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Abstract 

Background: Primary biliary cholangitis (PBC) is a rare autoimmune liver disease with few effective 
treatments and a poor prognosis, and its incidence is on the rise. There is an urgent need for more 
targeted treatment strategies to accurately identify high-risk patients. The use of stochastic survival forest 
models in machine learning is an innovative approach to constructing a prognostic model for PBC that can 
improve the prognosis by identifying high-risk patients for targeted treatment. 
Method: Based on the inclusion and exclusion criteria, the clinical data and follow-up data of patients 
diagnosed with PBC-associated cirrhosis between January 2011 and December 2021 at Taizhou Hospital 
of Zhejiang Province were retrospectively collected and analyzed. Data analyses and random survival 
forest model construction were based on the R language. 
Result: Through a Cox univariate regression analysis of 90 included samples and 46 variables, 17 
variables with p-values <0.1 were selected for initial model construction. The out-of-bag (OOB) 
performance error was 0.2094, and K-fold cross-validation yielded an internal validation C-index of 
0.8182. Through model selection, cholinesterase, bile acid, the white blood cell count, total bilirubin, and 
albumin were chosen for the final predictive model, with a final OOB performance error of 0.2002 and 
C-index of 0.7805. Using the final model, patients were stratified into high- and low-risk groups, which 
showed significant differences with a P value <0.0001. The area under the curve was used to evaluate the 
predictive ability for patients in the first, third, and fifth years, with respective results of 0.9595, 0.8898, 
and 0.9088. 
Conclusion: The present study constructed a prognostic model for PBC-associated cirrhosis patients 
using a random survival forest model, which accurately stratified patients into low- and high-risk groups. 
Treatment strategies can thus be more targeted, leading to improved outcomes for high-risk patients. 
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Introduction 
Primary biliary cholangitis (PBC), previously 

known as primary biliary cirrhosis, is a classic 
autoimmune liver disease characterized by 
destructive lymphocytic cholangitis and the presence 
of specific anti-mitochondrial antibodies (AMAs) 
[1-3]. PBC leads to immune-mediated injury to biliary 

epithelial cells (BECs), resulting in cholestasis, 
progressive liver fibrosis, and a spectrum of clinical 
manifestations. It is a slowly progressive disease with 
a natural history of 10-15 years leading to end-stage 
liver disease [4, 5]. However, high-risk cases can still 
progress rapidly to decompensated cirrhosis or even 
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death [6]. Ursodeoxycholic acid (UDCA) has 
demonstrated some efficacy in slowing the 
progression of the disease, but its impact is limited, 
especially in rapidly progressing patients [7, 8]. 
Therefore, it is essential to promptly identify and 
intervene in high-risk patients to effectively manage 
the disease progression. 

Primary biliary cholangitis (PBC) is a relatively 
rare autoimmune liver disease, but its global 
prevalence is increasing [9]. Currently, there are no 
definitive prognostic indicators for PBC, and 
prognosis assessment heavily relies on regular patient 
follow-ups, placing a significant burden on both 
patients and healthcare providers [10]. Accurately 
identifying and distinguishing high-risk from 
low-risk patients and intervening in high-risk cases 
could effectively improve outcomes. However, there 
is currently a lack of reported PBC prognostic models, 
leaving a void in this critical clinical area. Developing 
an effective prognostic model holds clinical value and 
could be beneficial in the management of PBC. 

Machine learning algorithms, such as random 
forest plots, have shown promising potential in 
medicine for various applications, including disease 
diagnoses, patient outcome prediction, and drug 
discovery [11-13]. In the context of PBC, a randomized 
survival forest model in machine learning can be used 
to construct a prognostic model for PBC-associated 
cirrhosis. This model can accurately identify high-risk 
patients and enable targeted treatment. The 
randomized survival forest model is a powerful tool 
for constructing prognostic models in survival 
analyses due to its ability to handle complex and 
high-dimensional datasets and its resistance to 
overfitting. The proposed use of machine learning in 
the prognostic analysis of PBC represents an 
innovative approach that can potentially improve 
patient outcomes and lead to better management of 
this disease. 

Methods 
Study design and patients 

This study retrospectively collected and 
analyzed the clinical data and follow-up information 
of 90 patients with PBC-related cirrhosis diagnosed in 
Taizhou Hospital, Zhejiang Province, China, from 
January 2011 to December 2021. This study was 
approved by the Ethics Committee of Taizhou 
Hospital of Wenzhou Medical University (approval 
number: K20220234). 

The inclusion criteria were as follows: 1) a clear 
diagnosis of PBC; 2) progression to cirrhosis on the 
basis of PBC, 3) and complete follow-up data.  

The exclusion criteria were as follows: 1) short 

follow-up (<3 months) or lost to follow-up during the 
follow-up process; 2) alcoholic liver disease, 
nonalcoholic steatohepatitis, viral hepatitis, 
autoimmune hepatitis, or other liver diseases as well 
as tumors or severe cardiac, renal, respiratory, 
hematologic, or mental health disorders; 3) and 
patients who received a liver transplant before 
enrollment or during the follow-up period. 

The diagnostic criteria for PBC were as follows: 
1) serum AMA titer ≥ 1:40; 2) unexplained ALP 
elevation ≥ 1.5 times the upper normal value for more 
than 24 weeks; 3) and liver tissue compatibility, 
especially nonsuppurative cholangitis and interlobu-
lar bile duct injury [14]. The diagnosis of cirrhosis was 
based on pathological, ultrasound, or radiological 
signs in the liver. Decompensated cirrhosis was 
defined by the development of cirrhotic ascites, 
ruptured esophageal and gastric varices bleeding, 
hepatic encephalopathy, and other complications. 

Inclusion of variables 
This study included the following variables: age; 

gender; stage of cirrhosis; complications of cirrhosis 
(ascites, esophageal and gastric varices, ruptured and 
bleeding esophageal and gastric varices, infections, 
hepatic encephalopathy); concomitant diseases (auto-
immune diseases, gallbladder diseases, osteoporosis); 
serological tests at the diagnosis, including white 
blood cells (WBCs), neutrophils (Ns), lymphocytes 
(Ls), platelets (Plts), and levels of C-reactive protein 
(CRP), alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), alkaline phosphatase (ALP), 
gamma-glutamyl transferase (GGT), bilirubin (BIL), 
albumin (Alb), cholinesterase (ChE), serum creatinine 
(CR), PT-INR, serum Na, triglycerides, cholesterol, 
low-density lipoprotein cholesterol, complement C3, 
complement C4, IgM, alpha-fetoprotein, carcino-
embryonic antigen, CA199, CA125, CA153, hyalu-
ronic acid (HA), laminin (LN), type IV collagen, type 
III precollagen N-terminal peptide (PIIINP), 
antinuclear antibody series (ANA, AMA, AMAM2, 
SSA, SSA52, SSB anti-sp100, anti-gp210, anti-dsDNA 
antibody, anti-adhesion point protein B antibody, 
anti-RNP antibody); and whether the patient was 
readmitted within 1 month, 3 months, or 6 months. 

Data analyses and model construction 
Variable screening was conducted using COX 

regression, where variables with p-values <0.1 were 
selected for inclusion in the random survival forest 
model. The model's variables were further screened, 
and the top five variables with the highest scores were 
chosen as the final variables for model construction. 
An evaluation of the models was performed using the 
C-index, out-of-bag (OOB) error, and receiver 



Int. J. Med. Sci. 2024, Vol. 21 

 
https://www.medsci.org 

63 

operating characteristic (ROC) curve area. All data 
analyses and model constructions for the random 
survival forest were performed using the R language 
(version 4.2.3). 

The C-index is a widely used measure of a 
model's predictive accuracy for survival data [15]. It 
ranges from 0 to 1, where 1 indicates perfect 
predictive accuracy, and 0.5 indicates random 
prediction. The OOB error is a method used to 
estimate a model's prediction error without requiring 
a separate validation set [16]. It estimates the error by 
comparing the predictions of each bootstrap sample to 
the actual outcomes of the observations that were not 
included in the sample. Both the C-index and OOB 
error were used to evaluate the performance of the 
random survival forest models in the present study. 

Results 
Ninety patients diagnosed with PBC-related 

liver cirrhosis were included in the analysis after 
excluding six patients (two with tumors, two with 
hepatitis B-related liver cirrhosis, one with alcoholic 
liver cirrhosis, and one who underwent liver 
transplantation during follow-up). Among the 
included patients, the mean age was 59.19±11.45 years 
old, with 77 females and 13 males. There are 32 cases 
(35.6%) of compensatory cirrhosis and 58 cases 
(54.4%) of decompensated cirrhosis. Among the 
patients, 52 have concurrent ascites, 19 have 
concurrent esophageal and gastric varices, 10 have 
concurrent infection, and 2 have concurrent hepatic 
encephalopathy. At the end of the follow-up period, 
19 patients had passed away, while 71 remained alive. 
The median survival time was 35 months, and the 
mean survival time was 42.53 ± 32.61 months. Figure 1 
shows the flow chart of the data analyses. 

A one-way Cox regression analysis was 
conducted to evaluate the variables included in the 
study. In order to ensure the inclusion of an adequate 
number of variables, selections were made for model 
construction based on p-values <0.1. The following 
variables were found to be significant according to a 
univariate regression analysis: "jaundice", "spider 
nevus", "SSA", "leukocyte", "lymphocytes", "CRP", 
"AST", "bilirubin", "bile acid", "albumin", "cholines-
terase", "Na", "LDL", "PT", "INR", "Complement C3", 
"Complement C4", "hyaluronic acid", "laminin", "type 
IV collagen", and "type III precollagen N-terminal 
peptide". Table 1 displays the corresponding p values. 

The selected variables were included in the 
construction of a random survival forest model. Two 
hundred decision trees were built, with 15 terminal 
nodes and 5 selected variables in each tree. The OOB 
requested performance error was 0.2094, indicating a 
model error rate of 20.94%. Internal validation was 

performed using K-fold cross-validation, and the 
resulting C-index was 0.8182, indicating a model 
accuracy of 81.82%. The model construction process is 
depicted in Figure 2. Further variable selection was 
performed using the model, and the top five variables 
in terms of importance were selected as the final 
variables to be included in the random survival forest 
model. Table 2 shows the differences in the death and 
survival groups for the five indicators that were 
finally included in the analysis. 

 

Table 1. Results of Cox single-factor analyses 

Variable Beta HR Lower_95 Upper_95 P.value Global.pval 
Anti SSA antibody 1.270 3.580 1.430 8.920 0.006 0.010 
Jaundice 1.540 4.690 1.780 12.400 0.002 0.001 
Spider mole 1.400 4.040 1.340 12.200 0.013 0.032 
Hyaluronic Acid 0.003 1.003 1.002 1.004 <0.001 <0.001 
INR 1.730 5.640 2.660 11.900 <0.001 <0.001 
PT 0.204 1.230 1.120 1.340 <0.001 <0.001 
Bilirubin 0.008 1.010 1.000 1.010 <0.001 0.001 
Bile acids 0.008 1.010 1.000 1.010 <0.001 0.001 
White blood cells 0.203 1.220 1.100 1.370 <0.001 0.001 
Cholinesterase -0.574 0.563 0.411 0.771 <0.001 0.000 
CRP 0.040 1.040 1.020 1.070 0.001 0.006 
Albumin -0.123 0.885 0.821 0.954 0.001 0.001 
Na -0.203 0.816 0.696 0.957 0.012 0.013 
AST 0.001 1.001 1.000 1.002 0.013 0.046 
Type IV collagen 0.006 1.010 1.000 1.010 0.034 0.076 
C3 -1.510 0.220 0.050 0.979 0.047 0.043 
PⅢNP 0.005 1.010 1.000 1.010 0.062 0.102 
Laminin 0.007 1.010 1.000 1.010 0.065 0.106 
Lymphocytes 0.549 1.730 0.963 3.110 0.067 0.080 
L-LDL 0.209 1.230 0.984 1.540 0.069 0.104 
C4 -5.790 0.003 0.000 2.720 0.095 0.076 

PIIINP: Type III precollagen N terminal peptide; Beta: an important parameter that 
measures the effect of each explanatory variable on the hazard (or risk) rate; HR: 
hazard ratio, a statistical measure used in survival analyses to compare the 
probability of an event occurring between two groups, with HR > 1 indicating an 
increased risk and HR < 1 indicating a decreased risk; Global.pval: a statistic that 
evaluates the statistical significance of the overall association between a set of 
predictor variables and a response variable in a regression model. 

 

Table 2. Differences in selected variables between the death and 
survival groups 

Variable Alive, N = 711 Death, N = 191 p value2 
Age 59 (52, 68) 58 (54, 70) 0.800 
Gender   0.500 
Female 62 (87%) 15 (79%)  
Male 9 (13%) 4 (21%)  
WBC 4.25 (3.00, 5.20) 6.90 (2.80, 10.00) 0.110 
TBIL 22.00 (15.32, 46.35) 93.90 (52.38, 275.85) 0.003 
Alb 34.85 (31.60, 38.92) 29.45 (25.77, 32.10) 0.003 
HA 182.80(121.00, 258.00) 526.30 (429.90, 1104.00) 0.003 
CHE 4.56 (3.32, 6.11) 2.43 (2.03, 3.31) <0.001 
Time 37.00 (22.00, 63.00) 17.00(4.00, 37.00) <0.001 
1Median (interquartile range); n (%);2Wilcoxon rank sum test; Fisher's exact test 

 
The final variables included in the random 

survival forest model were " CHE", "HA", "WBC 
count", "total BIL (TBIL)", and "Alb". Using an ROC 
analysis, the optimal threshold values were calculated 
for these five variables, and patients were divided into 
high- and low-level groups based on these thresholds. 
The optimal threshold for CHE was 3.360 (confidence 
interval [CI]: 0.739-0.789), with patients above this 
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threshold classified as high-level and those below it 
classified as low-level. The optimal threshold for HA 
was 363.900 (CI: 0.824-0.923), with patients above this 
threshold classified as high-level and those below it 
classified as low-level. The optimal threshold for the 
WBC count was 6.700 (CI: 0.526-0.900), with patients 
above this threshold classified as high level and those 
below this threshold classified as low level. The 
optimal threshold for TBIL was 40.300 (CI: 

0.632-0.789), with patients above this threshold 
classified as high-level and those below it classified as 
low-level. The optimal threshold for Alb was 32.600, 
with patients above this threshold classified as 
high-level and those below it classified as low-level. 
The survival impact of these groups was 
demonstrated through a Kaplan-Meier analysis, as 
depicted in Figure 3. 

 

 
Figure 1. Study flow chart. 

 
Figure 2. (a) Process of model training in the random forest, with the error rate decreasing as the number of trees increases; (b) importance ranking of each variable in the model 
output. 
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Figure 3. Receiver operating characteristic and Kaplan-Meier curves for cholinesterase (CHE), white blood cells (WBCs), hyaluronic acid (HA), total bilirubin (TBIL), and 
albumin (Alb). 



Int. J. Med. Sci. 2024, Vol. 21 

 
https://www.medsci.org 

66 

 
Figure 4. (a) Kaplan-Meier curves for the high- and low-risk groups stratified by the risk scores; (b) receiver operating characteristic curves of the model's predictive 
performance at the first, third, and fifth years. 

 
Figure 5. (a) Kaplan-Meier curves of the high- and low-risk group based on the risk score in the testing set; (b) receiver operating characteristic curves of the model for 
predicting the outcome at the first, third, and fifth years in the testing set. 

 
Incorporating the variables CHE, WBC, TBIL, 

HA, and Alb, we constructed stochastic survival 
forest models. We utilized 200 decision trees with a 
minimum branch of 15, and the OOB requested 
performance error was 0.2002, indicating an error rate 
of 20.02%, with a C-index of 0.7805, indicating an 
accuracy rate of 78.05%, using internal k-fold 
cross-validation. The risk score was calculated by the 
model, and we segregated patients into high- and 
low-risk groups based on their risk score. We then 
plotted the survival curves to evaluate the model's 
predictive effect. Furthermore, we assessed the 
predictive efficacy of the model in predicting survival 

at years 1, 3 and 5 using ROC, and the results are 
expressed as the area under the curve (AUC). The 
AUCs for year 1, year 3, and year 5 were 0.9595, 
0.8898, and 0.9088, respectively, as shown in Figure 4. 
To further validate the model's effect, we used a put 
backable random resampling method to construct a 
test set by sampling 900 times. We then validated the 
constructed model on the test set, calculated the sub 
risk scores, and classified patients into high- and 
low-risk groups. Finally, we calculated the predictive 
effects using an ROC analysis for year 1, year 3, and 
year 5. The AUCs for years 1, 3, and 5 were 0.9847, 
0.9444, and 0.9278, respectively, as shown in Figure 5. 
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Discussion 
PBC is a rare autoimmune liver disease 

characterized by inflammation and progressive 
destruction of interlobular bile ducts and biliary stasis 
causing debilitating fatigue and pruritus, ultimately 
leading to cirrhosis and death [17, 18]. We constructed 
a prognostic model for PBC-related cirrhosis using a 
stochastic survival forest model in machine learning. 
Compared to the traditional multifactor regression 
model, the machine learning model exhibits higher 
stability. To avoid overfitting caused by a large 
number of variables during model training, we 
selected CHE, WBC, TBIL, HA, and Alb as the final 
training variables through Cox regression and model 
training. The final model achieved an out-of-bag 
(OOB) value of 0.2002 and a C-index of 0.7805, 
comparable to the initially constructed model, 
demonstrating good accuracy and error rates. Internal 
validation showed an OOB value of 0.2195 and a 
C-index of 0.7805, indicating good stability. The area 
under the curve (AUC) for the first, third, and 
fifth-year predictions were 0.9595, 0.8898, and 0.9088, 
respectively. The prediction model showed superior 
prediction results. 

 PBC is a classic autoimmune liver disease 
characterized by ongoing and specific damage to the 
bile ducts, resulting in impaired bile flow and 
progressive liver injury, ultimately leading to the 
development of cirrhosis [2]. Currently, there are no 
specific markers that can reflect the progression and 
prognosis of PBC, highlighting the urgent need for an 
effective predictive model [2]. In this study, we 
employed a random survival forest model and 
identified five highly correlated variables: cholines-
terase, hyaluronic acid, albumin, total bilirubin, and 
white blood cells. Cholinesterase, as one of the 
synthetic products in the liver, catalyzes the 
hydrolysis of cholinester compounds in the human 
body, breaking them down into acetic acid and 
choline [19]. Numerous studies have reported 
increased secretion of cholinesterase in the serum of 
PBC patients, likely due to enhanced synthesis and 
secretion in response to liver inflammation and injury. 
Whether cholinesterase is involved in the generation 
of anti-mitochondrial antibodies (AMAs) in PBC 
remains to be further elucidated. Although the precise 
mechanisms are still unclear, the sustained elevation 
of cholinesterase in PBC patients suggests its crucial 
role in the immunopathogenesis of PBC occurrence 
and development. Serum transparency inositol 
phosphate can reflect the endothelial function and 
level of damage in the liver, and it is clinically used to 
evaluate the degree of liver fibrosis. In patients with 
PBC, cirrhosis is an inevitable stage, and transparency 
inositol phosphate can reflect the extent of cirrhosis, 

which has some significance for the prognosis of PBC 
[2, 20-22]. Albumin and bilirubin, as the most 
representative products of liver synthetic and 
metabolic functions, can indicate the functional level 
of the liver and provide certain hints regarding the 
progression of PBC [23, 24]. White blood cells (WBC), 
as the primary immune cells in the human body, 
participate in the majority of immune reactions and 
their levels can reflect the body's inflammatory state 
to a certain extent. Considering that PBC is 
characterized by chronic liver inflammation, WBC 
count can serve as an indicator of PBC severity [25]. In 
conclusion, our findings highlight the significance of 
these five variables in the pathogenesis and 
progression of PBC, providing valuable insights for 
the development of an effective predictive model.  

 The random survival forest model has been 
widely applied and shown to exhibit better stability 
and accuracy compared to traditional regression 
models. It has been used in various prognostic 
models, including predicting gene phenotypes and 
prognoses for different diseases [26-28]. A study 
utilizing SEER data to construct multiple prognostic 
models for pancreatic cancer demonstrated that the 
random survival forest outperformed Cox regression 
(C-index of 0.670) and neural networks (C-index of 
0.700) with a higher C-index of 0.723[29]. Random 
survival forests seem to yield better predictive 
performance for survival data. Moreover, random 
survival forests have demonstrated high stability in 
biomarker validation. There have been reports of their 
use in identifying novel biomarkers for predicting 
event-free survival in high-risk pediatric acute 
lymphoblastic leukemia, enabling the differentiation 
of high-risk patients and improving prognosis [30]. In 
our research, we employed the random survival forest 
algorithm to construct a prognostic model for PBC 
and achieved high predictive accuracy. Additionally, 
this model accurately identifies individuals at high 
risk, which holds clinical significance. Close follow-up 
and intervention are necessary for PBC patients 
classified as high risk to monitor disease progression. 
Furthermore, liver transplantation appears to be a 
more effective treatment for high-risk patients, 
providing valuable insights into prioritizing liver 
transplantation. 

There are some limitations to our study. The 
clinical data used in our study were all from Taizhou 
Hospital in Zhejiang Province, China, which may 
have some biases. In addition, the small sample size 
may have led to overfitting during the model training 
process, which may have affected the accuracy of the 
model's predictions. Our model incorporates five 
indicators as predictive models, which cannot be 
compared to traditional single indicators like ALP. 
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This limitation necessitates further data validation in 
future research. Furthermore, due to the limited 
sample size, only internal validation was performed 
in this study, and external validation was not 
conducted, which limits the comprehensive evalu-
ation of the model's accuracy. However, PBC itself is a 
rare autoimmune liver disease, with an incidence rate 
of approximately 20-40 cases per 100,000 people, and 
the sample size is much smaller than that of common 
diseases [31]. Additionally, as the largest medical 
center in Taizhou City, Taizhou Hospital possesses 
strong medical resources and frequently receives 
referrals of patients with rare diseases from 
neighboring areas. Therefore, the bias in our dataset is 
within an acceptable range of error. The model 
trained based on a small sample size is also more 
suitable for small-sample data.  

PBC is a rare disease with a small sample size, 
making it suitable for our model. Our random 
survival forest model was able to accurately 
distinguish high- and low-risk PBC patients and 
predict their prognosis, generating clinical value. 
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