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Abstract 

Trastuzumab has proven its effectiveness in gastric cancer with HER-2 gene-amplification, which has now 
developed resistance while the mechanism of which is not fully elucidated. Our previous studies 
demonstrated that the activity of GATA6 binding protein 6 (GATA6) enhanced prominently in 
trastuzumab resistant gastric cancer cell lines (NCI N87R and MKN45R). In the present study, we further 
confirmed the re-sensitization to trastuzumab and inhibition of mitochondrial functions of GATA6 
knockout sublines (NCI N87R/∆GATA6 and MKN45R/∆GATA6). Moreover, we applied untargeted 
metabolomic profiling to investigate the potential roles of GATA6 in metabolism of NCI N87R and 
MKN45R. The UPLC system coupled with Q-Exactive Focus Orbitrap mass spectrometry, multivariate in 
combination with univariate analysis were performed for the screening of differential metabolites 
between resistant cells and GATA6 knockout sublines. A total of 68 and 59 endogenous metabolites 
were found to be altered significantly in NCI N87R/∆GATA6 and MKN45R/∆GATA6 cells compared 
with NCI N87R and MKN45R, respectively. Pathway analyses indicated disturbance of metabolic 
pathways after GATA6 knockout including tricarboxylic acid (TCA) cycle, glycolysis and energy-related 
amino acid pathways. An integrated proteomics-metabolomics revealed that sub-networks were closely 
related to TCA cycle, glycolysis, multiple amino acid and nucleotide metabolism. Western blot showed 
that TCA cycle and glycolysis-related molecules, including PKM, GLS, GLUL and LDHA, were 
downregulated in GATA6 knockout sublines. Taken together, these findings demonstrate that GATA6 is 
involved in metabolism reprogramming which might contribute to trastuzumab resistance in gastric 
cancer. 
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Introduction 
Gastric cancer, one of the common malignant 

tumors, is characterized by sudden occurrence, rapid 
progression, high morbidity and mortality [1]. As part 
of the therapy, chemotherapy is widely applied in the 
treatment of gastric carcinoma, whilst drug resistance 
has become a primary cause of chemotherapy failure, 
which represents a significant challenge in the 
treatment of gastric cancer. Human epidermal growth 

factor receptor 2 (HER-2), a tyrosine kinase receptor 
assigned to the family of epidermal growth factor 
receptor (EGFR), is a crucial gastric cancer therapeutic 
target encoded by the c-erbB2 proto-oncogene located 
on chromosome 17q21[2]. HER-2 overexpression is 
associated with rapid tumor growth, metastasis as 
well as poor prognosis of gastric cancer while the 
activated HER-2 not only contributes to tumor 

 
Ivyspring  

International Publisher 



Int. J. Med. Sci. 2020, Vol. 17 

 
http://www.medsci.org 

3147 

survival signals but also facilitates reprogramming of 
cancer cells metabolism [3]. 

Trastuzumab, a monoclonal antibody targeting 
HER-2 receptor, has proven to be an effective agent 
for HER-2 positive advanced gastric cancer. However, 
the acquired resistance to trastuzumab impedes the 
curative effect and continuation of therapy. So far, the 
mechanisms underlying this resistance remain 
elusive. Hence, understanding the molecular 
mechanisms governing trastuzumab resistance has 
become of importance for seeking new therapeutic 
strategies. 

Although the mechanisms of acquired resistance 
to chemotherapy in tumors are very complicated, 
missense mutations and metabolic reprogramming 
have become the most important and prioritized 
aspects of tumor chemotherapy failure. For instance, 
in pancreatic cancer disruption of glutamine 
metabolic pathways improves the efficacy of 
gemcitabine treatment [4], while HEATR1 deficiency 
promotes gemcitabine resistance by up-regulating 
Nrf2 signaling [5]. Our previous studies have 
demonstrated that activation of Wnt/β-catenin/EMT 
pathways contributes to trastuzumab resistance in 
NCI N87 and MKN45 cells [6]. 

Transcription factor-mediated metabolic 
reprogramming has been implicated as a potential 
mechanism for drug resistance of cancer cells. 
GATA6, a zinc-finger transcription factor, functions as 
a tumor promoter or suppressor depending on the 
type of tumor. GATA6 overexpression has been 
observed in gastric cancer, breast cancer as well as in 
esophageal adenocarcinoma [7-9], while loss of 
GATA6 has been shown to be involved in malignant 
transformation of astrocytoma [10]. Our recent 
proteomic study has shown that NCI N87R and 
MKN45R cells display a remarkable enhancement of 
GATA6 activity [11], whereas NCI N87R/∆GATA6 
and MKN45R/∆GATA6 cells exhibit DNA 
impairment and glucose metabolism inhibition [12], 
suggesting that GATA6 knockout leads to an 
inhibition of energy metabolism. Our data therefore 
imply that blocking transcriptional activity of GATA6 
could be an effective strategy to attenuate 
trastuzumab resistance in gastric cancer. Despite all of 
this, metabolic pathways and characteristics of 
GATA6 regulating trastuzumab resistance have yet to 
be elucidated in gastric cancer. 

Metabolomics, a powerful tool to characterize 
complex biochemical systems, has been widely 
applied to life sciences fields, including illuminating 
the pathogenesis of cancers and mechanisms of drug 
resistance [13]. In this study, we employed an 
untargeted metabolomics based on UPLC Q-Exactive 
Focus mass spectrometry to investigate metabolic 

pathways of GATA6 regulating trastuzumab 
resistance in gastric cancer cells. Pathway enrichment 
analysis suggested perturbation in pathways of TCA 
cycle, multiple amino acid metabolisms related to 
energy, glycolysis, and nucleotide metabolisms in 
NCI N87R/∆GATA6 and MKN45R/∆GATA6 cells. 
Additionally, we further analyzed the proteomic data 
in depth and constructed an integrated proteomics- 
metabolomics network of GATA6 regulating 
trastuzumab resistance to illuminate the regulatory 
relationships between metabolic pathways and the 
protein expression (proteomics data were found from 
our previous work [12]). Our results showed that 
GATA6 knockout inhibited mitochondrial functions 
in NCI N87R and MKN45R cells, indicating that 
GATA6 could be a potential therapeutic target for 
dealing with trastuzumab resistance in gastric cancer. 

Materials and Methods 
Chemical and reagents 

HPLC-grade acetonitrile, methanol, formic acid 
and ammonium acetate were supplied by CNW Inc. 
(Shanghai, China). 2-chloro-L-phenylalanine with a 
purity of > 98.5% was purchased from Heng-bai 
Biotech. Co. Ltd. (Shanghai, China). Deionized water 
was prepared from Millipore ultrapure water system 
(Merck Millopore, MA, USA). 

Cell lines and cell culture 
Trastuzumab-resistant gastric cell lines (NCI 

N87R, MKN45R) and GATA6 knockout sublines (NCI 
N87R/∆GATA6 and MKN45R/∆GATA6) were 
constructed and preserved in our laboratory. All cells 
were cultured in DMEM medium (Gibco, NY, USA) 
supplemented with 10% fetal bovine serum (FBS) 
(Gibco, NY, USA), 100 units/mL penicillin and 100 
μg/mL streptomycin and maintained at 37 °C in a 
humidified atmosphere containing 5% CO2-95% air. 
Cell lines were maintained in trastuzumab-containing 
medium (80 μg/mL) according to our previous 
procedures [6]. 

Sample preparation for metabolome analysis 
Intracellular metabolites extractions were 

performed according to methods that were utilized in 
our previous study [14]. Briefly, cells were seeded in 
6-well plates for 48-72 h in complete medium after 
which cells were harvested and counted at a density 
of 1×107 cells/well. Next, the cells were washed twice 
with pre-cold PBS, and later, the metabolites were 
quenched and extracted with 1000 μL pre-cold mixed 
solvent (acetonitrile/methanol/water=2:2:1) 
containing 20 μL of 2-chloro-L-phenylalanine as the 
internal standard. After this, cell pellets were collected 
and transferred to a microcentrifuge tube, 
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homogenized for 4 min and sonicated for 5 min in 
ice-water bath. This was followed by incubation at 20 
°C for 1 h and centrifugation at 12 000 g for 15 min at 4 
°C. The supernatants were filtered through 0.22 μm 
PTFE syringe filter. The filtrate was collected and 
transferred to autosampler vials for analysis by 
UPLC-Q Exactive Focus mass spectrometry. Quality 
control (QC) samples were prepared by pooling 30 μL 
of each sample in all groups. Solvent blank and QC 
samples were inserted in analytical batch after every 
five samples to assess the stability of the detecting 
system. 

UPLC Q-Exactive Focus mass spectrometry 
procedure 

The metabolites were analyzed using an UPLC 
system (1290, Agilent) equipped with HSS T3 column 
(2.1 mm×100 mm, 1.8 μm, Waters, Milford, MA, 
USA). The temperature of the UPLC column oven was 
maintained at 35 °C while the autosampler was set at 
10 °C. For the chromatographic separation, the mobile 
phase in positive ionization mode (ESI+) was 
composed of eluent A (0.1% formic acid in water, v/v) 
and eluent B (acetonitrile). Likewise, in negative 
ionization mode (ESI–) it was composed of eluent A (5 
mM ammonium acetate in water) and eluent B 
(acetonitrile). The elution gradient was set as follows: 
1% B from 0 to 1 minute; 1-99% B from 1 to 8 minute; 
99% B from 8 to 10 minute; 99-1% B from 10 to 10.1 
minute; 1% B from 10.1 to 12.0 minute. The elution 
flow rate was 0.5 ml/min. The injection volume was 5 
μL. 

High-resolution mass spectrometer Q-Exactive 
Focus Orbitrap MS mounted on the UPLC system was 
used to carry out the mass spectrometry equipped 
with dual electrospray ionization. The operating 
parameters were set as follows: The spray voltage was 
4.0 kV in ESI+ and 3.6 kV in ESI–. The temperature of 
capillary was 320 °C, and aux gas heater was 350 °C, 
respectively. The aux gas and sheath gas flow rate 
were set at 15 arbitrary units and 30 psi, respectively. 
The full scan (MS1) range was 70-1000 m/z with a 
resolution of 70000. The automatic gain control (AGC) 
target for MS acquisitions was set to 1×106 with a 
maximum ion injection time of 100 ms. Subsequent 
MS/MS scan (MS2) was processed with a resolution 
of 17500, and AGC target of 1×105 with a maximum 
ion injection time of 60 ms. The dynamic exclusion 
time was 10 s. The mass spectra were analyzed at 
normalized collisional energy (NCE). Hight-purity 
nitrogen was used as the nebulizing gas and collision 
gas for higher energy collisional dissociation. Data 
acquisition was performed in the mode of 
information-dependent acquisition (IDA). 

Data transformation and metabolites 
identification 

The acquired HPLC-MS raw files were converted 
to mzML files by using ProteoWizard. Subsequent 
data processing and analysis was accomplished using 
the bioinformatics program XCMS in R package 
(version 3.3.0) [15]. The parameters settings were 
accomplished as it was in our previous study [14]. 
OSI-SMMS software (version 1.0, Dalian Chem Data 
Solution Information Technology Co. Ltd.) was 
further used for peak annotation after XCMS data. 
The resulting generated a data that comprised of 
sample name, retention time (RT), mass-to-charge 
ratio (m/z), peak area and peak number. Metabolites 
were identified by matching MS/MS spectra 
fragmentation similarity with scores greater than or 
equal to 0.90 (the score range 0.00-1.00) based on 
self-built database containing more than 2000 
endogenous metabolites. 

Multivariate statistical analysis and differential 
metabolic screening 

Peak areas were normalized to the total peak 
area of each chromatogram. Processing of the missing 
values for each sample was performed with the 80 % 
rule while mean-centering and pareto-scaling were 
applied to reduce instrumental and chemical noise 
[16]. Then multivariate statistical analysis was 
performed using MetaboAnalyst (version 4.0) for 
unsupervised principal component analysis (PCA) to 
observe natural cluster trend of the differential cell 
lines and QC samples [17]. Subsequently, supervised 
orthogonal partial least square discriminant analysis 
(OPLS-DA) was implemented to maximize the 
differences of metabolic profiles between trastuzumab 
resistant groups and GATA6 knock out groups. The 
validation of all OPLS-DA models was assessed using 
7-fold cross-validation and 200 permutation tests 
random iterations. The variable importance in the 
projection (VIP) plots from the OPLS-DA were 
applied to identify variables changed significantly in 
GATA6 knock out groups versus trastuzumab 
resistant groups. Variables with VIP values >1.0 were 
thought to be crucial which was further analyzed by 
independent t-tests. Volcano plots were accomplished 
by plotting the negative logarithm of p-value on the 
vertical axis (base 10) versus the logarithm of fold 
change (FC, base 2) on the horizontal axis. Fold 
change was calculated using average normalized peak 
areas in GATA6 knockout groups/resistant groups. 
SPSS 19.0 software was implemented for statistical 
analysis of the normalized values to determine 
metabolites with significant changes. Variables with 
VIP >1.0, FC ≥ 1.2 or ≤ 0.83 and p value < 0.05 were 
regarded as differentially altered metabolites. Data 
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were displayed as mean ±SEM and presented by 
GraphPad Prism 8.0.1 (GraphPad Prism, Inc. San 
Diego, USA). 

Integrated analysis of metabolomics and 
proteomics 

MetaboAnalyst (version 4.0) was applied to 
explore biological functions of differential metabolites 
which set the cut-off of pathway impact value from 
the topology analysis to 0.1 as according to previous 
methods [17]. The Kyoto Encyclopedia of Genes and 
Genomes database (KEGG, version 89.1) was explored 
to investigate the disturbed metabolic pathways. 
OmicsNet database (version 1.0) was utilized to 
acquire the network analysis and molecular 
interactions with the standard setting [18]. Cytoscape 
software (version 3.7.2) was applied to visualize the 
network models from differential metabolites and 
regulatory target genes. 

Western blotting assay 
Western blot analysis was performed according 

to protocols described recently [6]. Briefly, cells from 
different groups were lysed using RIPA lysis buffer 
(50 mM Tris, 150 mM NaCl, 1% Triton X-100, 1% 
sodium deoxycholate, 0.1% sodium dodecyl sulfate, 
Beyotime, China) containing 1% protease inhibitor. 
Lysates were centrifuged for 15 min at 4 °C (12000 g), 
after which the supernatant was collected for further 
use. Proteins concentration were quantified with the 
Broadford assay kit (CWBIO, China). Equal amounts 
(20 µg) of proteins were denatured by heating and 
separated by SDS-PAGE, followed by transfer to 
nitrocellulose membranes which were later incubated 
with designated primary antibodies against PKM 
(Abcam, #38237, UK), GLS2 (Abcam, #113509, UK), 
GLUL (Abcam, #49873, UK), LDHA (Abcam, #125683, 
UK) and β-actin (Cell Signaling, #5176, USA) (dilution 
1:1000) respectively at 4 °C overnight after blocking 
with 5% skimmed milk. Thereafter, membranes were 
incubated with suitable secondary antibodies (ZSGB- 
Bio, China) (dilution 1:3000) at room temperature. 
Finally, chemiluminescence signals were visualized 
using an enhanced chemiluminescence reagent 
(CWBIO, China). The grey values of these signals 
were measured using Image J and histograms were 
plotted using GraphPad Prism 8.0.1. 

Cell viability assays 
Cell viability was assessed using CCK-8 kit 

according to previous protocols [6]. Cells were seeded 
in a 96-well plate at 4×103 cells/well and incubated for 
24 h. The cells were then treated with a range of 
indicated concentrate of trastuzumab (0, 20, 40, 80, 
160, 320 and 640 μg/mL) for 72 h. Absorbance was 
detected at 450 nm with a microplate reader (Bio-Rad, 

Hercules, CA, USA). All data were represented based 
on three independent experiments. 

Mitochondria isolation and purification 
Mitochondria isolation were executed using a 

Cell Mitochondria Isolation Kit (Beyotime, #C3601, 
China) according to the manufacturer’s instructions. 
Briefly, 5×107 cells were prepared and washed twice 
with pre-cold PBS and centrifuged at 800 g for 5 min 
at 4 °C. Thereafter, cells were homogenized 50 times 
using a homogenizer with the mitochondria isolation 
buffer supplemented with 1 mM protease inhibitor. 
The cell homogenates were then centrifuged at 1000 g 
for 10 min at 4 °C. The supernatant was transferred to 
1.5-mL tubes and further centrifuged at 3500 g for 10 
min at 4 °C. The mitochondria pellet was resuspended 
with the mitochondria storage buffer for further 
analysis. 

Detection of mitochondrial membrane 
potential 

Mitochondrial membrane potential was 
determined using Mitochondrial Membrane Potential 
Assay Kit with JC-1 (Beyotime, #C2006, China). 
Purified mitochondria were mixed with JC-1 buffer 
(1×). Fluorescence intensity was detected with 
Multi-Mode Reader (BioTek) at an excitation of 485 
nm and emission wavelength of 535 nm for JC-1 
monomers and an excitation of 535 nm and emission 
wavelength of 595 nm for J-aggregates. The 
mitochondrial membrane potential was presented as 
the ratio of J-aggregates to monomers. 

Detection of the cellular adenosine 
triphosphate in mitochondria 

ATP levels in mitochondria were detected using 
an ATP Assay Kit (Beyotime, #S0027, China) 
according to the manufactures’ instructions. 100 μL 
ATP working reagent was added to a 96-well plate 
and put at room temperature for 5 min and then 
added with 20 μL of purified mitochondria per-well. 
The ATP levels were tested using a Multi-mode 
reader (BioTek) and calculated according to the 
standard ATP curve. 

Results 
GATA6 knockout re-sensitized resistant cells 
to trastuzumab 

To investigate if GATA6 knockout decreased 
trastuzumab resistance in gastric cancer cells, NCI 
N87R, NCI N87R/∆GATA6, MKN45R and MKN45R/ 
∆GATA6 cells were cultured under indicated 
concentrations of trastuzumab for 72 h. The results 
showed trastuzumab inhibited viability of NCI N87R, 
NCI N87R/∆GATA6, MKN45R and MKN45R/ 
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∆GATA6 cells in a dose-dependent manner, while the 
more distinct inhibitory effects were observed in NCI 
N87R/∆GATA6 and MKN45R/∆GATA6. It reached 
significance from a statistical standpoint at 80 μg/mL 
with cell viability of 90.25% and 81.62% in NCI N87R 
and NCI N87R/∆GATA6, and 160 μg/mL with cell 
viability of 88.98% and 82.37% in MKN45R and 
MKN45R/∆GATA6 cells, respectively (Fig. 1A, B). 
These results demonstrated that GATA6 knockout 
re-sensitized resistant cells to trastuzumab. 

GATA6 knockout inhibited mitochondrial 
function of trastuzumab resistant gastric 
cancer cells 

We also detected the MMP and ATP levels 
between trastuzumab resistant groups and GATA6 
knockout groups, respectively. The results displayed 
a relatively lower levels of ATP and MMP in GATA6 
knockout groups compared to control groups (Fig. 1C, 
D), suggesting that knockout of GATA6 inhibited 
mitochondrial function and affected energy 
metabolism of trastuzumab resistant cells. 

Quality control analysis of mass spectrometric 
data 

To evaluate the quality of the mass spectrometric 
data, pooled QC samples and standard compound 
(2-chloro-L-phenylalanine) were applied to monitor 
the stability of the LC/MS systems and control the 

reproducibility of the sample treatment procedures. 
The results indicated that QC samples were clustered 
tightly in PCA scatter plot (Fig. 2A, E, I, M) with 
relative standard deviations (RSD%) of peak areas 
being 3.24% in positive ionization mode (ESI+) and 
4.79% in negative ionization mode (ESI–), respectively 
(Table S1). PCA-X one-dimensional score plots 
displayed good reproducibility in trastuzumab 
resistant groups and GATA6 knockout groups with 
both positive and negative ion ionization modes 
within ±2 standard deviation (Std), respectively (Fig. 
S1). Moreover, the high correlation (r>0.90) of peak 
areas from QC samples demonstrated a good 
reproducibility (Fig. S2). Clearly, these results 
indicated a satisfactory stability of the data acquisition 
system. 

Metabolomics profiling of trastuzumab 
resistant gastric cancer cells and trastuzumab 
resistant gastric cancer cells with GATA6 
knockout 

To disclose the metabolic behaviors between 
trastuzumab resistant gastric cancer cells with GATA6 
knockout and trastuzumab resistant cells, an 
untargeted metabolomics-based strategy was applied 
to profile the metabolites in ESI+ and ESI–, 
respectively. Total of 3990 and 3894 features were 
detected from NCI N87R/∆GATA6, NCI N87R and 
MKN45R/∆GATA6, MKN45R cells in ESI+, whereas 

 

 
Figure 1. Detection of cell viability and mitochondrial function. (A and B) Cells were incubated with different concentrations of trastuzumab for 72 h, and then cell 
viability was measured by CCK-8 kit. (C) ATP levels were tested using ATP assay Kit. (D) MMPs were detected using Mitochondrial Membrane Potential Assay Kit with JC-1. Six 
independent biological replicates are shown as mean±SEM. *p<0.05, **p<0.01 vs. controls. 
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4335 and 4216 features were obtained in ESI-, 
respectively. These features matched successfully 
with 73 (ESI+) and 68 (ESI–) metabolites in NCI 
N87R/∆GATA6 and NCI N87R cells, along with 66 
(ESI+) and 59 (ESI–) metabolites in MNK45R/ 
∆GATA6 and MKN45R cells and associated with MS2 
scores more than 0.90 (score range: 0.00-1.00). PCA 
was performed at first to discern the presence of 
variable differences in mass spectral profiles between 
trastuzumab resistant groups and GATA6 knockout 
groups in both ion modes. The apparent differences 
indicated intrinsic variations in trastuzumab resistant 
cells with GATA6 knockout versus trastuzumab 
resistant cells (Fig. 2A, E, I, M). Next, a supervised 
OPLS-DA was employed to distinguish the 
differences further as evident from the score plots 
which showed notable separation between different 
groups without overlap (Fig. 2B, F, J, N). The results of 
the OPLS-DA modes were explained by variance R2X 
(0.839 and 0.891 for ESI+, 0.876 and 0.923 for ESI– in 
NCI N87R/∆GATA6 and MKN45R/∆GATA6, 
respectively), R2Y (0.983 and 0.916 for ESI+, 0.990 and 
0.969 for ESI– in NCI N87R/∆GATA6 and MKN45R/ 
∆GATA6, respectively), and predicted variance Q2 
(0.944 and 0.925 for ESI+, 0.962 and 0.946 for ESI– in 
NCI N87R/∆GATA6 and MKN45R/∆GATA6, 
respectively). This indicated the classification models 
had a good explanatory and predictive ability for all 
models. To prevent model overfitting, the validity of 
OPLS-DA models was further analyzed using 200 
iterations permutation tests with intercepts values 
R2=0.836, Q2 =–0.454 (for ESI+), and R2=0.787, Q2=–
0.484 (for ESI–) in NCI N87R/∆GATA6 cells (Fig. 2C 
and G), respectively. Similarly validity in MKN45R/ 
∆GATA6 cells were evaluated with intercepts values 
R2=0.789, Q2=–0.444 (for ESI+), and R2=0.795, Q2=–
0.551 (for ESI–), respectively (Fig. 2K and O). These 
results revealed that OPLS-DA model was reliable 
and not over-fitted. Next, a heatmap was applied to 
visualize the whole metabolome comparison of both 
the groups, which indicated a significant change of 

the metabolome (Fig. S3). 

Identification of differential metabolites 
Based on the OPLS-DA models, VIP-plots were 

explored to analyze critical variables that contributed 
to distinguishing the metabolome between GATA6 
knockout groups and resistant groups in both ion 
modes (Fig. 2D, H, L, P). Those variables with VIP 
value>1 were considered as potential candidates of 
significance. Subsequently, volcano plots were used to 
screen differential metabolite abundances against the 
corresponding p value obtained from unpaired- 
sample t-test (Fig. 4A-D). Differential metabolites 
were confirmed by matching retention time and MS2 
fragmentation patterns (MS2 scores ≥ 0.90) from 
self-built database. Compared with NCI N87R and 
MKN45R cells, the levels of 11 and 22 metabolites 
displayed a more than 1.2 fold increase in NCI N87R/ 
∆GATA6 and MKN45R/∆GATA6 cells (VIP>1 and 
p<0.05), respectively. Similarly, 57 and 37 metabolites 
showed a less than 0.83 fold decrease in NCI 
N87R/∆GATA6 and MKN45R/∆GATA6 cells (VIP>1, 
p<0.05), respectively (Fig. 3A, Tables 1 & 2). A 
hierarchical cluster visualization of differential 
metabolites indicated that majority of metabolites 
sharply decreased in GATA6 knock out groups versus 
resistant groups (Fig. 3B, C). From the Venn diagram, 
it was determined that 47 metabolites overlapped in 
NCI N87R/∆GATA6 and MKN45R/∆GATA6 cells 
(Table S2), however, 22 identified metabolites 
exclusively were of NCI N87R and NCI N87R/ 
∆GATA6 cells (Fig. 3D, Table S3), whereas 12 
metabolites were exclusive of MKN45R and 
MKN45R/∆GATA6 cells (Fig. 3D, Table S4). These 
metabolites were further classified according to their 
properties, including amino acids, amines, organic 
acids, nucleotides, cofactors, carbohydrates and 
others, of which organic acid, amino acid and 
nucleotides accounted for more than half of all 
identified metabolites (Fig. 3E, F). 

 

Table 1. Significantly changed metabolites in NCI N87R/∆GATA6 compared with NCI N87R cells 

No. Name Adduct Observed mass Exact mass Mass error (ppm) RT(s)a VIP valueb FCc p value ESId 
1 Proline [M+H] + 116.0705 115.0633 −6.9 35.42 4.58 0.59 5.74×10-5 + 
2 Cellobiose [M+Na] + 365.1047 342.1162 −1.5 33.79 1.03 8.39 2.76×10-14 + 
3 Choline [M]+ 104.1069 104.1075 −5.8 32.47 2.97 0.40 5.87×10-11 + 
4 5'-Methylthioadenosine [M+H] + 298.0963 297.0896 −4.4 35.84 5.21 0.62 3.67×10-5 + 
5 Adenine [M+H] + 136.0617 135.0545 −5.9 44.45 1.36 0.09 2.69×10-7 + 
6 Creatine [M+H] + 132.0767 131.0695 −6.1 35.70 2.09 0.71 1.36×10-3 + 
7 Thiamine [M]+ 265.1113 265.1123 −3.8 36.48 11.73 0.50 2.51×10-8 + 
8 Guanosine [M+H] + 284.0984 283.0917 -4.6 135.82 1.05 0.21 1.61×10-10 + 
9 Valine [M−H] − 116.0719 117.0789 8.5 35.95 1.75 0.56 6.28×10-6 – 
10 Lysine [M+H] + 147.1127 146.1055 −5.4 28.71 1.35 0.58 3.44×10-8 + 
11 Citrulline [M−H] − 174.0886 175.0957 5.1 31.66 2.75 0.44 4.21×10-9 – 
12 Pyroglutamic acid [M+H] + 130.0498 129.0425 −5.4 91.95 1.29 0.24 6.72×10-11 + 
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No. Name Adduct Observed mass Exact mass Mass error (ppm) RT(s)a VIP valueb FCc p value ESId 
13 Histidine [M+H] + 156.0767 155.0695 −5.1 30.32 1.01 0.39 6.43×10-10 + 
14 GMP [M+H] + 364.0644 363.0579 −4.1 56.79 1.53 2.84 3.11×10-9 + 
15 Glutamic acid [M+H] + 148.0603 147.0532 −6.1 32.34 1.57 0.51 3.97×10-6 + 
16 Taurine [M+H] + 126.0219 125.0147 −6.4 31.12 1.39 0.58 1.16×10-6 + 
17 Citicoline [M+H] + 489.1135 488.1073 −3.6 35.33 1.09 0.20 1.49×10-8 + 
18 Pantothenic acid [M−H] − 218.1036 219.1107 4.1 44.69 2.98 0.11 1.29×10-7 – 
19 Niacinamide [M+H] + 123.0552 122.0480 −6.5 40.89 1.44 0.74 6.37×10-3 + 
20 Acetylcarnitine [M+H] + 204.1229 203.1157 −3.9 56.96 2.19 0.76 3.95×10-2 + 
21 Phosphorylcholine [M]+ 184.0732 184.0738 −3.2 56.18 1.89 0.57 9.40×10-4 + 
22 Glycerophosphocholine [M+H] + 258.1098 257.1028 -3.9 31.77 1.17 0.49 2.22×10-6 + 
23 Palmitoylethanolamide [M+H] + 300.2892 299.2824 −4.0 480.69 4.38 0.33 4.47×10-8 + 
24 Carnitine [M+H] + 162.1123 161.1052 -5.6 34.33 1.12 0.76 1.41×10-2 + 
25 S-Adenosylmethionine [M]+ 399.1437 399.1451 −3.5 36.27 1.19 0.53 1.56×10-4 + 
26 Tyrosine [M−H] − 180.0669 181.0739 5.5 56.96 2.17 0.42 7.40×10-7 – 
27 Propionylcarnitine [M+H] + 218.1384 217.1314 −4.6 133.78 1.24 0.32 4.16×10-7 + 
28 Cysteinylglycine [M+H] + 179.0484 178.0412 −4.5 44.91 1.51 0.32 2.55×10-5 + 
29 NAD [M+H] + 664.1149 663.1091 −3.3 56.79 2.40 0.46 3.45×10-6 + 
30 2-Methylbutyroylcarnitine [M+H] + 246.1697 245.1627 −4.1 196.15 1.63 0.64 1.82×10-3 + 
31 Guanine [M+H] + 152.0566 151.0494 −5.3 135.84 2.84 0.22 9.57×10-11 + 
32 Palmitoylcarnitine [M+H] + 400.3412 399.3349 −4.2 613.81 5.53 0.65 2.32×10-2 + 
33 N-Acetyl-L-aspartic acid [M−H] − 174.0409 175.0481 4.6 25.90 1.30 0.42 2.25×10-9 – 
34 Tetradecanoylcarnitine [M+H] + 372.3101 371.3036 −4.0 541.29 2.47 0.31 4.31×10-9 + 
35 4-Trimethylammoniobutanoic acid [M+H] + 146.1175 145.1103 −5.5 177.67 1.27 0.78 2.43×10-5 + 
36 Glutamine [M+H] + 147.0763 146.0691 −5.5 31.57 4.17 0.10 1.60×10-14 + 
37 Adenosine [M+H] + 268.1036 267.0968 −4.5 135.80 1.02 0.02 2.62×10-11 + 
38 Sphinganine [M+H] + 302.3047 301.2980 −4.3 534.68 1.97 2.94 4.67×10-7 + 
39 Elaidic carnitine [M+H] + 426.3569 425.3505 −3.8 645.00 1.49 0.79 4.41×10-4 + 
40 Xanthine [M−H] − 151.0263 152.0334 5.9 58.40 1.64 0.34 1.79×10-3 – 
41 Stearic acid [M−H] − 283.2645 284.2715 3.5 547.56 2.97 0.64 4.31×10-6 – 
42 Phosphoenolpyruvic acid [M−H] − 166.9752 167.9823 5.4 24.85 1.30 0.18 1.63×10-10 – 
43 Citric/Isocitric acid [M−H] − 191.0199 192.0270 4.7 25.72 2.46 0.64 1.75×10-3 – 
44 Malic acid [M−H] − 133.0144 134.0215 6.7 25.33 2.22 0.59 1.44×10-6 – 
45 Glutathione [M−H] − 306.0745 307.0838 −4.2 26.62 1.25 0.69 2.02×10-2 – 
46 Palmitoleic acid [M−H] − 253.2176 254.2245 4.3 452.15 2.16 1.62 5.51×10-5 – 
47 Glyceric acid [M−H] − 105.0194 106.0266 7.5 27.38 1.10 0.09 3.80×10-11 – 
48 Mannose 1-phosphate [M−H] − 259.0226 260.0297 3.4 25.72 1.26 0.52 1.94×10-4 – 
49 Dihydroxyacetone phosphate [M−H] − 168.9909 169.9980 5.3 26.00 1.25 0.49 3.76×10-7 – 
50 Phosphoric acid [M−H] − 96.9697 97.9769 8.2 26.94 1.88 0.52 5.17×10-10 – 
51 Inosine [M−H] − 267.0738 268.0808 3.7 133.96 1.57 0.08 2.83×10-11 – 
52 Phenylalanine [M−H] − 164.0719 165.0789 6.1 138.26 1.51 0.51 9.47×10-7 – 
53 Eicosenoic acid [M−H] − 309.2802 310.2871 3.5 553.02 1.33 0.39 1.34×10-10 – 
54 3-Phosphoglyceric acid [M−H] − 184.9858 185.9929 4.9 25.46 1.44 0.08 2.54×10-8 – 
55 UDP Galactose [M−H] − 565.0484 566.0550 2.5 26.29 1.63 1.59 1.99×10-3 – 
56 Threonine [M−H] − 118.0512 119.0582 8.4 31.39 1.02 0.50 1.09×10-6 – 
57 Alanine [M−H] − 88.0404 89.0476 9.0 44.24 1.28 8.18 1.22×10-7 – 
58 Norleucine [M−H] − 130.0875 131.0946 6.9 56.43 1.59 0.47 5.26×10-7 – 
59 Uridine 5'-diphosphate [M−H] − 402.9955 404.0021 3.4 33.92 1.54 1.88 3.37×10-5 – 
60 Pyruvic acid [M−H] − 87.0087 88.0160 7.9 30.59 1.92 0.63 2.29×10-2 – 
61 Orotidine [M−H] − 287.0524 288.0594 3.5 30.02 1.75 0.67 2.52×10-3 – 
62 CMP N-acetylneuraminic acid [M−H] − 613.1405 614.1473 1.9 26.01 2.03 0.53 2.07×10-5 – 
63 UDP glucuronic acid [M−H] − 579.0277 580.0343 2.4 23.59 2.64 2.89 1.55×10-5 – 
64 N-Acetylneuraminic acid [M−H] − 308.0990 309.1059 3.6 28.03 1.98 1.75 5.51×10-6 – 
65 UDP-N-acetylglucosamine [M−H] − 606.0751 607.0815 2.6 27.07 3.06 6.12 1.28×10-8 – 
66 Cholesterol sulfate [M−H] − 465.3048 466.3116 2.6 446.27 1.57 1.27 7.72×10-5 – 
67 Fumaric acid [M−H] − 115.0038 116.0109 7.8 25.15 2.26 0.54 1.84×10-7 – 
68 Gluconic acid [M−H] − 195.0512 196.0583 4.6 27.64 2.49 0.34 4.36×10-5 – 
a. RT, retention time; b. VIP, variable importance in projection; c. FC, fold change (NCI N87R/∆GATA6 vs. NCI N87R); d. ESI, electrospray ionization. 

 

Metabolic pathways analysis 
To better understand the underlying 

mechanisms of trastuzumab resistance attenuated by 
GATA6 knockout in gastric cancer cells, all 
differential metabolites in NCI N87R/∆GATA6 and 
MKN45R/∆GATA6 cells were imported into 

MetaboAnalyst (version 4.0) for metabolic analysis, 
respectively. Accordingly, the pathway library of 
Homo sapiens and Fisher’s exact test were applied for 
pathway enrichment analysis, and relative- 
betweeness centrality was performed for pathway 
topology analysis based on reported protocols [17]. 
The pathway impact values were calculated using 
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cumulative percentage according to matched 
metabolites, and p values were acquired by 
enrichment analysis based on false FDR. The 
influenced metabolic pathways were set as pathway 
impact values more than 0.10 and p value less than 
0.05. According to the p and pathway impact values, 
ten metabolic pathways were observed in NCI 
N87R/∆GATA6 cells (Fig. 4A, Table 3). Among them, 
three pathways were involved in carbohydrate 
metabolism: (I) citrate cycle, (II) amino sugar and 
nucleotide sugar metabolism and (III) glycolysis. Four 
pathways were related to amino acid metabolism: (I) 
glutamine and glutamate, (II) arginine biosynthesis, 
(III) arginine and proline and (IV) alanine, aspartate 
and glutamate metabolism. Moreover, one pathway 
was subjected to lipid metabolism which involved 
glycerophospholipid metabolism. We also found that 
purine metabolism was particularly altered but 
possessed a low impact value (p=0.004, pathway 
impact value=0.101). Notably, among these pathways, 
alanine, aspartate and glutamate metabolism 
displayed the lowest p value (p=9.71×10-5), whereas 
glutamine and glutamate metabolism showed highest 
pathway impact value (pathway impact value=0.50). 
Correspondingly, seven pathways showed prominent 
changes in MKN45R/∆GATA6 cells compared to 
MKN45R cells (Fig. 4B, Table 4). Out of which, three 
metabolic pathways were relevant to carbohydrate 
metabolism pathways: (I) glycolysis, (II) amino sugar 
and nucleotide sugar metabolism, and (III) TCA cycle. 
Two pathways were part of amino acid metabolism: 
(I) arginine biosynthesis, and (II) alanine, aspartate 
and glutamate metabolism. Similarly, glycerophos-
pholipid metabolism was also observed in MKN45R/ 
∆GATA6 cells. In contrast, rather than purine 

metabolism, pyrimidine metabolism showed a 
significant change solely in MKN45R/∆GATA6 cells. 
Apparently, as it can be interpreted from the Venn 
diagram, six disturbed metabolic pathways were 
shared by both NCI N87R/∆GATA6 and MKN45R/ 
∆GATA6 cells, accounting for 54.54% of all pathways 
altered in these two groups. These pathways include 
(I) alanine, aspartate and glutamate metabolism, (II) 
amino sugar and nucleotide sugar metabolism, (III) 
arginine biosynthesis, (IV) glycerophospholipid 
metabolism, (V) glycolysis, and (VI) TCA cycle (Fig. 
4C). Conversely, some pathways exhibited distinct 
characteristics as a result of pyrimidine metabolism 
which was noticeably changed in MKN45R/∆GATA6 
cells. However, some pathways such as glyoxylate 
and dicarboxylate metabolism along with arginine 
and proline metabolism occurred exclusively in NCI 
N87R/∆GATA6 cells (Fig. 4C). Next, KEGG database 
(version 89.1) was employed to portray integrated 
metabolic pathway map to reveal the most relevant 
metabolic pathways and their potential functions in 
GATA6 knock out groups based on pathway 
enrichment and topology analysis. The results were 
presented manually by drawing united metabolic 
pathway networks (Figs. 5 & 6). Noticeably, all 
metabolic pathways were strongly associated with 
those related to energy metabolism such as TCA cycle, 
amino acid metabolism, glycolysis and nucleotide 
metabolism, indicating that GATA6 modulate the 
energy metabolism by regulating various metabolic 
pathways. Collectively, these disturbed metabolic 
pathways have afforded a deep insight of the 
mechanisms involved in trastuzumab resistance of 
gastric cancer cells. 

 

Table 2. Significantly changed metabolites in MKN45R/∆GATA6 compared with MKN45R cells 

No. Name Adduct Observed mass Exact mass Mass error (ppm) RT (s)a VIP valueb FCc p value ESId 
1 5'-methylthioadenosine [M+H] + 298.0963 297.0895 −4.0 35.84 2.25 0.70 3.73×10-5 + 
2 Adenine [M+H] + 136.0617 135.0545 −5.9 44.44 15.42 0.45 1.73×10-8 + 
3 Creatine [M+H] + 132.0767 131.0695 −6.1 35.70 2.78 0.73 2.81×10-5 + 
4 Guanosine [M+H] + 284.0984 283.0917 −4.6 135.82 7.96 0.16 2.38×10-12 + 
5 Niacinamide [M+H] + 123.0552 122.0480 −6.6 59.26 3.15 0.62 7.93×10-5 + 
6 Pyroglutamic acid [M+H] + 130.0498 129.0425 −5.4 31.94 3.84 1.76 5.57×10-12 + 
7 Histidine [M+H] + 156.0767 155.0695 −5.2 30.31 1.79 1.52 1.91×10-9 + 
8 Citicoline [M+H] + 489.1135 488.1073 −3.7 35.33 1.36 0.62 2.02×10-6 + 
9 Nicotinamide [M+H] + 123.0552 122.0480 −6.6 40.88 2.39 0.76 0.02 + 
10 Acetylcarnitine [M+H] + 204.1229 203.1157 −3.9 56.95 2.78 0.61 2.79×10-5 + 
11 Phosphorylcholine [M]+ 184.0732 184.0738 −3.3 56.18 1.86 0.50 1.09×10-7 + 
12 Glycerophosphocholine [M+H] + 258.1098 257.1028 −3.9 31.76 3.14 0.76 1.74E-5 + 
13 Palmitoylethanolamide [M+H] + 300.2892 299.2824 −4.0 480.69 1.67 1.71 3.47×10-9 + 
14 Carnitine [M+H] + 162.1123 161.1052 −5.6 34.32 1.75 0.58 2.22×10-8 + 
15 S-Adenosylmethionine [M]+ 399.1437 399.1451 −3.5 36.27 1.70 0.58 4.07×10-7 + 
16 Tyrosine [M+H] + 182.0811 181.0739 −4.4 70.53 1.08 1.28 0.002 + 
17 Propionylcarnitine [M+H] + 218.1384 217.1314 −4.6 133.77 2.23 0.62 1.62×10-6 + 
18 Cysteinylglycine [M+H] + 179.0484 178.0412 −4.5 44.90 5.83 0.59 1.99×10-7 + 
19 2-Methylbutyroylcarnitine [M+H] + 246.1697 245.1627 -4.1 196.15 1.46 0.46 1.20×10-8 + 
20 Guanine [M+H] + 152.0566 151.0494 −5.3 135.83 2.94 0.18 2.53×10-13 + 
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No. Name Adduct Observed mass Exact mass Mass error (ppm) RT (s)a VIP valueb FCc p value ESId 
21 Lauryl diethanolamide [M+H] + 288.2529 287.2460 −3.8 379.18 2.05 1.43 3.37×10-5 + 
22 Tetradecanoylcarnitine [M+H] + 372.31 371.3036 −4.3 541.29 1.07 0.07 5.93×10-11 + 
23 Glutamine [M+H] + 147.0763 146.0691 −5.5 31.566 7.06 0.08 8.91×10-15 + 
24 PC (14:0/16:0) [M+H] + 706.5376 705.5308 −1.7 380.78 1.72 0.71 5.03×10-3 + 
25 Adenosine [M+H] + 268.1036 267.0968 −4.5 135.79 2.32 0.09 9.63×10-12 + 
26 Sphinganine [M+H] + 302.3047 301.2980 −4.3 534.68 2.06 0.72 1.02×10-2 + 
27 LysoPE (16:0/0:0) [M+H] + 454.2919 453.2855 −3.5 416.32 1.35 1.53 2.87×10-7 + 
28 LysoPE (18:1(11Z)/0:0) [M+H] + 480.3076 479.3012 −3.3 428.31 1.16 1.28 3.1×10-2 + 
29 Citric/Isocitric acid [M−H] − 191.0199 192.0270 4.7 27.65 2.58 0.68 2.04×10-5 – 
30 Xanthine [M−H] − 151.0263 152.0334 5.9 58.40 4.10 0.52 8.04×10-3 – 
31 Phosphoenolpyruvic acid [M−H] − 166.9752 167.9823 5.4 24.84 1.50 0.23 6.66×10-8 – 
32 Malic acid [M−H] − 133.0144 134.0215 6.7 25.33 3.12 0.78 4.22×10-6 – 
33 Eicosadienoic Acid [M−H] − 307.2646 308.2715 3.6 517.33 2.52 1.59 0.02 – 
34 Glyceric acid [M−H] − 105.0194 106.0266 7.5 27.37 4.40 2.74 1.14×10-11 – 
35 Mannose 1-phosphate [M−H] − 259.0226 260.0297 3.5 25.72 9.64 1.45 2.10×10-3 – 
36 Dihydroxyacetone phosphate [M−H] − 168.9909 169.9980 5.3 26.00 2.31 0.57 6.37×10-5 – 
37 Inosine [M−H] − 267.0738 268.0808 3.7 133.96 7.21 0.45 1.03×10-3 – 
38 N-Acetyl-L-aspartic acid [M−H] − 174.0409 175.0481 4.6 25.90 2.26 0.69 9.48×10-9 – 
39 Pantothenic Acid [M−H] − 218.1036 219.1107 4.1 44.68 2.10 0.63 7.28×10-6 – 
40 Uridine 5'-monophosphate [M−H] − 323.0288 324.0358 3.1 29.44 9.26 1.90 0.01 – 
41 Eicosenoic acid [M−H] − 309.2802 310.2872 3.2 553.01 1.65 1.43 0.02 – 
42 3-Phosphoglyceric acid [M−H] − 184.9858 185.9929 4.9 25.46 2.12 0.16 2.06×10-9 – 
43 Glyceraldehyde [M−H] − 89.0245 90.0316 10 28.46 1.49 0.75 1.12×10-4 – 
44 UDP-galactose [M−H] − 565.0484 566.0550 2.5 26.29 1.01 1.55 6.48×10-5 – 
45 Threonine [M−H] − 118.0512 119.0582 8.4 31.39 4.74 1.28 8.37×10-5 – 
46 Eicosapentaenoic Acid [M−H] − 301.2176 302.2245 3.6 432.09 4.45 1.65 1.51×10-6 – 
47 ADP [M−H] − 426.0227 427.0294 3.0 41.64 2.07 0.57 2.37×10-5 – 
48 Alanine [M−H] − 88.0404 89.0476 9.0 44.24 1.88 1.42 1.49×10-5 – 
49 Uridine 5'-diphosphate [M−H] − 402.9955 404.0022 3.2 33.92 1.74 2.13 5.0×10-4 – 
50 Arachidonic acid [M−H] − 303.2333 304.2402 3.6 462.07 4.68 1.67 3.67×10-7 – 
51 Orotidine [M−H] − 287.0524 288.0594 3.5 30.01 5.26 0.57 1.03×10-5 – 
52 CMP N-acetylneuraminic acid [M−H] − 613.1405 614.1473 1.9 26.00 1.97 0.70 1.57×10-5 – 
53 UDP glucuronic acid [M−H] − 579.0277 580.0343 2.4 23.58 1.23 2.34 4.93×10-9 – 
54 N-Acetylneuraminic acid [M−H] − 308.0990 309.1059 3.6 28.02 1.88 1.65 1.40×10-9 – 
55 UDP-N-acetylglucosamine [M−H] − 606.0751 607.0815 2.6 27.06 3.17 1.86 8.43×10-10 – 
56 Uracil [M−H] − 111.0201 112.0273 7.1 31.07 6.44 0.59 0.003 – 
57 Fumaric acid [M−H] − 115.0038 116.0109 7.8 25.14 2.15 1.24 1.74×10-6 – 
58 Gluconic acid [M−H] − 195.0512 196.0583 4.6 27.64 3.73 1.29 0.001 – 
59 Citrulline [M−H] − 174.0886 175.0956 5.7 31.65 1.44 0.71 0.002 – 
a. RT, retention time; b. VIP, variable importance in projection; c. FC, fold change (MKN45R/∆GATA6 vs. MKN45R); d. ESI, electrospray ionization. 

 
 

Table 3. Ten prominent metabolic pathways enriched via 
MetaboAnalyst based on differential metabolites identified in NCI 
N87R/ 
∆GATA6 vs. NCI N87R cells 

No. Pathway name Hits/ 
Total 

p values Pathway 
impact values 

1 Alanine, aspartate and glutamate 
metabolism 

7/28 9.71×10-5 0.399 

2 Arginine biosynthesis 4/14 2.06×10-3 0.345 
3 Purine metabolism 8/65 4.65×10-3 0.101 
4 TCA cycle 4/20 8.22×10-3 0.166 
5 Glyoxylate and dicarboxylate metabolism 5/32 9.29×10-3 0.111 
6 Glycerophospholipid metabolism 5/36 1.53×10-2 0.121 
7 Amino sugar and nucleotide sugar 

metabolism 
5/37 1.71×10-2 0.139 

8 Arginine and proline metabolism 5/38 1.91×10-2 0.176 
9 Glutamine and glutamate metabolism 2/6 2.33×10-2 0.50 
10 Glycolysis 4/26 2.21×10-2 0.206 

 

Integrated analysis of metabolomics and 
proteomics 

To further unveil the potential metabolism- 

related mechanisms responsible for GATA6-mediated 
trastuzumab resistance, we constructed an integrated 
metabolite-protein regulatory network from 
differential metabolites and target genes based on the 
OmicsNet (version 1.0) [18], from which the results 
were annotated using a visual network diagram (Fig. 
7). We observed that fifteen crucial differential 
metabolites were closely related to TCA cycle, energy 
metabolism and nucleotide metabolism, including 
phosphoenolpyruvate, citrate/isocitrate, fumarate, 
pyruvate, glutamate, glutamine, 3-phosphoglyceric 
acid (3-PG), glycerate, adenine, guanine, xanthine, 
GMP, guanosine, adenosine and inosine. Phospho-
enolpyruvate, which is involved in glycolysis and 
gluconeogenesis, exhibited a dramatic decrease in 
both NCI N87R/∆GATA6 and MKN45R/∆GATA6 
cells. Furthermore, integrated data showed that phos-
phoenolpyruvate was regulated by nine molecules 
including PCK2, ENO1, NANS, ENO3, PKM, PKLR, 
ENO4, PCK1 and ENO2. Among them, PCK2 and 
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NANS were increased, whereas conversely, ENO1, 
ENO3, PKM and PKLR were decreased in NCI 
N87R/∆GATA6 cells. Similarly, thirty target proteins 
regulate pyruvate, another key intermediate 
metabolite in carbohydrate, protein and fat 
metabolism that regulates sugar metabolism out of 
which PKLR, PKM, DLAT, LDHA and ME2 were 
downregulated while PDHB, PDHA1 were 
upregulated in NCI N87R/∆GATA6 cells. We also 
noticed that RKLR and PKM were co-regulatory 
molecules in pyruvate-phosphoenolpyruvate sub- 
network. Similarly, fumarate, a precursor to L-malate 
in TCA cycle, which is converted by the enzyme 
fumarase to malate, was regulated by SDHB, SDHA, 
FAH, ADSL, FH, SDHAF2, ASL and FAHD1. From 
these molecules only ASL displayed an obvious up- 
regulation, whereas, SDHAF2 showed a distinct 
down-regulation in NCI N87R/∆GATA6 cells. 
Additionally, we observed that five different 
molecules regulated citrate with only ACO2 showing 
significant down-regulation whereas no significant 
changes occurred in the expression of CS, ACO1, 
ACLY and RIMKLB in NCI N87R/∆GATA6 cells, 
indicating that ACO2 plays a major role in regulating 
citrate. Moreover, we noticed that 3-PG, which is a 
significant metabolic intermediate in both glycolysis 
and TCA cycle, reduced sharply in GATA6 knock out 
cells. It was regulated by some typical molecules 
including ACP1, PDP1, GNPAT, ALDOA, ALDOC, 
ALDH2, ALDH1B1 and ME2, which were all altered 
significantly. Meanwhile, we found eight different 
molecules modulated glycerate, out of which ALDH2, 
ALDH1B1 and ME2 showed prominent down- 
regulation in NCI N87R/∆GATA6 cells. According to 
the sub-network, we also observed that ME2 is a 
co-regulatory molecule of pyruvate, 3-PG and 
glycerate. Besides, when compared with NCI N87R 
cells, our data revealed some factors that regulate 
glutamate and glutamine. GLUD1, GGH, ALDH18A1, 
ALDH4A1, GMPS and CAD displayed a prominent 
up regulation, in contrast, GCLC, GOT1, GOT2, 
PSAT1, CTPS2, GFPT1, GLS and GLUL showed 
dramatic down regulation in NCI N87R/∆GATA6 
cells. Several molecules, which regulate adenine, 
guanine, xanthine, GMP, guanosine, adenosine and 
inosine, were also changed dramatically in which 
AHCYL1 and DCK were decreased, while MTAP, 
GDA, HPRT1, APRT, PNP and ADA were increased 
instead (Fig. 7). Next, we employed the STRING 
database (version 11.0) to construct interactive 
networks of activated transcription factors in NCI 
N87R/∆GATA6 cells, whose interactions have high 
confidence with scores more than 0.70 [19]. We 
noticed that PKM and PKLR represented primary 
hubs in regulating TCA cycle, glycolysis and energy 

metabolism, GLUL and GLS displayed another center 
in regulating amino acid metabolism, and APRT 
represented a main hub in regulating nucleotide 
metabolism (Fig. 8A). Quantification of these 
transcription factors using proteomics are shown in 
Fig. 8B. Thereafter, we confirmed the expression 
alteration of PKM, GLS1, GLUL and LDHA in NCI 
N87R/∆GATA6 and MKN45R/∆GATA6 cells using 
western blotting, and consistent with our mass 
spectrometry data, a remarkable down regulation of 
PKM, GLUL, GLS1 and LDHA were observed in 
GATA6 knock out groups as compared to their 
resistant groups (Fig. 8C, D). 

 

Table 4. Seven prominent metabolic pathways enriched via 
MetaboAnalyst based on differential metabolites identified in 
MKN45R/∆GATA6 vs. MKN45R cells 

No. Pathway name Hits/Total p values Pathway 
impact values 

1 Alanine, aspartate and glutamate 
metabolism 

4/28 1.27×10-2 0.203 

2 Arginine biosynthesis 3/14 9.98×10-3 0.228 
3 Pyrimidine metabolism 5/65 8.47×10-3 0.270 
4 TCA cycle 3/20 2.43×10-2 0.129 
5 Glycerophospholipid metabolism 5/36 5.98×10-3 0.190 
6 Amino sugar and nucleotide sugar 

metabolism 
5/37 6.75×10-3 0.139 

7 Glycolysis 3/26 3.16×10-2 0.106 

 

Discussion 
TCA cycle, considered as the central hub for 

supervision of energy metabolism for cancer cells, 
contributes to constant supply of energy for synthesis 
of proteins, lipid and nucleic acids. Abnormal TCA 
cycle is involved in several biological processes of 
cancer cells including aberrant metabolism [20]. Our 
results showed that TCA cycle was suppressed and 
led to abnormal energy metabolism as evidenced by a 
distinct decrease in fumarate, malate and 
citrate/isocitrate in GATA6 knock out cells (Figs. S5, 
S6). It is worth noting that relatively lower levels of 
ATP and MMP were observed in GATA6 knockout 
groups compared to trastuzumab resistant groups 
(Fig. 1C, D). Furthermore, proteomics data displayed 
that expression of mitochondrial aconitase (ACO2), 
which is an important regulatory enzyme of the TCA 
cycle, was significantly downregulated in NCI N87R/ 
∆GATA6 cells. Similarly, succinate dehydrogenase 
assembly factor 2 (SDHAF2), which is a component of 
both the TCA cycle and the mitochondrial electron 
transport chain, was also decreased in NCI N87R/ 
∆GATA6 cells when compared with NCI N87R cells. 
It is well-known that NAD-dependent malic enzyme 
(ME2) plays a key role in the malate/aspartate shuttle 
across the mitochondrial membrane involving 
regulation of redox balance, cellular energy and 
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biosynthesis of molecules. Various studies have 
demonstrated that ME2 overexpression is associated 
with cell migration and invasion, whereas low 
expression of ME2 leads to a decrease in synthesis 
efficiency of DNA, thereby ultimately causing cancer 
cells apoptosis [21, 22]. The present study showed that 
GATA6 knockout resulted in the down-regulation of 

ME2 in trastuzumab resistant gastric cancer cells, 
which in turn reduced ATP production and ultimately 
inhibited the proliferation of cells. Taken together, 
these results suggest that GATA6 contributes to 
trastuzumab resistance, which is dependent on TCA 
cycle and mitochondrial function in gastric cancer. 

 

 
Figure 2. Differential metabolomics profiling between NCI N87R and NCI N87R/∆GATA6, MKN45R and MKN45R/∆GATA6 cells. (A, E, I, M) PCA score plots of NCI 
N87R/∆GATA6 and NCI N87R cells, MKN45R/∆GATA6 and MKN45R cells in ESI+ and ESI–, respectively. (B, F, J, N) OPLS-DA score plots of NCI N87R/∆GATA6 and NCI 
N87R cells, MKN45R/∆GATA6 and MKN45R cells in ESI+ and ESI–, respectively. (C, G, K, O) Permutation test plots of NCI N87R/∆GATA6 and NCI N87R cells, 
MKN45R/∆GATA6 and MKN45R cells in ESI+ and ESI–, respectively. (D, H, L, P), VIP plots of NCI N87R/∆GATA6 and NCI N87R cells, MKN45R/∆GATA6 and MKN45R cells 
in ESI+ and ESI– respectively, red nodes represent corresponding variables with VIP > 1.0 in each group. 
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Figure 3. Analysis of differential metabolites between GATA6 knock out groups vs. trastuzumab resistant groups. (A) Increased and decreased metabolites in NCI 
N87R/∆GATA6 and MKN45R/∆GATA6 cells. (B, C) Heat map visualization of differential metabolites. Each row represents a metabolite and each column represents a sample. 
The color scale with red and blue intensity denotes increased and decreased metabolites, respectively. (D) Venn diagram shows the shared and non-shared metabolites among 
NCI N87R/∆GATA6, NCI N87R cells, MKN45R/∆GATA6 and MKN45R cells. (E, F) Classification of differential metabolites by their properties. 

 
Cancer cells have higher rate of glycolysis than 

normal cells in order to generate more ATP for 
metabolic activities, which is a hallmark of cancer 
termed as “Warburg effect” and has been widely 
accepted as a common feature of metabolic 
reprogramming [23]. Increasing body of evidence has 
revealed that inhibition of glycolysis in cancer cells is 
an effective approach to overcome multidrug 
resistance related to mitochondrial respiratory defect 
and hypoxia [24]. Multiple molecules involved in 
glycolysis have been reported to be associated to 
HER-2 signaling pathway in cancer cells, such as 
lactate dehydrogenase A (LDHA), a key enzyme in 
the glycolytic pathway, the level of which is facilitated 
by overexpression of HER-2 which further enhances 
the utilization of glucose and decreases the 

consumption of oxygen in breast cancer cells [25]. 
Accordingly, inhibition of LDHA activity 
compromised the tumorigenesis and proliferation of 
HER-2 initiated cancer cells [26]. Moreover, the high 
level of glutamine synthetase (GLUL) was positively 
correlated with the expression of HER-2 and 
proliferation of cancer cell [27]. Of note, reduced 
glucose uptake and hexokinase activity were also 
observed in HER-2 positive breast cancer cells 
following treatment with trastuzumab [28]. However, 
present studies are mainly focused on the interplay 
between HER-2 and glycolysis in the initiation and 
progression of breast cancers. Hence, the role of 
HER-2 signaling in the aberrant glucose metabolism 
of gastric cancer remains to be elucidated. 



Int. J. Med. Sci. 2020, Vol. 17 
 

 
http://www.medsci.org 

3158 

 
Figure 4. Pathway enrichment analysis corresponding to the differential metabolites via MetaboAnalyst in (A) NCI N87/∆GATA6 and NCI N87R, (B) MKN45/∆GATA6 and 
MKN45R cells. x-axis represents the pathway impact value of topological analysis. Size of the nodes shows the number of matched metabolites, color of the nodes indicates p 
value of the enrichment analysis. 

 
In this study, we found that some key 

metabolites related to glycolysis showed a dramatic 
decrease in GATA6 knockout groups, including 
dihydroxyacetone (DHAP), G3P, phosphoenol-
pyruvate (PEP), and pyruvic acid (Figs. S5, S6), 
suggesting that GATA6 is one of the key factors in the 
regulation of glycolysis in trastuzumab resistant 
gastric cancer cells. Pyruvate kinase M (PKM) is 
known to be an important rate-limiting enzyme of the 
glycolytic pathway, which catalyzes the conversion of 
PEP and adenosine diphosphate (ADP) into pyruvate 
and ATP. A previous study has suggested that low 
level of GATA6 triggers glycolysis by activating PKM 
in hepatocellular carcinoma [29]. However, unlike the 
above study, our data showed that GATA6 knockout 
caused down-regulation of PKM and inhibition of 
glycolysis. This discrimination might be due to the 
different cell type (hepatocellular carcinoma vs. 
gastric cancer). However, other molecular 
mechanisms should also be taken into account. 
Knockdown of LDHA in tumor cells induces 
increased mitochondrial respiration, decreased 

proliferation and suppressed tumorigenicity [30]. 
Previous study showed that LDHA has a relatively 
higher expression in paclitaxel-resistant than 
paclitaxel- sensitive breast cancer cells, and 
down-regulation of LDHA can re-sensitizes resistant 
cells to paclitaxel again [31]. In consistency with this 
study, we also found that GATA6 knockout led to 
decrease of LDHA, and subsequently glycolysis was 
further inhibited in NCI N87R/∆GATA6 and 
MKN45R/∆GATA6 cells. Collectively, it might 
suggest that GATA6 confers glycolysis by regulating 
glycolytic related kinase activity and expression. 
Moreover, we found that amino sugar and nucleotide 
sugar metabolism was promoted due to increased 
uridine 5’-diphosphate-galactose (UDP-galactose), 
uridine diphosphate-N-acetylglucosamine (UDP- 
GlcNAc), N-acetylneuraminic acid (UDP-Neu5Ac), 
uridine diphosphate (UDP) and UDP-glucuronate 
levels in the cells with GATA6 knock out. We propose 
that this might be an alternative mechanism of 
GATA6 knock out cells, primarily activating the 
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amino sugar and nucleotide sugar metabolism to 
compensate for the inhibited glycolytic pathway for 
acquiring necessary energy and nutrients. 

Mounting evidence has shed light on the 
important roles of amino acids in metabolism of 
cancer cells [32]. It is known that glutamate is a 
nitrogen donor for synthesizing some nitrogenous 
compounds in cancer cells. Glutamine is a major 
amino acid that drives the TCA cycle to sustain 
mitochondrial ATP production in cancer cells [33]. 

The utilization of glutamine decreased drastically 
when the cells were under hypoxia or with 
mitochondrial dysfunction [34]. Proline is a source of 
carbon exchange between TCA cycle and urea cycle. 
Arginine serves as the precursor to proline or as an 
additional source of glutamate. Our results 
demonstrated lower levels of glutamine, glutamate, 
N-acetyl-aspartate, citrulline and proline while higher 
levels of alanine, tyrosine, and phenylalanine in 
trastuzumab resistant cells with GATA6 knockout 

 

 
Figure 5. Network analysis of significantly changed metabolic pathways. Ten pathways disturbed in NCI N87R/∆GATA6 cells were analyzed. Each hexagon represents a 
metabolite, brown and blue ones represent 1.2 fold increase or decrease in NCI N87R/∆GATA6 cells respectively. Dashed box indicates different metabolic pathways. Solid 
arrows show single-step metabolism, and dotted arrows show multiple-step metabolism. 
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compared with trastuzumab resistant gastric cancer 
cells, suggesting that GATA6 plays an important role 
in amino acid metabolisms of trastuzumab resistant 
gastric cancer cells. Of note, these altered metabolites 
belong to glutamate and glutamine metabolism, 
alanine, aspartate and glutamate metabolism, 
arginine and proline metabolism, and arginine 
biosynthesis (Tables 3 & 4). Furthermore, we analyzed 
two critical enzymes regulating glutamine and 
glutamate. Aspartate aminotransferase (GOT1/2), 
important regulators of levels of glutamate which 
contributes to glucose synthesis and gluconeogenesis, 
have been found to be upregulated in various tumor 
cells [35]. Moreover, in colorectal cancer cell, 
inhibition of GOT1 activity increases the sensitivity to 
5-fluorouracil [36]. Our study showed that GOT1 and 
GOT2 were decreased in trastuzumab resistant gastric 
cancer cells with GATA6 knockout, suggesting that 
GATA6 maintains basal expression of GOT1 and 

GOT2. Glutaminase (GLS), which catalyzes the 
transformation of glutamine to glutamate, is regarded 
as another critical enzyme in growth and proliferation 
of cancer cells. A prior study has shown that silencing 
of GLS leads to re-sensitization of taxol-resistant 
breast cancer, suggesting its key role in taxol- 
resistance [37]. Consistently, we found that GATA6 
knockout resulted in decreased expression of GLS and 
thereupon disturbed glutamate and glutamine 
metabolism in trastuzumab resistant gastric cancer 
cells. Furthermore, several amino acid metabolic 
pathways were altered in NCI N87R/∆GATA6 cells 
including arginine and proline metabolism and 
arginine biosynthesis. Collectively, we speculated that 
GATA6 regulates multiple amino acid metabolism 
pathways, which might contribute to trastuzumab 
resistance, while the underlying mechanisms remain 
to be further investigated. 

 

 
Figure 6. Network analysis of significantly changed metabolic pathways. Seven pathways disturbed in MKN45R/∆GATA6 cells were analyzed. Each hexagon represents a 
metabolite, brown and blue ones represent 1.2 fold increase or decrease in MKN45R/∆GATA6 cells respectively. Dashed box indicates different metabolic pathways. Solid 
arrows show single-step metabolism, and dotted arrows show multiple-step metabolism. 
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Figure 7. Network analysis of differential metabolites and activated transcriptional factors based on the OmicsNet. Red and green nodes represent up- and down- regulated 
transcriptional factors, respectively. Light blue nodes indicate transcriptional factors with no significant changes in NCI N87R/∆GATA6 cells compared to NCI N87R. Yellow 
nodes represent increased and decreased metabolites respectively. Lines represent interaction between transcription factors and metabolites. 

 
Nucleotide metabolism is a key pathway that 

generates purine and pyrimidine molecules for DNA 
replication and synthesis. It is well known that 
enhanced nucleotide metabolism contributes to 
growth of tumors [38]. Pyrimidines, along with 
purine metabolism, are two avenues of nucleotide 
metabolism that produce metabolites including 
adenine, adenosine, inosine and guanosine 
monophosphate (GMP), etc. The present study 
showed that GATA6 knockout led to suppressed 
purine metabolism since relevant metabolites 

including adenine, adenosine, xanthine, guanosine, 
inosine, glutamine, guanine and orotidine-5P were 
sharply decreased in NCI N87R/∆GATA6 cells. In 
MKN45R/∆GATA6 cells, pyrimidine metabolism was 
found to be inhibited. It was widely accepted that 
glutamine is one of the important precursors for de 
novo nucleotides synthesis as it provides nitrogen 
required for purine and pyrimidine synthesis [39]. 
GLUL, which catalyzes the ATP-dependent 
conversion of glutamate and ammonia to glutamine, 
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was dramatically downregulated upon GATA6 
knockout in our study. A study reported that high 
expression of GLUL affects cellular response to 
irradiation in radiation-resistant cells and facilitates 

growth of cancer cells [40]. Thus, it might suggest that 
nucleotide metabolism mediated by GATA6 also 
contributes to trastuzumab resistance in gastric cancer 
cells. 

 

 
Figure 8. Bioinformatics and quantification analysis of activated transcription factors. (A) Network analysis of activated transcription factors done with Cytoscape software. (B) 
Quantification of activated transcription factors by mass spectrometry. (C) PKM, GLS1, GLUL and LDHA detected using western blot with β-actin as loading control. (D) 
Quantification of western blot signals in two groups of cell lines. Three independent biological replicates are shown as mean±SEM. *p<0.05, **p<0.01, **p<0.001 vs. controls. 
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In conclusion, our study demonstrated that 
GATA6 is involved in TCA cycle, glycometabolism, 
amino acid and nucleotide metabolism, thereby 
leading to reprogramming in the metabolism and 
promoting trastuzumab resistance in gastric cancer 
cells. Recovering the abnormal metabolism of GATA6 
in gastric cancer cells could be a potential therapeutic 
strategy for dealing with trastuzumab resistance. 
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