -0.109438 0.023693 14306 4.24356E-06 0.001 21.335 rs117770843 C T 0.109431 0.0234897 14306 1.9073E-06 0.002 24.192 rs62570196 C T -0.21635 0.0439866 14306 4.38258E-06 0.001 20.490 rs1012941 A G -0.105025 0.0233484 14306 4.8483E-06 0.002 22.073 rs1711448 G A 0.52377 0.0324332 14306 4.8686-06 0.002 22.073 rs77599476 A G 0.230292 0.0480168 14306 1.86132E-06 0.002 22.073 rs2825714 A G -0.013741 0.0289246 14306 1.72211E-06 0.002 25.949 rs1802129 A G -0.013743 0.0122877 14306 1.2782E-06 0.001 1.9872 rs1961273 C T 0.0674036 0.012217 14306 1.2782E-06 0.001 2.067 rs182549 T C		rs/3113483	T	A	-0.131217	0.0288713	14306	8.66343E-06	0.001	20.656
rs117/0843 C I 0.109431 0.0234879 14306 1.9073E-06 0.002 21.707 rs62570196 C T -0.21635 0.043986 14306 1.07924E-06 0.002 24.192 rs1021282 A G 0.122368 0.0270329 14306 4.385E-06 0.001 20.234 rs1012941 A G -0.105025 0.023484 14306 8.14836E-06 0.002 22.073 rs17114848 G A G 0.23292 0.408108 14306 1.8612E-06 0.002 22.063 rs7599476 A G -0.013741 0.0289246 14306 1.72211E-06 0.002 22.568 genus Bifidobacterium id.436 (P<1×10 ³) rs12022129 A G -0.0619356 0.013219 14306 1.7221E-06 0.002 22.568 rs182509 T C -0.119703 0.0122241 14306 1.2782E-20 0.006 88.429 rs625181700 G A -0.054643 0.011213 14306 1.2782E-06 0.002 22.739		rs2731834	G	C	-0.109438	0.023693	14306	4.24356E-06	0.001	21.335
rs62570196 C T -0.21635 0.0439866 14306 1.07924E-06 0.001 20.4192 rs2031282 A G -0.105025 0.023348 14306 8.14836E-06 0.001 20.490 rs1002941 A G -0.105025 0.023348 14306 8.14836E-06 0.002 22.073 rs77599476 A G -0.21371 0.028926 14306 1.72211E-06 0.002 22.082 rs2825714 A G -0.013741 0.028926 14306 7.9965E-06 0.001 19.872 rs1022129 A G -0.0619356 0.0132319 14306 1.2728E-00 0.002 22.568 rs1022129 A G -0.0119703 0.0127294 14306 1.2728E-20 0.006 88.499 rs102218 G -0.119703 0.0127294 14306 1.2728E-20 0.006 88.499 rs62181700 G A -0.0624643 0.0131205 14306 1.2728E-20 0.006 88.499 rs62181700 G A -0.062		rs11770843	С	Т	0.109431	0.0234879	14306	1.9073E-06	0.002	21.707
rs20312S A G 0.122368 0.0270329 14306 4.38258F.06 0.001 20.490 rs1002941 A G -0.105025 0.0233484 14306 8.14856F.06 0.002 22.073 rs77599476 A G 0.230292 0.0480168 14306 1.86132F.06 0.002 22.073 rs77599476 A G -0.13741 0.0289246 14306 1.72211F.06 0.002 25.949 rs2825714 A G -0.0619356 0.0132937 14306 7.9965F.06 0.001 21.872 rs1202219 A G -0.0674036 0.0132219 14306 4.07258F.06 0.001 21.872 rs13020688 G A 0.0562646 0.0122617 14306 1.2782F-20 0.006 88.429 rs13020688 G A -0.062443 0.0131205 14306 1.2782F-20 0.002 22.665 rs457981 T A 0.056284 0.0117223 14306 1.2782F-06 0.002 22.665 rs457981 T A		rs62570196	С	Т	-0.21635	0.0439866	14306	1.07924E-06	0.002	24.192
rs1002941 A G -0.105025 0.0233484 14306 8.14336E-06 0.001 20.234 rs17114848 G A 0.152377 0.0324332 14306 4.05864E-06 0.002 22.073 rs77599476 A G 0.230292 0.0480168 14306 1.86132E-06 0.002 22.568 genus Bifidobacterium id.436 (P<1×10*)		rs2031282	A	G	0.122368	0.0270329	14306	4.38258E-06	0.001	20.490
rs17114848 G A 0.152377 0.0324332 14306 4.05864E-06 0.002 22.073 rs77599476 A G 0.230292 0.0480168 14306 1.86132E-06 0.002 23.002 rs2825714 A G -0.03741 0.0289246 14306 1.72211E-06 0.002 22.568 genus Bifidobacterium id.436 (P<1×10*)		rs1002941	Α	G	-0.105025	0.0233484	14306	8.14836E-06	0.001	20.234
rs77599476 A G 0.230292 0.0480168 14306 1.86132E-06 0.002 22.002 rs825714 A G -0.13741 0.0289246 14306 1.72211E-06 0.002 22.568 rs1202129 A G -0.0619356 0.0132319 14306 3.50865E-07 0.002 25.949 rs1961273 C T 0.0674036 0.0122617 14306 4.07258E-06 0.001 21.059 rs13020688 G A 0.0562066 0.0122617 14306 1.2782E-20 0.006 88.429 rs4567981 T C -0.119703 0.0127294 14306 1.2782E-06 0.002 22.665 rs45567981 T A 0.0562084 0.0117923 14306 1.92832E-06 0.002 22.720 rs5588705 A G 0.0564319 0.0121139 14306 5.6702E+06 0.001 20.697 rs4957061 T C 0.0546319 0.0121139 14306 5.6702E+06 0.001 20.697 rs4957064 T C <td></td> <td>rs17114848</td> <td>G</td> <td>Α</td> <td>0.152377</td> <td>0.0324332</td> <td>14306</td> <td>4.05864E-06</td> <td>0.002</td> <td>22.073</td>		rs17114848	G	Α	0.152377	0.0324332	14306	4.05864E-06	0.002	22.073
rs2825714 A G -0.13741 0.0289246 14306 1.72211E-06 0.002 22.568 genus Bifidobacterium id.436 (P<1×10 ⁻⁵) rs12022129 A G -0.0619356 0.0138937 14306 7.9965E-06 0.001 19.872 rs1961273 C T 0.0674036 0.0122217 14306 3.50865E-07 0.002 25.949 rs18020688 G A 0.0562696 0.012217 14306 1.2782E-20 0.006 88.429 rs62181700 G A -0.0624643 0.0117923 14306 1.92832E-06 0.002 22.720 rs55888705 A G 0.0546319 0.0121139 14306 6.67022E-06 0.001 20.339 rs4957061 T C 0.0534239 0.0117431 14306 5.77936E-06 0.001 20.697 rs73797465 T G -0.0953566 0.0209236 14306 4.38157E-06 0.001 20.707 rs857444 C T 0.055824 0.0184003 14306 3.95667E-06 0.001 21.142		rs77599476	А	G	0.230292	0.0480168	14306	1.86132E-06	0.002	23.002
genus Bifidobacterium id.436 (P<1×10 ⁻⁵) rs12022129 A G -0.0619356 0.0138937 14306 7.9965E-06 0.001 19.872 rs1961273 C T 0.0674036 0.0132031 14306 3.50865E-07 0.002 25.949 rs13020688 G A 0.0562696 0.0122617 14306 4.07258E-06 0.001 21.059 rs182549 T C -0.119703 0.0127294 14306 1.2782E-20 0.006 88.429 rs626181700 G A -0.0624643 0.0131205 14306 1.2782E-206 0.002 22.665 rs4567981 T A 0.0562084 0.0117923 14306 6.67022E-06 0.001 20.339 rs4567981 T C 0.0534239 0.0117431 14306 5.77936E-06 0.001 20.665 rs73797465 T G -0.0953566 0.029236 14306 4.38157E-06 0.001 20.677 rs7367184 C G -0.084655 0.018033 14306 3.95667E-06 0.001 21.042		rs2825714	А	G	-0.13741	0.0289246	14306	1.72211E-06	0.002	22.568
rs1961273 C T 0.0674036 0.0132319 14306 3.50865E-07 0.002 25.949 rs13020688 G A 0.0562696 0.0122617 14306 4.07258E-06 0.001 21.059 rs182549 T C -0.119703 0.0127294 14306 1.2782E-20 0.006 88.429 rs62181700 G A -0.0624643 0.0117923 14306 1.92832E-06 0.002 22.672 rs4567981 T A 0.0562084 0.0117923 14306 1.92832E-06 0.002 22.720 rs55888705 A G 0.054319 0.0111391 14306 6.67022E-06 0.001 20.399 rs4957061 T C 0.0534239 0.0117431 14306 5.679266 0.001 20.770 rs76671854 C G -0.0853566 0.0209236 14306 4.38157E-06 0.001 21.142 rs857444 C T 0.0558234 0.0121219 14306 0.49003571 0.001 21.208 rs2686790 C T <td>genus Bifidobacterium id.436 (P<1×10-5)</td> <td>rs12022129</td> <td>Α</td> <td>G</td> <td>-0.0619356</td> <td>0.0138937</td> <td>14306</td> <td>7.9965E-06</td> <td>0.001</td> <td>19.872</td>	genus Bifidobacterium id.436 (P<1×10-5)	rs12022129	Α	G	-0.0619356	0.0138937	14306	7.9965E-06	0.001	19.872
rs13020688 G A 0.0562696 0.0122617 14306 4.07258E-06 0.001 21.059 rs182549 T C -0.119703 0.0127294 14306 1.2782E-20 0.006 88.429 rs62181700 G A -0.0624643 0.0117923 14306 1.92832E-06 0.002 22.665 rs4567981 T A 0.056084 0.0117923 14306 6.67022E-06 0.001 20.339 rs55888705 A G 0.0534239 0.0117431 14306 5.77936E-06 0.001 20.697 rs5378707661 T C 0.0534239 0.0117431 14306 5.77936E-06 0.001 20.697 rs73797465 T G -0.0953566 0.0209236 14306 4.38157E-06 0.001 21.142 rs857444 C T 0.0558234 0.012119 14306 0.000003571 0.001 21.208 rs2686790 C T -0.07741 0.015926 14306 1.6452E-06 0.001 19.879 rs10841473 G		rs1961273	С	Т	0.0674036	0.0132319	14306	3.50865E-07	0.002	25.949
rs182549 T C -0.119703 0.0127294 14306 1.2782E-20 0.006 88.429 rs62181700 G A -0.0624643 0.0131205 14306 2.17245E-06 0.002 22.665 rs4567981 T A 0.052084 0.0117923 14306 1.92832E-06 0.002 22.720 rs55888705 A G 0.0546319 0.0121139 14306 6.67022E-06 0.001 20.697 rs4957061 T C 0.0534239 0.0117431 14306 4.38157E-06 0.001 20.697 rs73797465 T G -0.0953566 0.0209236 14306 4.38157E-06 0.001 21.142 rs857444 C T 0.0558234 0.012119 14306 0.00003571 0.001 21.208 rs2686790 C T -0.070741 0.0157926 14306 8.04711E-06 0.001 20.065 rs2491158 A G -0.0712624 0.015983 14306 1.6452E-06 0.002 23.256 rs7322849 T C <td></td> <td>rs13020688</td> <td>G</td> <td>А</td> <td>0.0562696</td> <td>0.0122617</td> <td>14306</td> <td>4.07258E-06</td> <td>0.001</td> <td>21.059</td>		rs13020688	G	А	0.0562696	0.0122617	14306	4.07258E-06	0.001	21.059
rs62181700 G A -0.0624643 0.0131205 14306 2.17245E-06 0.002 22.665 rs4567981 T A 0.0562084 0.0117923 14306 1.92832E-06 0.002 22.720 rs55888705 A G 0.0546319 0.0121139 14306 6.67022E-06 0.001 20.339 rs4957061 T C 0.0534239 0.0117431 14306 5.77936E-06 0.001 20.770 rs73797465 T G -0.0953566 0.020926 14306 4.38157E-06 0.001 21.142 rs857444 C T 0.0558234 0.0121219 14306 0.000003571 0.001 21.208 rs2686790 C T -0.070741 0.0157926 14306 8.04711E-06 0.001 20.065 rs2491158 A G -0.0712624 0.015983 14306 1.6452E-06 0.002 23.256 rs7322849 T C 0.112428 0.201813 14306 1.6452E-06 0.002 23.256 rs7322849 T C </td <td></td> <td>rs182549</td> <td>Т</td> <td>С</td> <td>-0.119703</td> <td>0.0127294</td> <td>14306</td> <td>1.2782E-20</td> <td>0.006</td> <td>88.429</td>		rs182549	Т	С	-0.119703	0.0127294	14306	1.2782E-20	0.006	88.429
rs4567981 T A 0.0562084 0.0117923 14306 1.92832E-06 0.002 22.720 rs55888705 A G 0.0546319 0.0121139 14306 6.67022E-06 0.001 20.339 rs4957061 T C 0.0534239 0.0117431 14306 5.77936E-06 0.001 20.697 rs73797465 T G -0.0953566 0.0209236 14306 4.38157E-06 0.001 20.770 rs76671854 C G -0.0846055 0.0184003 14306 3.95667E-06 0.001 21.142 rs857444 C T 0.0558234 0.0121219 14306 0.00003571 0.001 21.08 rs2686790 C T -0.070741 0.0157926 14306 8.04711E-06 0.001 20.065 rs2491158 A G -0.0712624 0.01983 14306 1.6452E-06 0.002 23.256 rs7322849 T C 0.112428 0.0201813 14306 1.08368E-08 0.002 31.035 rs540489 T G <td></td> <td>rs62181700</td> <td>G</td> <td>А</td> <td>-0.0624643</td> <td>0.0131205</td> <td>14306</td> <td>2.17245E-06</td> <td>0.002</td> <td>22.665</td>		rs62181700	G	А	-0.0624643	0.0131205	14306	2.17245E-06	0.002	22.665
rs55888705 A G 0.0546319 0.0121139 14306 6.67022E-06 0.001 20.339 rs4957061 T C 0.0534239 0.0117431 14306 5.77936E-06 0.001 20.697 rs73797465 T G -0.0953566 0.0209236 14306 4.38157E-06 0.001 20.770 rs76671854 C G -0.0846055 0.0184003 14306 3.95667E-06 0.001 21.142 rs857444 C T 0.0558234 0.0121219 14306 0.000003571 0.001 20.065 rs2686790 C T -0.070741 0.0157926 14306 8.04711E-06 0.001 20.697 rs2491158 A G -0.0712624 0.015983 14306 8.04711E-06 0.001 19.879 rs10841473 G C -0.0624207 0.0129438 14306 1.6452E-06 0.002 23.256 rs7322849 T C 0.112428 0.0201813 14306 1.08368E-08 0.002 31.035 rs540489 T <td< td=""><td></td><td>rs4567981</td><td>Т</td><td>А</td><td>0.0562084</td><td>0.0117923</td><td>14306</td><td>1.92832E-06</td><td>0.002</td><td>22.720</td></td<>		rs4567981	Т	А	0.0562084	0.0117923	14306	1.92832E-06	0.002	22.720
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		rs55888705	А	G	0.0546319	0.0121139	14306	6.67022E-06	0.001	20.339
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		rs4957061	Т	С	0.0534239	0.0117431	14306	5.77936E-06	0.001	20.697
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		rs73797465	Т	G	-0.0953566	0.0209236	14306	4.38157E-06	0.001	20.770
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		rs76671854	С	G	-0.0846055	0.0184003	14306	3.95667E-06	0.001	21.142
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		rs857444	С	Т	0.0558234	0.0121219	14306	0.000003571	0.001	21.208
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		rs2686790	С	Т	-0.070741	0.0157926	14306	7.49894E-06	0.001	20.065
rs10841473 G C -0.0624207 0.0129438 14306 1.6452E-06 0.002 23.256 rs7322849 T C 0.112428 0.0201813 14306 1.08368E-08 0.002 31.035 rs540489 T G -0.0637641 0.0138746 14306 5.19457E-06 0.001 21.121 rs75344046 C T 0.232354 0.0505979 14306 4.86351E-06 0.001 21.088 rs7534686 T C -0.0536216 0.0120801 14306 8.9993E-06 0.001 21.088		rs2491158	А	G	-0.0712624	0.015983	14306	8.04711E-06	0.001	19.879
rs7322849 T C 0.112428 0.0201813 14306 1.08368E-08 0.002 31.035 rs540489 T G -0.0637641 0.0138746 14306 5.19457E-06 0.001 21.121 rs75344046 C T 0.232354 0.0505979 14306 4.86351E-06 0.001 21.088 rs574686 T C -0.0536216 0.0120801 14306 8.99953E-06 0.001 21.088		rs10841473	G	C	-0.0624207	0.0129438	14306	1.6452E-06	0.002	23.256
rs540489 T G -0.0637641 0.0138746 14306 5.19457E-06 0.001 21.121 rs75340466 C T 0.232354 0.0505979 14306 4.86351E-06 0.001 21.088 rs57546866 T C -0.0536716 0.0120801 14306 8.99953E-06 0.001 19.703		rs7322849	T	C	0.112428	0.0201813	14306	1.08368E-08	0.002	31.035
rs75344046 C T 0.232354 0.0505979 14306 4.86351E-06 0.001 21.088 rs75746486 T C -0.0536716 0.0120801 14306 8.99953E-06 0.001 19.703		rs540489	Ť	G	-0.0637641	0.0138746	14306	5 19457E-06	0.001	21 121
rs7746486 T C0536716 0.0170801 14306 8.009372.0.001 19.702		rs75344046	Ċ	т	0 232354	0.0505979	14306	4 86351 E-06	0.001	21.088
		rs5746486	т	Ċ	-0.0536716	0.0120801	14306	8 99953E-06	0.001	19 703

Int. J. Med. Sci. 2024, Vol. 21

SNPs, single nucleotide polymorphisms; EA, effect allele; OA, other allele; Beta, effect estimate; SE, standard error

Discussion

In this investigation, we explored the reciprocal genetic relationships between the composition of the gut microbiota and the incidence of T2D and CAD. Our findings identified causal links of five gut microbiota characteristics with T2D, and ten with CAD. Conversely, our results suggest potential causal relationships of T2D with five gut microbiota types, and CAD with eighteen types. Additionally, we noted that certain metabolites, particularly those related to

energy and lipids, exhibit causal connections with both T2D and CAD [33, 34].

The study identified five gut microbiota changes associated with T2D and ten with CAD. Of these, three microbiota types were causally linked to T2D, and seven to CAD. A notable causal association was observed between the increase in *Oxalobacteraceae* family abundance and T2D. In a surprising finding, a rise in the genus *Oxalobacter* was positively associated with an increased risk of CAD [35, 36]. Noteworthy was the discovery that both Turicibacter and the Clostridium innocuum group shared the same single polymorphism (SNP), nucleotide rs4869133, suggesting its significance in the heightened risk of CAD linked to gut microbiota. Furthermore, the Clostridiales vadin BB60 family, an unknown genus with the identifier id.1000000073, the Lentisphaeria class, and the Victivallales order all displayed identical SNPs in our final MR analysis. This genetic congruence might be attributed to the categorization of the unknown genus id.1000000073 under the Clostridiales vadin BB60 family, and a shared lineage between the Victivallales order and the Lentisphaeria class, indicating a limited range of genetic markers within these groups, as detailed in Table 3.

The anaerobic bacterium genus Oxalobacter, specialized in symbiosis and reliant solely on oxalic acid, was initially identified in the human gut and formally designated as Oxalobacter formigenes in 1985 [37, 38]. This bacterium has garnered significant attention in nephrolithiasis research due to correlations between heightened urinary oxalic acid excretion and the formation of oxalic acid kidney stones [39]. Distinct variations in the gut microbiome have been noted in several studies comparing individuals with type 2 diabetes (T2D) and healthy controls. Key differences include a reduction in butyrate-producing gut microbiota, diminished levels of Akkermansia muciniphila, and an increased presence of pro-inflammatory bacterial species [40]. Nonetheless, alterations in the abundance of Lachnoclostridium, Streptococcus, Actinomyces, and Streptococcaceae have been less frequently reported. Certain medications, like metformin, are known to modulate gut microbiota, thereby influencing insulin sensitivity and aiding in diabetes management. T2D may enhance the proliferation of Oxalobacter formigenes by inducing chronic intestinal inflammation and altering metabolic pathways related to oxalic acid processing [41, 42]. This condition is characterized by heightened parasympathetic activity and local ATP release into the intestinal tract [43-45]. The relatively unaffected colonization of Oxalobacter formigenes by other bacteria suggests a stable colonization characteristic of this genus [46]. Research has examined various prevalent methods and conditions pertinent to probiotic strain production, particularly highlighting the resilience of the Group I Oxalobacter strain OxCC13 in lyophilized form and when mixed in vogurt [47]. Human consumption of Oxalobacter in these forms may offer preventive benefits against CAD, although the understanding of Oxalobacter's role in CAD remains incomplete [48]. A gut microbiota-based diagnostic model suggests that increased gut colonization by Oxalobacter formigenes might elevate CAD risk [49].

This aligns with our study findings, though the underlying mechanisms require further elucidation [50].

Recent studies focusing on the interplay between T2D and gut microbiota have observed a reduction in gut microbiota species that produce butyric acid in individuals with prediabetes, aligning with previous findings [40, 41]. In the context of intestinal dysbiosis associated with T2D, metformin has been shown to enhance the production of butyric and propionic acids and improve patients' ability to break down amino acids. Additionally, metformin's role in modifying gut microbiota composition, potentially aiding in T2D prognosis through an increase in butyric acidproducing bacteria, has been highlighted [51, 52]. Past research, encompassing both animal models and epidemiological studies, has underscored the bidirectional relationship between gut microbiota and host health in the context of atherosclerotic cardiovascular disease. Notably, bacterial presence in atherosclerotic plaques has been documented [53-55]. The gut microbiota's influence on the metabolism of short-chain fatty acids (SCFAs), including Prevotellaceae, Clostridium, and Anaerostipes, has been linked to CAD, echoing findings from this study [56]. A significant observation is the decreased abundance of methanogens in individuals susceptible to CAD. Certain methanogens are known to convert Trimethylamine (TMA) into a less harmful derivative, trimethylamine N-oxide (TMAO), thus reducing TMAO production [57]. In our study, though the P-value in the IVW method for TMAO was less than 0.05, it did not pass sensitivity analyses, suggesting a potential connection between altered gut microbiota in coronary atherosclerosis patients and increased TMAO levels due to impaired metabolism.

For individuals with DCAD, long-term medication complicates the reliability of isolated gut microbiota observations. This study suggests that intestinal bacteria play a regulatory role in the development of both T2D and CAD, with implications for both elevated and reduced risk. The discovery of certain gut flora causally linked to diabetes and coronary heart disease, previously unreported, opens up new avenues for therapeutic strategies and potential targets.

The composition and activity of the gut microbiome, influenced by dietary and environmental factors, play a crucial role in the abundance and utilization of various metabolites [58]. Metabolomics research has linked bile acids, branched-chain amino acids (BCAAs), and by-products of intracellular fatty acid oxidation to diabetes, glycemic control, and insulin resistance. Despite some studies indicating a correlation between TMAO levels and an increased risk of major cardiovascular events, including CAD, other studies have not found a significant relationship between circulating TMAO concentrations and cardiovascular outcomes [59-62]. In our research, TMAO did not exhibit a notable association with CAD risk. However, we observed a positive correlation between certain lipid metabolism markers, such as phosphatidylcholine and cholesterol, including lysophosphatidylcholine (LPC18_2) and cholesterol ester (CE18_2), and CAD risk, underlining the strong connection between lipid metabolism and CAD [63-65]. Animal studies have shown that rats on a carnitine-rich diet experienced a reduction in aortic lesion size, irrespective of increased blood TMAO levels, hinting at a possible protective role of carnitine against atherosclerosis [66, 67]. This finding aligns with the results from our MR analysis, reinforcing the potential significance of carnitine in atherosclerosis prevention [68].

When evaluating the findings of this research, certain limitations must be acknowledged. Firstly, despite utilizing the most comprehensive genomewide association study (GWAS) database currently available for gut microbiota and metabolites, the limited number of single nucleotide polymorphisms (SNPs) reaching genome-wide significance might have led to the use of weaker instrumental variables. To mitigate this, we expanded the inclusion criteria for SNPs to a statistical threshold of $P < 10^{-5}$, allowing for a broader SNP inclusion. Additionally, to ascertain that these SNPs were not weak instrumental variables, they were evaluated using F statistics, ensuring values greater than 10. Secondly, given the extensive number of base pairs in the genome-wide analysis, it's challenging to completely rule out the presence of polymorphisms. Moreover, the biological implications of the selected SNPs have not been comprehensively explored. However, in our study, no horizontal pleiotropy was identified, as confirmed by the application of methods like MRPRESSO and MR Egger. Thirdly, our MR analysis was predicated on the assumption of a linear relationship between the variables of interest, hence the possibility of non-linear interactions between the exposure and outcome cannot be entirely dismissed. Finally, the metabolite database employed in our study was subject to preliminary screening. This limitation meant that a comprehensive two-way MR analysis was not feasible. Future research, ideally with more complete GWAS data, will be necessary to corroborate and expand upon our findings.

Conclusion

The MR study conducted in our research provides insights into both the positive and negative

causal effects of gut microbiota composition and metabolite levels on the occurrence of T2D and coronary artery disease (CAD). Our data supports the notion that the bacterial species *Oxalobacter formigenes* could be a contributory factor in CAD, particularly among individuals with diabetes. This study highlights a noteworthy link between the *Methanobacteria* class and CAD risk, paving the way for further exploration into the roles of TMAO and the protective potential of carnitine in the development of CAD. The findings present a new viewpoint on the influence of gut microbiota in the pathogenesis of CAD, providing valuable insights that could guide therapeutic approaches and the management of CAD in patients with T2D.

Supplementary Material

Supplementary figures and tables. https://www.medsci.org/v21p0376s1.pdf Supplementary data 1. https://www.medsci.org/v21p0376s2.xlsx Supplementary data 2. https://www.medsci.org/v21p0376s3.xlsx

Acknowledgements

Our heartfelt thanks go to Xue and colleagues for their groundbreaking T2D GWAS meta-analysis, Nikpay and team for their exhaustive CAD GWAS meta-analysis, the MiBioGen consortium for their meta-analysis of gut microbiota GWAS, and the FHS consortium for their analysis in metabolite GWAS.

Financial Support

This investigation was financially supported by several grants: from the National Natural Science Foundation of China (Grant Numbers 82271806 and 82200483), the Natural Science Foundation of Guangdong Province (Grant Numbers 2022A151511 0560, 2022A1515111053 and 2023A1515011687), the Guangzhou Basic Research Program's Basic and Applied Basic Research Project (Grant Number 202201011024), Guangzhou Science and Technology Plan Project (Grant Number 2023A03J0697), and the Sun Yat-sen Memorial Hospital, Sun Yat-sen University's Scientific Research Sailing Project (Grant Number YXQH2022017).

Ethics Statement

The genome-wide association studies (GWAS) used in this study received ethical approval from their respective review committees, as indicated in their original publications. Our study, employing summary-level data, did not necessitate additional ethical approval.

Data Accessibility

The data underpinning the conclusions of this article are detailed in the main text and supplementary materials, with direct references in Supplementary Table S1.

Author contributions

The study's conceptualization and design were led by Z. Zeng, J. Qiu, J. Tao, L. Lin, and J. Zheng. D. Liang, F. Wei, Y. Fu, J. Zhang, X. Zhang and X. Wei played key roles in data analysis and interpretation. Y. Chen provided statistical expertise and editorial assistance. Z. Zeng and J. Qiu drafted the initial manuscript. J. Tao, L. Lin, and J. Zheng oversaw the project. All authors participated in a thorough review and refinement of the manuscript and approved its final version for publication.

Competing Interests

The authors have declared that no competing interest exists.

References

- Belkaid Y, Hand T. Role of the microbiota in immunity and inflammation. Cell. 2014; 157: 121-41.
- Mazloom K, Siddiqi I, Covasa M. Probiotics: How Effective Are They in the Fight against Obesity? Nutrients. 2019; 11.
- Zhao YW, Yan KX, Sun MZ, Wang YH, Chen YD, Hu SY. Inflammation-based different association between anatomical severity of coronary artery disease and lung cancer. J Geriatr Cardiol. 2022; 19: 575-82.
- Chen W, Zhang M, Guo Y, Wang Z, Liu Q, Yan R, et al. The Profile and Function of Gut Microbiota in Diabetic Nephropathy. Diabetes Metab Syndr Obes. 2021; 14: 4283-96.
- Yissachar N, Zhou Y, Ung L, Lai N, Mohan J, Ehrlicher A, et al. An Intestinal Organ Culture System Uncovers a Role for the Nervous System in Microbe-Immune Crosstalk. Cell. 2017; 168: 1135-48.e12.
- Montero S, Abrams D, Ammirati F, Huang F, Donker DW, Hekimian G, et al. Fulminant myocarditis in adults: a narrative review. J Geriatr Cardiol. 2022; 19: 137-51.
- Lin L, Lin J, Qiu J, Liufu N, Lin S, Wei F, et al. Genetic liability to multi-site chronic pain increases the risk of cardiovascular disease. Br J Anaesth. 2023.
- Bulugahapitiya U, Siyambalapitiya S, Sithole J, Idris I. Is diabetes a coronary risk equivalent? Systematic review and meta-analysis. Diabetic medicine : a journal of the British Diabetic Association. 2009; 26: 142-8.
- Howard B, Best L, Galloway J, Howard W, Jones K, Lee E, et al. Coronary heart disease risk equivalence in diabetes depends on concomitant risk factors. Diabetes care. 2006; 29: 391-7.
- Bekyarova G, Ivanova D, Madjova V. Molecular mechanisms associating oxidative stress with endothelial dysfunction in the development of various vascular complications in diabetes mellitus. Folia medica. 2007; 49: 13-9.
- Baig M, Panchal S. Streptozotocin-Induced Diabetes Mellitus in Neonatal Rats: An Insight into its Applications to Induce Diabetic Complications. Current diabetes reviews. 2019; 16: 26-39.
- Wu H, Tremaroli V, Schmidt C, Lundqvist A, Olsson L, Krämer M, et al. The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study. Cell metabolism. 2020; 32: 379-90.e3.
- Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016; 535: 376-81.
- Koh A, Molinaro A, Stahlman M, Khan MT, Schmidt C, Manneras-Holm L, et al. Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1. Cell. 2018; 175: 947-61 e17.
- Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012; 490: 55-60.
- Karlsson F, Tremaroli V, Nookaew I, Bergström G, Behre C, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013; 498: 99-103.
- Nakajima A, Mitomo S, Yuki H, Araki M, Seegers L, McNulty I, et al. Gut Microbiota and Coronary Plaque Characteristics. Journal of the American Heart Association. 2022; 11: e026036.

- Mene-Afejuku TO, Jeyashanmugaraja GP, Hoq M, Ola O, Shah AJ. Determinants of mortality among seniors acutely readmitted for heart failure: racial disparities and clinical correlations. J Geriatr Cardiol. 2022; 19: 719-24.
- Korem T, Zeevi D, Suez J, Weinberger A, Avnit-Sagi T, Pompan-Lotan M, et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science (New York, NY). 2015; 349: 1101-6.
- Luo FY, Bai YP, Bu HS. Protein quality control systems in hypertrophic cardiomyopathy: pathogenesis and treatment potential. J Geriatr Cardiol. 2022; 19: 780-4.
- Emdin C, Khera A, Kathiresan S. Mendelian Randomization. JAMA. 2017; 318: 1925-6.
- Zhou H, Ren J, Toan S, Mui D. Role of mitochondrial quality surveillance in myocardial infarction: From bench to bedside. Ageing Res Rev. 2021; 66: 101250.
- Zhang Q, Zhang L, Chen C, Li P, Lu B. The gut microbiota-artery axis: A bridge between dietary lipids and atherosclerosis? Progress in lipid research. 2023; 89: 101209.
- Burgess S, Davey Smith G, Davies N, Dudbridge F, Gill D, Glymour M, et al. Guidelines for performing Mendelian randomization investigations. Wellcome open research. 2019; 4: 186.
- Skrivankova V, Richmond R, Woolf B, Yarmolinsky J, Davies N, Swanson S, et al. Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement. JAMA. 2021; 326: 1614-21.
- Xue A, Wu Y, Zhu Z, Zhang F, Kemper K, Zheng Z, et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nature communications. 2018; 9: 2941.
- Nikpay M, Goel A, Won H, Hall L, Willenborg C, Kanoni S, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nature genetics. 2015; 47: 1121-30.
- Kurilshikov A, Medina-Gomez C, Bacigalupe R, Radjabzadeh D, Wang J, Demirkan A, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nature genetics. 2021; 53: 156-65.
- Zhu H, Tan Y, Du W, Li Y, Toan S, Mui D, et al. Phosphoglycerate mutase 5 exacerbates cardiac ischemia-reperfusion injury through disrupting mitochondrial quality control. Redox Biol. 2021; 38: 101777.
- Rhee E, Ho J, Chen M, Shen D, Cheng S, Larson M, et al. A genome-wide association study of the human metabolome in a community-based cohort. Cell metabolism. 2013; 18: 130-43.
- Chang X, Li Y, Cai C, Wu F, He J, Zhang Y, et al. Mitochondrial quality control mechanisms as molecular targets in diabetic heart. Metabolism. 2022; 137: 155313.
- Chang X, Toan S, Li R, Zhou H. Therapeutic strategies in ischemic cardiomyopathy: Focus on mitochondrial quality surveillance. EBioMedicine. 2022; 84: 104260.
- Tan Y, Zhang Y, He J, Wu F, Wu D, Shi N, et al. Dual specificity phosphatase 1 attenuates inflammation-induced cardiomyopathy by improving mitophagy and mitochondrial metabolism. Mol Metab. 2022; 64: 101567.
- Ma L, Zou R, Shi W, Zhou N, Chen S, Zhou H, et al. SGLT2 inhibitor dapagliflozin reduces endothelial dysfunction and microvascular damage during cardiac ischemia/reperfusion injury through normalizing the XO-SERCA2-CaMKII-coffilin pathways. Theranostics. 2022; 12: 5034-50.
- Zou R, Shi W, Qiu J, Zhou N, Du N, Zhou H, et al. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis. Cardiovasc Diabetol. 2022; 21: 106.
- Wang S, Zhu H, Li R, Mui D, Toan S, Chang X, et al. DNA-PKcs interacts with and phosphorylates Fis1 to induce mitochondrial fragmentation in tubular cells during acute kidney injury. Sci Signal. 2022; 15: eabh1121.
- Allison M, Dawson K, Mayberry W, Foss J. Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Archives of microbiology. 1985; 141: 1-7.
- Zou R, Tao J, Qiu J, Lu H, Wu J, Zhu H, et al. DNA-PKcs promotes sepsis-induced multiple organ failure by triggering mitochondrial dysfunction. J Adv Res. 2022; 41: 39-48.
- Robertson W, Peacock M, Heyburn P, Hanes F. Epidemiological risk factors in calcium stone disease. Scandinavian journal of urology and nephrology Supplementum. 1980; 53: 15-30.
- Zhong H, Ren H, Lu Y, Fang C, Hou G, Yang Z, et al. Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naïve type 2 diabetics. EBioMedicine. 2019; 47: 373-83.
- Lee C, Chae S, Jo S, Jerng U, Bae S. The Relationship between the Gut Microbiome and Metformin as a Key for Treating Type 2 Diabetes Mellitus. International journal of molecular sciences. 2021; 22.
- Zou RJ, Tao J, He J, Wang CJ, Tan ST, Xia Y, et al. PGAM5-Mediated PHB2 Dephosphorylation Contributes to Diabetic Cardiomyopathy by Disrupting Mitochondrial Quality Surveillance. RESEARCH. 2022; 2022.
- Amin R, Sharma S, Ratakonda S, Hassan H. Extracellular nucleotides inhibit oxalate transport by human intestinal Caco-2-BBe cells through PKC-δ activation. American journal of physiology Cell physiology. 2013; 305: C78-89.
- Hassan H, Cheng M, Aronson P. Cholinergic signaling inhibits oxalate transport by human intestinal T84 cells. American journal of physiology Cell physiology. 2012; 302: C46-58.
- Shen Y, Peng X, Ji H, Gong W, Zhu H, Wang J. Dapagliflozin protects heart function against type-4 cardiorenal syndrome through activation of

PKM2/PP1/FUNDC1-dependent mitophagy. Int J Biol Macromol. 2023; 250: 126116.

- Li X, Ellis M, Dowell A, Kumar R, Morrow C, Schoeb T, et al. Response of germ-free mice to colonization with O. formigenes and altered Schaedler flora. Applied and environmental microbiology. 2016; 82: 6952-60.
- Ellis M, Dowell A, Li X, Knight J. Probiotic properties of Oxalobacter formigenes: an in vitro examination. Archives of microbiology. 2016; 198: 1019-26.
- Emoto T, Yamashita T, Sasaki N, Hirota Y, Hayashi T, So A, et al. Analysis of Gut Microbiota in Coronary Artery Disease Patients: a Possible Link between Gut Microbiota and Coronary Artery Disease. Journal of atherosclerosis and thrombosis. 2016; 23: 908-21.
- Zheng Y, Wu T, Liu Z, Li A, Guo Q, Ma Y, et al. Gut Microbiome-Based Diagnostic Model to Predict Coronary Artery Disease. Journal of agricultural and food chemistry. 2020; 68: 3548-57.
- Allin K, Tremaroli V, Caesar R, Jensen B, Damgaard M, Bahl M, et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia. 2018; 61: 810-20.
- Tang W, Hazen S. The contributory role of gut microbiota in cardiovascular disease. The Journal of clinical investigation. 2014; 124: 4204-11.
- Zhu H, Wang J, Xin T, Chen S, Hu R, Li Y, et al. DUSP1 interacts with and dephosphorylates VCP to improve mitochondrial quality control against endotoxemia-induced myocardial dysfunction. Cell Mol Life Sci. 2023; 80: 213.
- Gregory J, Buffa J, Org É, Wang Z, Levison B, Zhu W, et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. The Journal of biological chemistry. 2015; 290: 5647-60.
- Ott S, El Mokhtari N, Musfeldt M, Hellmig S, Freitag S, Rehman A, et al. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation. 2006; 113: 929-37.
- Zhou H, Dai Z, Li J, Wang J, Zhu H, Chang X, et al. TMBIM6 prevents VDAC1 multimerization and improves mitochondrial quality control to reduce sepsis-related myocardial injury. Metabolism. 2023; 140: 155383.
- Duncan S, Barcenilla A, Stewart C, Pryde S, Flint H. Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Applied and environmental microbiology. 2002; 68: 5186-90.
- Brugère J, Borrel G, Gaci N, Tottey W, O'Toole P, Malpuech-Brugère C. Archaebiotics: proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease. Gut microbes. 2014; 5: 5-10.
- Cani P, Van Hul M. Do diet and microbes really 'PREDICT' cardiometabolic risks? Nature reviews Endocrinology. 2021; 17: 259-60.
- Cani P, Moens de Hase E, Van Hul M. Gut Microbiota and Host Metabolism: From Proof of Concept to Therapeutic Intervention. Microorganisms. 2021; 9.
- Felig P, Marliss E, Cahill G. Plasma amino acid levels and insulin secretion in obesity. The New England journal of medicine. 1969; 281: 811-6.
- Ferrannini E, Natali A, Camastra S, Nannipieri M, Mari A, Adam K, et al. Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance. Diabetes. 2013; 62: 1730-7.
- Peddinti G, Cobb J, Yengo L, Froguel P, Kravić J, Balkau B, et al. Early metabolic markers identify potential targets for the prevention of type 2 diabetes. Diabetologia. 2017; 60: 1740-50.
- 63. Fall T, Salihovic S, Brandmaier S, Nowak C, Ganna A, Gustafsson S, et al. Non-targeted metabolomics combined with genetic analyses identifies bile acid synthesis and phospholipid metabolism as being associated with incident type 2 diabetes. Diabetologia. 2016; 59: 2114-24.
- Craciun S, Balskus E. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proceedings of the National Academy of Sciences of the United States of America. 2012; 109: 21307-12.
- 65. Qi J, You T, Li J, Pan T, Xiang L, Han Y, et al. Circulating trimethylamine N-oxide and the risk of cardiovascular diseases: a systematic review and meta-analysis of 11 prospective cohort studies. Journal of cellular and molecular medicine. 2018; 22: 185-94.
- 66. Schiattarella G, Sannino A, Toscano E, Giugliano G, Gargiulo G, Franzone A, et al. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. European heart journal. 2017; 38: 2948-56.
- Meyer K, Benton T, Bennett B, Jacobs D, Lloyd-Jones D, Gross M, et al. Microbiota-Dependent Metabolite Trimethylamine N-Oxide and Coronary Artery Calcium in the Coronary Artery Risk Development in Young Adults Study (CARDIA). Journal of the American Heart Association. 2016; 5.
- Collins H, Drazul-Schrader D, Sulpizio A, Koster P, Williamson Y, Adelman S, et al. L-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE(-/-) transgenic mice expressing CETP. Atherosclerosis. 2016; 244: 29-37.