
Int. J. Med. Sci. 2024, Vol. 21 
 

 
https://www.medsci.org 

219 

International Journal of Medical Sciences 
2024; 21(2): 219-233. doi: 10.7150/ijms.86210 

Research Paper 

Integrative Analysis of N6-methyladenosine RNA 
modifications related genes and their Influences on 
Immunoreaction or fibrosis in myocardial infarction 
Shiwei Zhu1,3,†, Lan Bai2,3,†, Yitong Pan1,3,†, Junhao Yin3,4, Deshuai Zhang1,3, Chenchen Hou3,5, Yongli 
Wang1,3, Ruogu Li1, 

1. Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China. 
2. Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of 

Medicine, Shanghai 200125, China. 
3. National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China. 
4. Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China. 
5. Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 

200011, China. 

†These authors contributed equally to this work and share first authorship.  

 Corresponding author: Ruogu Li, PhD. Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine.241 West Huaihai Road, Shanghai 
200030, China. Phone: 86-21-62821990; E-mail: 13564565961@163.com. 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2023.05.15; Accepted: 2023.10.17; Published: 2024.01.01 

Abstract 

Increasing studies have shown that N6-methyladenosine (m6A) modification plays an important role in 
cardiovascular diseases. In this study, we systematically investigated the regulatory mode of m6A genes in 
myocardial infarction (MI) by combining bioinformatics analysis of clinical samples with animal 
experiments. We utilized gene expression data of clinical samples from public databases to examine the 
expression of m6A genes in heart tissues and found a large difference between the healthy control group 
and MI group. Subsequently, we established an MI diagnosis model based on the differentially expressed 
m6A genes using the random forest method. Next, unsupervised clustering method was used to classify 
all MI samples into two clusters, and the differences in immune infiltration and gene expression between 
different clusters were compared. We found LRPPRC to be the predominant gene in m6A clustering, and 
it was negatively correlated with immunoreaction. Through GO enrichment analysis, we found that most 
differentially expressed genes between the two clusters were profibrotic. By means of WGCNA, we 
inferred that GJA4 might be a core molecule in the m6A regulatory network of MI. This study 
demonstrates that m6A regulators probably affects the immune-inflammatory response and fibrosis to 
regulate the process of MI, which provides a potential therapeutic target. 

Keywords: MI, m6A regulation, immune response, fibrosis, LRPPRC, WGCNA 

1. Introduction 
Myocardial infarction (MI) is the necrosis of the 

myocardium caused by coronary artery obstruction 
and continuous ischemia and hypoxia[1]. It can result 
in heart failure, thrombosis and malignant 
arrhythmia, which threatens the life of patients [2]. 
With the increasing incidence of coronary heart 
disease, the threat caused by MI to human health has 
become progressively serious. Currently, the main 
treatment strategy for MI is to improve heart blood 

supply, including surgical operation and drug 
treatment[3]. It has recently been reported that the 
primary goal of surgical revascularization is to 
prevent further injury by protecting the remaining 
viable myocardium from subsequent acute coronary 
events. However, a myriad of signaling pathways 
play a role from the onset of MI to heart failure, 
including regulating myocardial apoptosis after 
myocardial infarction, immune-inflammatory res-
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ponses, myocardial fibrosis, and angiogenesis, and 
these pathways provide a number of potential 
therapeutic targets for MI[4]. 

m6A modification is the most common RNA 
epigenetic modification in eukaryotic cells, and it is a 
reversible process that regulates RNA transcription, 
splicing, degradation, and translation without altering 
the base sequence[5]. The regulators of m6A 
modification can be divided into three categories, 
namely, methyltransferases, demethylases, and 
methylation readers[6]. Methyltransferases, including 
METTL3, METTL14, and WTAP, assemble into 
protein complexes and catalyze adenylate m6A 
modification on RNA. FTO and ALKBH5 are the only 
two components of demethylases, which catalyze the 
demethylation reaction of m6A-modified bases. 
Methylation readers, including YTHDC1, YTHDC2, 
and HNRNPC, are RNA-binding proteins that 
specifically bind to the region of m6A modification, 
change the secondary structure of RNA, and affect the 
interaction between RNA and protein. 

m6A modification has been confirmed to play an 
important role in cardiac physiology and the occur-
rence and development of a variety of cardiovascular 
diseases[7, 8]. There are large differences in m6A 
methylation of RNA between normal and failing 
hearts[9]. In general, methyltransferases tended to 
exacerbate heart function while demethylases have 
the opposite physiological effect. For example, 
METTL3, which is a widely studied m6A methyl-
transferases, may accelerate the apoptosis in 
hypoxia-treated cardiomyocytes and enhance 
autophagy[10], weaken the repair capacity of infarcted 
hearts[11] and exacerbates cardiac fibrosis by 
promoting fibroblast activation[12]. In addition, m6A 
modification mainly mediated by METTL3 enhances 
the responsiveness of cardiomyocytes to 
hypertrophy-promoting stimuli, thereby promoting 
cardiac hypertrophy[13]. Another methyltransferase, 
METTL14, enhances FOXO1 mRNA methylation to 
upregulate its expression, which induces an 
inflammatory response in vascular endothelial cells 
and exacerbates atherosclerosis[14]. In contrary, the 
expression of the m6A demethylase, FTO, is reduced 
in failing mammalian hearts and hypoxic 
cardiomyocytes, thereby increasing m6A modification 
of RNA and reducing the contractile function of 
cardiomyocytes[15]. This protective effect of FTO on 
cardiac function is exerted partly through the 
regulation of glucose uptake and glycolysis[16]. FTO an 
also induces demethylation of Yap1 mRNA to 
increase its stability, which attenuates ischemia- 
induced cardiomyocyte apoptosis[17]. Another 
demethylase, ALKBH5, was also proved to play a 
protective role in MI[10]. Besides, numerous studies 

have demonstrated that m6A modification is involved 
in different stages of organ scar formation, and the 
underlying mechanism depends on the synergistic 
effects of writers, erasers, and readers upon gene 
expression and ncRNA maturation. siRNAs or drugs 
targeting these proteins have shown significant 
antifibrotic activity in vitro and in vivo[18]. 

In the present study, we systematically 
investigated the expression of m6A genes in MI to 
determine whether m6A modification functions in 
this disease. We analyzed the differentially expressed 
genes (DEGs) between normal heart tissue and MI 
heart tissue, and we screened the most important 
genes in the disease using the random forest method. 
We then used a nomogram to predict the disease 
incidence. Based on the expression of m6A genes in 
the disease group, we used unsupervised consensus 
clustering to cluster MI samples and analyzed 
immune cell infiltration between different subtypes. 
In addition, we identified the DEGs between different 
subtypes, and we analyzed the enriched pathways of 
these genes. Thus, the present study provides a 
comprehensive analysis of the role of m6A 
modification in MI and suggests potential research 
targets for the treatment of MI. 

2. Materials and Methods 
2.1. Raw data collection and preprocessing 

We first searched the GEO database and 
downloaded two datasets, namely, GSE5406 and 
GSE57338, both of which contain gene expression of 
human heart tissues. GSE5406, which used the 
Affymetrix Human Genome U133A Array (GPL96) 
platform, contains 16 healthy control samples, 108 
samples with ischemic cardiomyopathy, and 86 
samples with idiopathic cardiomyopathy. GSE57338, 
which used the GPL11532 ([HuGene-1_1-st] 
Affymetrix Human Gene 1.1 ST Array [transcript 
(gene)] version] platform), contains 136 healthy 
control samples, 95 samples with ischemic 
cardiomyopathy, and 82 samples with idiopathic 
cardiomyopathy. We first removed idiopathic 
cardiomyopathy samples from these two datasets 
because idiopathic cardiomyopathy was not part of 
the present study. After merging the data, all probes 
were labeled with corresponding gene names, and 
those lacking annotations were eliminated. We used 
the limma package to perform quantile normalization 
of the expression data. Subsequently, we utilized the 
SVA package to remove batch effects from both 
datasets, obtaining a final total gene expression matrix 
containing 152 healthy control samples and 203 MI 
samples. The analysis and mapping of this gene 
expression matrix was mainly conducted on the 
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Sangerbox website (http://www.sangerbox.com/ 
tool)[19]. 

2.2. Screening and extraction of MI-related 
m6A genes 

We summarized and sorted most of the m6A 
genes and classified them into writers, readers, and 
erasers according to previous studies[20, 21]. We then 
extracted the expression data of m6A genes in all 
samples using the limma package in R software, and 
we screened the m6A genes that were differentially 
expressed between the normal control group and the 
MI group based on the following criteria: adjusted p 
value<0.05 and |log2 (fold change)| > 1. Pearson 
correlation analysis was used to determine the 
correlation between different m6A genes. 

2.3. Construction and validation of the 
diagnostic model 

The random forest (RF) method and support 
vector machine (SVM) method were used to identify 
the most suitable algorithm for establishing the 
diagnostic model of MI. RF is an ensemble learning 
method that integrates many decision trees into a 
forest to predict outcomes. In the RF method, the 
importance of variables is indicated by the lower Gini 
coefficient. SVM is a transformable machine learning 
algorithm that transforms previously indivisible data 
into linearly separable data through a kernel function. 
The importance of the supporting SVM variable is 
determined by the discriminant function coefficient 
value, w2. These two methods were implemented 
using the randomForest and kernlab packages in R 
software. We used DALEX packages to compare the 
residuals between the two models to determine the 
best model. After dimension reduction and feature 
selection, the selected m6A regulators were used to 
construct a prediction model by logistic regression 
analysis. We then used calibration curves, DCA 
curves, and clinical impact curves to investigate the 
accuracy of the prediction model. 

2.4. Unsupervised cluster analysis of m6A 
modification patterns in MI 

We used an unsupervised approach to classify 
MI samples into distinct m6A modification patterns 
based on the expression of 20 m6A genes. We then 
utilized the ConsensusClusterPlus package to 
construct the cumulative distribution function curves 
corresponding to k=2-9 and delta area score, from 
which the most appropriate number of clusters was 
confirmed. Subsequently, principal component 
analysis (PCA) was used to verify the clustering effect 
of these two m6A modification subgroups. 
Additionally, differentially expressed genes (DEGs) in 

MI samples from different m6A clusters were 
evaluated to identify genes mediated by m6A 
regulators (p<0.05). 

2.5. Establishment of the MI model 
We used a coronary artery ligation method to 

establish an MI model[22]. Briefly, 8-week-old adult 
C57BL/6 mice were selected and anesthetized with 
2-3% isoflurane by inhalation in the induction 
chamber. The mice were then moved from the 
induction chamber to the surgical plate, secured with 
tape, and continuously anesthetized with 2% 
isoflurane through a coaxial breathing device. The 
chest skin was depilated and sterilized with medical 
alcohol. A small skin incision (1.2 cm long) was made 
over the left chest with scissors, and the pectoralis 
major and pectoralis minor muscles were separated to 
expose the fourth intercostal space. A small hole was 
further made in the fourth intercostal space with 
mosquito forceps to penetrate the intercostal muscle, 
pleura, and pericardium, and the heart was 
subsequently extruded. The descending branch of the 
main left ventricular coronary artery was located and 
ligated with a 7-0 suture. After ligation, the heart was 
pushed back into the chest cavity, and the gap in the 
chest wall was closed. The chest cavity was then 
gently squeezed to expel gas in case of a 
pneumothorax, and the skin incision was purse-string 
sutured. 

2.6. Cardiac RNA extraction, reverse 
transcription, qPCR, and RNA-Seq 

Total RNA was extracted from heart tissue with 
TRIzol reagent (Life Technologies/Thermo Fisher 
Scientific). One portion of the RNA sample was sent 
to Biomarker Company for RNA-seq analysis, and the 
remaining RNA was used for subsequent reverse 
transcription and qPCR. RNA samples (500 ng) were 
converted into cDNA using a reverse transcription kit 
(Takara, Shiga, Japan). SYBR Green Mix (Life 
Technologies/Thermo Fisher Scientific) was used for 
quantitative reverse transcription PCR using an 
ABI7900HI system (Applied Biosystems/Thermo 
Fisher Scientific). The expression of target genes was 
normalized to the GAPDH reference gene. 

2.7. Immune cell infiltration and fibrosis 
assessment 

We used the GSVA package in R software to 
perform single-sample gene set enrichment analysis 
(ssGSEA) on human and mouse gene expression 
profiles to evaluate the infiltration levels of various 
immune cells, and we then used a t test to detect 
differences in ssGSEA scores between different m6A 
clusters in humans or mice to infer differences in 
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immune cell infiltration. 
For fibrosis assessment, the hearts of mice 4 

weeks after MI model establishment were harvested 
and cut perpendicular to the longitudinal axis of the 
heart at the ligation point. The bottom of the heart was 
used for RNA extraction, and the apex half was fixed 
with 4% paraformaldehyde and sent to Ruchuang 
Biological Co. for paraffin embedding. The samples 
were then routinely sectioned and deparaffinized for 
Sirius Red staining with a Sirius Red staining kit 
according to the manufacturer's instructions, and the 
finished products were sealed with neutral gum. The 
areas of fibrosis were visualized with Sirius red 
staining. 

2.8. GO enrichment analysis and WGCNA 
To explore the biological function of DEGs 

between different m6A clusters, we performed Gene 
Ontology (GO) analysis. We used the org.Hs.eg.db 
package in R software to annotate the genes, and we 
used clusterProfiler in R for the enrichment analysis 
(p<0.05). 

To identify hub genes, we applied weighted 
gene coexpression network analysis (WGCNA), an 
analytical method designed to identify coexpressed 
gene modules and explore associations between gene 
networks and phenotypes of interest. We used the 
WGCNA package in R software for analysis based on 
the gene expression profiles of MI samples. The 
outliers of genes and samples were removed by the 
goodSamplesGenes function of the WGCNA package. 
Pearson correlation analysis was used to analyze the 
correlation between different modules and 
subgroups. We further calculated the correlation 
between m6A modification patterns and gene 
expression to obtain gene significance (GS), and we 
used the relevant signature genes and gene expression 
profiles of modules to obtain module members 
(MMs). 

2.9. Statistical analysis 
Statistical analyses were performed using R 

v4.1.1 and Bioconductor software. All statistical tests 
were two-tailed, and a statistical threshold of α=0.05 
was used throughout the research. Significant 
differences were annotated as follows: *p < 0.05; **p < 
0.01; ***p < 0.001, or ****p < 0.0001. 

3. Results 
3.1. Expression of m6A regulators in 
myocardial infarction 

Figure 1 illustrates our analysis procedure. We 
first used the inSilicoMerging package in R to 
combine the GSE5406 and GSE57338 datasets, and we 
used the method previously published by Johnson 

WE et al. to remove batch effects from the combined 
datasets to obtain the gene expression matrix without 
batch effects[23]. The data distribution before and after 
removing the batch effect indicated that the data 
distribution of the two datasets tended to be 
consistent (Figure 2A-B). The complete gene 
expression matrix is displayed in Additional file 2. We 
next sorted the 26 m6A regulators and classified them 
according to m6A writers, readers and erasers 
(Additional file 1, Table S1), and we used a schematic 
diagram to illustrate the dynamic process of m6A 
modification in MI heart tissues (Figure 2C). First, we 
extracted the expression of m6A regulators from all 
the samples of the dataset, resulting in a total of 20 
m6A regulators (Figure 2D). Among these m6A 
regulators, the expression level of HNRNPA2B1 was 
significantly higher than that of the other 19 genes. 
There were 12 differentially expressed genes (DEGs) 
between the healthy control group and the MI group, 
namely, WTAP, ZC3H13, RBM15B, YTHDC1, 
YTHDF1, YTHDF3, HNRNPC, FMR1, LRPPRC, 
IGFBP1, ELAVL1, and FTO. Among these DEGs, the 
expression levels of ZC3H13, YTHDC1, YTHDF3, 
HNRNPC, FMR1, LRPPRC, and FTO were 
upregulated in the MI, while the expression levels of 
WTAP, RBM15B, YTHDF1, IGFBP1, and ELAVL1 
were downregulated in the MI. We generated a 
heatmap to visualize the overall expression of these 12 
DEGs in the two groups (Figure 2E), and we then 
performed a correlation analysis of the expression of 
these 20 m6A regulators to determine the internal 
association among them (Figure 2F). Positive 
correlations were found among YTHDF3, FMR1, 
LRPPRC, and most other m6A regulators. In addition, 
the correlation coefficient between YTHDF3 and 
LRPPRC was the highest (r=0.65). 

3.2. Construction of a diagnostic model of MI 
based on m6A 

We used RF and SVA algorithms to construct 
two models based on these 12 DEGs. According to our 
calculation results, the median residual of the RF 
algorithm was lower than that of the SVM algorithm 
(Figure 3A-B), which indicated that the MI diagnosis 
model established by the RF algorithm was more 
accurate. Figure 3C shows the relationship between 
the number of RF iterations and the classification 
error, which decreased and was more stable when the 
number of iterations reached approximately 350. We 
next calculated the Gini coefficients of these 12 DEGs, 
which were all greater than 2. Thus, we designated 
these 12 DEGs as predictors of MI (Figure 3D). We 
generated a nomogram based on these predictors 
using the rms package (Figure 3E) as a predictive 
model for the incidence of MI. To investigate the 
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accuracy of the prediction model, we plotted the 
calibration curve, DCA curve, and clinical impact 
curve (Figure 3F-H), which revealed that the 
nomogram model had high value in the prediction of 
MI. In addition, we verified the consistency of these 
m6A gene changes in mice with those in humans. We 
established MI models in several C57BL/6 mice, 
sacrificed them one week later, and isolated RNA 
from their heart tissue. RNA was also extracted from 
normal mice simultaneously. The expression of the 
top eight most important m6A genes (i.e., Hnrnpc, 
Fto, Zc3h13, Fmr1, Wtap, Lrpprc, Ythdf3, and Ythdc1) 
in these samples were examined, and a heatmap was 
generated to visualize the results (Additional file 1, 
Figure S1). The changes in these genes in mice were 
consistent with those in humans at a first 
approximation, which further confirmed the 
feasibility of these genes as key genes for the 
diagnosis of MI. 

3.3. m6A clusters of MI 
Based on the expression of the 20 m6A genes in 

the samples of the MI group, we used an 
unsupervised clustering method to divide the dataset 

into different categories, and we then obtained the 
m6A clusters of the MI samples (Figure 4A-C, 
Additional file 3). After comparison, we found that 
k=2 was the most suitable clustering method. Thus, 
we divided all MI samples into two clusters as 
follows: 153 samples in Cluster A, and 50 samples in 
Cluster B. Next, we used PCA to visually demonstrate 
the similarity and correlation between Clusters A and 
B (Figure 4D). We then analyzed and compared the 
expression of each m6A regulator in these two 
subtypes and drew box plots and heatmaps (Figure 
4E-F). In Cluster B, the expression of ZC3H13, 
YTHDC1, YTHDF3, HNRNPC, FMR1, LRPPRC, 
ELAVL1, and FTO was significantly decreased, while 
the expression of RBM15B was significantly increased. 
Moreover, YTHDF3, FMR1, and LRPPRC were the 
most differentially expressed m6A genes between the 
two clusters. Most of these differentially expressed 
m6A genes were m6A readers, which interact with 
each other to form a tightly linked regulatory network 
that controls a variety of molecular biological 
processes, such as mRNA degradation, mRNA 
stability, and translation enhancement[6]. The m6A 
cluster results further confirmed that MI is closely 

related to m6A modification. 
To further support the 

explanation and confirmation of 
these results, we established MI 
models in 10 C57BL/6 mice. At 
one week after MI, the mice were 
sacrificed, and their hearts were 
harvested for RNA-seq analysis. 
An expression matrix of all genes 
in the 10 mice was obtained 
(Additional file 4). Subsequently, 
we extracted the expression of the 
12 differentially expressed m6A 
genes and generated a heatmap 
(Figure 4G). According to the gene 
expression level, these 10 samples 
were clustered automatically into 
two groups, namely, Group I and 
Group II. The expression of Lrpprc 
in Group I was significantly higher 
than that in Group II, and this 
difference was more significant 
than that of the other m6A 
regulators. In the m6A cluster of 
clinical samples, the expression 
level of LRPPRC in Cluster A was 
significantly higher than that in 
Cluster B. Subsequent experiments 
will be performed to further 
elucidate the association between 
the clinical grouping and mouse 

 

 
Figure 1. Flow chart of our research.                     
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sample typing. 

3.4. Immunological differences between 
different m6A clusters of MI samples 

The immune response plays an important role in 
the development of MI from the onset to the late 
stage[24]. To further investigate the relationship 
between m6A regulators and the immune 
microenvironment, we conducted ssGSEA of all 
samples based on the gene expression characteristics 
of various immune cells (Additional file 5), and the 
ssGSEA score was used to represent the infiltration of 
immune cells (Additional file 6). We then compared 
the infiltration of immune cells between Clusters A 
and B in human samples (Figure 5A) or Groups I and 
II in mouse samples (Figure 5B) and found that most 
of the immune cells demonstrated a significant 

distinction between the two clusters in human 
samples, especially MDSCs and Tregs. In general, the 
infiltration level of proinflammatory immune cells in 
Cluster B was higher than that in Cluster A, indicating 
that Cluster B may suffer a more severe inflammatory 
response. However, due to the small number of 
mouse samples, the infiltration of many types of 
immune cells did not show significant differences in 
mice. Nevertheless, we still found that the variation 
trend of most immune cells in mouse samples was 
consistent with that in human samples when 
considering Group I to be equivalent to Cluster A and 
group II to be equivalent Cluster B, indicating that the 
most significant distinctions were identified for 
MDSCs and Tregs. 

 

 
Figure 2. Extraction and identification of differentially expressed m6A genes. B) Gene expression distributions for both datasets before removing batch effects (A) 
and after removing batch effects (B). (C) Schematic representation of biological functions of m6A regulators in hearts of MI patients. (D) The box plot showed the difference in 
20 m6A genes between the MI group and the healthy control group. (E) The heatmap of 12 differentially expressed m6A genes between the MI group and the healthy control 
group. (F) Correlation analysis of the expression of these 20 m6A genes. (The significance of difference is marked as follows: *p<0.05, **p<0.01, ***p<0.001).  
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Figure 3. Establishment and validation of the diagnostic model for MI. The residual boxplot based on random forest (RF) and support vector machine (SVM) 
algorithms. (B) The plot of sample cumulative residuals based on RF and SVM. A small number of outliers can produce a lot of residuals (deviations from the true value), and for 
a large number of samples, the higher position of the line indicates the larger residuals. (C) Screening biomarkers based on RF. As the number of classification trees increases, the 
classification error decreases and the model tends to be stable. (D) Gini index of each predictor in the RF model, which indicates the importance of predictors. (E) The nomogram 
used for predicting the incidence of MI based on the expression of the 12 predictors. (F) Calibration curve used for testing the predictive ability of the nomogram model. (G) 
Decision curve analysis (DCA) curve to evaluate the accuracy of the nomogram model. (H) Clinical impact curve of the nomogram model.  

 
To investigate which m6A regulator has the 

greatest impact on immune cell infiltration, we 
generated a heatmap of the correlation between the 
differentially expressed m6A genes and immune cell 
infiltration in human MI samples (Figure 5C). To our 
surprise, LRPPRC, the m6A reader that was most 
distinct in m6A clusters, was negatively correlated 
with the majority of infiltrating immune cells. Thus, 
we further compared the differences in immune cell 

infiltration between the groups with high and low 
expression of LRPPRC, which demonstrated that the 
immune cell infiltration in the group with high 
LRPPRC was significantly lower with the most 
distinct variation in MDSCs and Tregs (Figure 5D). In 
this regard, we analyzed the correlation between the 
expression of this m6A reader and MDSC or Treg 
infiltration in human MI samples and MI-exerted 
mouse heart samples (Figure 5E-H). In both human 
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and mouse samples, Lrpprc (or LRPPRC) expression 
showed an inverse correlation with MDSC and Treg 
infiltration. In addition, YTHDF3 expression was also 
negatively correlated with the majority of immune 
cells, while WTAP and HNRNPC expression were 
positively correlated with the majority of immune 
cells according to the correlation heatmap. However, 
the correlations of YTHDF3, WTAP, and HNRNPC 

with immune cells were significantly weaker than that 
of LRPPRC (Additional file 1, Figure S2). Taken 
together, LRPPRC is likely to be the core molecule 
that determines the m6A cluster of MI, and the 
expression level of this gene significantly affects 
immune cell infiltration. Based on existing studies, 
however, we were unable to determine whether 
LRPPRC directly regulates the level of immune cells. 

 

 
Figure 4. m6A clusters of human and mouse MI samples. Cumulative distribution function (CDF) curve of each consensus matrix from k=2 to 9. (B) Relative changes in 
the area under CDF curve based on different k values. (C) Consensus clustering of the 203 MI samples for k=2. (D) Principal component analysis (PCA) of the transcriptome 
profiles of the two m6A clusters, which revealed significant differences between these two m6A clusters. (E) Heatmap of 12 m6A regulators in different m6A clusters. (F) The 
expression of 12 m6A regulators in the two m6A clusters. (G) Heatmap of the 12 m6A regulators in mice with MI model. (The significance of difference is marked as follows: 
*p<0.05, **p<0.01, ***p<0.001).  
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Figure 5. Immunological characteristics of different m6A clusters. Differences in immune cell infiltration between two different m6A clusters in human MI samples. (B) 
Differences in immune cell infiltration between two different m6A groups in mouse MI samples. (C) Heatmap of the correlation between these 12 m6A genes and each type of 
immune cells. (D) Differences in infiltration of immune cells between LRPPRC high expression group and LRPPRC low expression group. (E) Correlation analysis between 
LRPPRC expression and MDSC infiltration in human MI samples. (F) Correlation analysis between LRPPRC expression and Treg infiltration in human MI samples. (G) Correlation 
analysis between Lrpprc expression and MDSC infiltration in mouse samples. (H) Correlation analysis between Lrpprc expression and Treg infiltration in mouse samples. 

 

3.5. The m6A cluster influences cardiac fibrosis 
in MI 

To further explore the characteristics of m6A 
subtypes in MI, we extracted 591 DEGs between 
Clusters A and B (fold change>1.3, p value<0.05, 
Figure 6A, Additional file 7), and we then performed 
Gene ontology (GO) enrichment analysis based on 
these DEGs (Figure 6B-C, Additional file 8). Most of 
the DEGs were related to wound healing, collagen 
synthesis and bonding, and extracellular matrix 
regulation, which are closely related to the occurrence 
and development of MI. In the early stage of ischemic 
myocardial infarction, cardiac fibroblasts secrete a 
large amount of collagen fibers to replace the necrotic 

myocardium in the infarct area and prevent the heart 
from rupturing, which is a protective process. 
However, in the later stage, overactive fibroblasts 
synthesize excessive collagen fibers, leading to 
detrimental ventricular remodeling. The immoderate 
fibrosis of hearts affects the contractility of viable 
myocardium, decreases cardiac output, and even 
causes lethal arrhythmias, which may reduce the 
survival rate of patients with MI[25]. To further 
demonstrate that these physiological processes are 
related to m6A regulation, we selected several genes 
closely related to the synthesis or regulation of 
collagen and compared the differences in these genes 
between Clusters A and B of clinical samples and 



Int. J. Med. Sci. 2024, Vol. 21 

 
https://www.medsci.org 

228 

Groups I and II of mouse samples (Figure 6D-E). The 
results showed that most of these genes were 
significantly upregulated in Cluster B of clinical 
samples and Group II of mouse samples. We then 
established MI models in an additional 10 mice (one 
died 5 days after surgery) and sacrificed them 4 weeks 
later to evaluate cardiac fibrosis via Sirius red 
staining. We also extracted RNA from the heart tissue 
of these mice and measured Lrpprc expression in each 
sample by qPCR. As mentioned above, Lrpprc 
expression was predominant in the grouping of 
mouse samples. Subsequently, we divided the nine 
samples into two groups according to the expression 
level of Lrpprc (4 samples in the high expression 
group and 5 samples in the low expression group) 
and then analyzed the difference in fibrosis area 
between these two groups. The degree of fibrosis in 
the low expression group was slightly higher than 
that in the high expression group, which 
corresponded to the difference in gene expression 
(Figure 6F-G) (Additional file 1, Table S2, Figure S3). 

3.6. WGCNA based on DEGs between m6A 
clusters 

Based on the DEGs between m6A Clusters A and 
B, we performed weighted gene coexpression 
network analysis (WGCNA) (Figure 7A). WGCNA, a 
systematic biological approach to describe patterns of 
gene association among different samples, can be 
used to identify gene sets with highly synergistic 
variation and to identify candidate biomarker genes 
or therapeutic targets[26]. According to Figure 7B-C, 
the lowest soft threshold for constructing a scale-free 
coexpression network was 12. Subsequently, we 
established a coexpression network based on the 
lowest soft threshold and divided the DEGs into the 
following three different network modules: gray 
module, blue module, and turquoise module (Figure 
7D). Among the modules, the gray module 
represented the invalid module, which contained all 
the genes that did not belong to the other two 
modules. We next analyzed the correlation between 
the two modules and the m6A cluster (Figure 7E), 
which demonstrated that the correlation coefficient 
between the blue module and Cluster A was the 
highest (r=0.62). To further explore the correlation 
between the blue module and Cluster A, we obtained 
gene significance (GS) by calculating their correlation 
and module membership (MM) by analyzing the 
correlation between module feature vectors and gene 
expression (Figure 7F). There was a positive 
correlation between MM and GS, which indicated that 
the genes in the blue module were strongly correlated 
with m6A regulation. We next screened the hub genes 
in the blue module (|MM|>0.4 and |GS|>0.1) and 

constructed a protein‒protein interaction (PPI) 
network using Cytoscape to observe the interaction 
between these genes (Figure 7G). These genes were 
arranged according to betweenness centrality, and the 
gene with the highest betweenness centrality was 
GJA1, which suggested that this gene may be a core 
protein in the PPI network. GJA1, also known as 
CX37, encodes a protein that is a component of gap 
junctions, an array of intercellular channels that 
provide a pathway for the diffusion of low molecular 
weight substances between cells. Mutations in this 
gene are associated with atherosclerosis and a higher 
risk of MI[27, 28]. Undoubtedly, the link between MI 
and GJA1 cannot be ignored, and GJA1 is likely to 
play an important role in the m6A regulation of MI. 

4. Discussion 
In the present study, we systematically analyzed 

the changes and regulatory patterns of m6A 
regulators in heart tissues of MI by combining 
bioinformatics analysis with animal experiments. We 
identified 12 differentially expressed m6A genes 
(WTAP, ZC3H13, RBM15B, YTHDC1, YTHDF1, 
YTHDF3, HNRNPC, FMR1, LRPPRC, IGFBP1, 
ELAVL1, and FTO) between MI patients and healthy 
controls and used them to establish a disease 
diagnosis model of MI using the random forest 
method, and we validated the feasibility of this 
model. Nearly all types of immune cells are involved 
in inflammation and ventricular remodeling after MI, 
and their quantity changes dynamically throughout 
the process of the disease[29]. It is generally believed 
that T cells, monocytes, macrophages, and dendritic 
cells play a relatively more important role in hearts 
with chronic ischemic heart failure, and their 
functions in maintaining the chronic inflammatory 
response in the cardiac microenvironment have not 
been fully explored[30]. Therefore, we analyzed the 
correlation between these m6A genes and the 
infiltration of immune cells in the MI samples and 
found that LRPPRC was negatively correlated with 
most immune cells, among which MDSCs and Tregs 
showed the greatest difference between the high and 
low LRPPRC expression groups. We then used an 
unsupervised clustering method to classify MI 
samples into m6A clusters, namely, Clusters A and B. 
Compared to Cluster A, LRPPRC, YTHDF3, and 
FMR1 expression was significantly reduced in Cluster 
B. Through the analysis of the difference in immune 
cell infiltration between these two clusters, we found 
that most immune cells had a higher degree of 
infiltration in Cluster B and that the intercluster 
difference in MDSCs and Tregs was more 
pronounced. Interestingly, similar results were 
verified in mice. Lrpprc was highly differentiated in 
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the two groups of mouse samples (Groups I and II), 
which were subsequently analyzed for immune cell 
infiltration. As expected, Group II, characterized by 

low Lrpprc expression, revealed higher infiltration of 
immune cells, especially MDSCs and Tregs. 

 

 
Figure 6. m6A clusters and cardiac fibrosis in MI. Volcano plot of the distribution of DEGs between two m6A clusters. (B) GO circle diagram of the DEGs. (C) GO barplot 
of the DEGs. Different colors represent different p values. (BP: biological process; CC: cellular component; MF: molecular function) (D-E) Differences in expression of 
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fibrosis-related genes between the two m6A clusters in human and mouse samples respectively. (The significance of difference is marked as follows: *p < 0.05; **p < 0.01; ***p 
< 0.001, ****p < 0.0001) (F) Sirius red staining of cardiac sections from mice at 4 weeks after MI. Areas of fibrosis were stained red. (G) Comparison of fibrosis area between 
Lrpprc high expression group and low expression group.  

 
Figure 7. WGCNA of the DEGs between m6A clusters. Clustering dendrogram of two m6A subtypes in MI. (B-C) Analysis of the scale-free fitting index and the mean 
connectivity respectively for soft-thresholding power from 1 to 30. (D) Gene dendrogram obtained by average linkage hierarchical clustering. The color row underneath the 
dendrogram shows the module assignment determined by the dynamic tree cut, in which 3 modules were identified. (E) Correlation heatmap between module eigen genes and 
the m6A modification patterns. (F) A scatterplot of gene significance (GS) for m6A modification pattern A vs module membership (MM) in the blue module. (G) A protein-protein 
interaction (PPI) network based on the genes in the blue module. These genes were arranged according to betweenness centrality and the top 13 genes were marked red.  
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We hypothesized that decreased LRPPRC 
expression may increase the immune response in the 
MI heart and ultimately enhance the infiltration of 
immunosuppressive cells, such as MDSCs and Tregs. 
LRPPRC is a m6A reader that encodes a leucine-rich 
protein with multiple pentapeptides. The exact 
function of this protein is still unclear, but it has been 
reported to play a role in cytoskeletal organization, 
vesicle transport, or transcriptional regulation of 
nuclear and mitochondrial genes[31]. LRPPRC is 
required for the coordination of polyadenylation and 
translation of mitochondrial mRNA[32]. At present, 
studies have shown that this gene is associated with a 
variety of diseases, including atherosclerosis, 
Parkinson's disease, and tumors[33, 34]. However, there 
have been no studies on the relationship between 
LRPPRC and immune cells so far. Both MDSCs and 
Tregs are important immunosuppressive cells and are 
closely related to the occurrence and development of 
cardiovascular diseases. MDSCs are thought to be 
produced in chronic inflammation, especially in 
advanced cancer, and possess T cell immunosup-
pression capabilities[35]. The use of MDSC inhibitors in 
tumor patients enhances T cell immunity and 
improves antitumor properties[36]. MDSCs also inhibit 
cardiomyocyte hypertrophy and maintain cardiac 
function in patients with heart failure[37]. Tregs 
function in almost all cardiovascular diseases. 
Researchers have found that increased Treg 
recruitment in the hearts of mice with MI effectively 
alleviates inflammation, reduces the infarcted area, 
and improves the survival rate[38, 39]. Tregs also inhibit 
cardiac fibroblast activation after acute MI, thereby 
reducing cardiac fibrosis[40]. However, it remains 
unknown whether LRPPRC is directly related to the 
increase in MDSC and Treg infiltration, and 
additional studies are needed to why LRPPRC 
reduces immune cell infiltration in MI hearts. 

We also screened DEGs between Clusters A and 
B, and we performed GO enrichment analysis and 
WGCNA on the basis of these genes. GO enrichment 
analysis indicated that many of the DEGs were 
enriched in biological processes related to collagen 
synthesis and wound healing, which was verified in 
clinical and mouse samples. These results indicated 
that m6A regulators may be involved in cardiac 
fibrosis. Considering that the cardiac fibrosis level is 
usually positively correlated with the inflammation 
level in MI, we speculated that the higher expression 
of fibrosis genes in Cluster B may be attributed to its 
higher proinflammatory immune cell infiltration. In 
the following WGCNA, we screened the most 
significant gene expression modules in the two 
clusters and mapped the protein‒protein interaction 
network, which indicated that GJA1 might be the 

central point of the PPI network. Because the 
relationship between GJA1 and the development of 
atherosclerosis has been previously reported, these 
findings suggested that GJA1 could be an important 
molecule mediating m6A regulation and the 
pathogenesis of MI. 

In summary, the present study indicated that 
LRPPRC-dominated m6A regulation significantly 
affects the immune response and fibrosis degree in MI 
heart tissue. However, the present study had several 
limitations. We only obtained the total gene 
expression data in heart tissues from the GEO 
database and did not obtain the specific clinical 
information of patients. Clinical indicators closely 
related to MI, such as cardiac function (cardiac output 
and ejection fraction), BNP level, and coronary 
angiography, were not available. In addition, the 
infiltration level of each immune cell type in heart 
tissues was only evaluated by ssGSEA, which cannot 
precisely reflect the cardiac immune response state. 
Therefore, we were unable to conclude that each 
element of this study was correlated with each other. 
In addition, the number of mice used to verify the 
clinical sample analysis results was small, leading to 
low significance of some results. Although most of the 
verification results were consistent with the clinical 
samples, we still lacked sufficient animal experiments 
for verification. Further, pure bioinformatics analysis 
was unable to explore the specific regulatory 
mechanism of m6A underlying inflammation and 
fibrosis. Therefore, additional studies of knockout 
mice are warranted to understand how m6A 
regulation affects the occurrence and development of 
MI. 
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