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Abstract 

Atherosclerosis is one kind of chronic inflammatory disease, in which multiple types of immune cells or 
factors are involved. Data from experimental and clinical studies on atherosclerosis have confirmed the 
key roles of immune cells and inflammation in such process. The thymus as a key organ in T lymphocyte 
ontogenesis has an important role in optimizing immune system function throughout the life, and 
dysfunction of thymus has been proved to be associated with severity of atherosclerosis. Based on 
previous research, we begin with the hypothesis that low density lipoprotein or cholesterol reduces the 
expression of the thymus transcription factor Foxn1 via low density lipoprotein receptors on the 
membrane surface and low density lipoprotein receptor related proteins on the cell surface, which cause 
the thymus function decline or degradation. The imbalance of T cell subgroups and the decrease of naive 
T cells due to thymus dysfunction cause the increase or decrease in the secretion of various inflammatory 
factors, which in turn aggravates or inhibits atherosclerosis progression and cardiovascular events. 
Hence, thymus may be the pivotal role in coronary heart disease mediated by atherosclerosis and 
cardiovascular events and it can imply a novel treatment strategy for the clinical management of patients 
with atherosclerosis in addition to different commercial drugs. Modulation of immune system by inducing 
thymus function may be a therapeutic approach for the prevention of atherosclerosis. Purpose of this 
review is to summarize and discuss the recent advances about the impact of thymus function on 
atherosclerosis by the data from animal or human studies and the potential mechanisms. 
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Introduction 
Atherosclerosis is a complex disease, in which 

multiple types of immune cells, inflammatory cells 
and cytokines are involved[1-8] (Fig. 1). Lipid 
metabolism is the pathological basis of 
atherosclerosis, which is characterized by 
involvement of artery lesions from the intima, usually 
the formation of lipid and compound carbohydrate 
accumulation, bleeding and thrombosis at first, and 
hyperplasia of fibrous tissue and calcium deposition, 
and has gradually degenerated and medial 
calcification, leading to arterial wall thickening and 
hardening, vascular stenosis. That increases the 

incidence and mortality of patients with heart and 
cerebrovascular disease. So to reduce the incidence 
and mortality of heart and cerebrovascular disease in 
patients with coronary heart disease is the ultimate 
goal of anti-atherosclerosis therapy. Therefore, it is of 
great clinical and practical significance to study the 
mechanism of atherosclerosis.  

Epidemiological studies have shown that the 
higher the incidence of atherosclerosis with age, the 
higher prevalence is mainly in middle-aged and 
elderly patients. The immune system function of 
elderly patients decreased, the number of immune 
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cells decreased, and the proportion was imbalanced. 
Previous studies have shown that a series of immune 
cells and their secreted cytokines are involved in the 
process of atherosclerosis, especially T lymphocytes. 
According to previous studies, the thymus will be 
shrunk with age, and may even disappear. However, 
with the deepening of the research in recent years, the 
researchers found that although thymus may 
deteriorate with age, it will not disappear and still has 
a certain function. A recent article by Sam Palmer et 
al. published in PNAS reveals that the vast majority of 
vertebrates will experience thymic involution (or 
atrophy) in which thymic epithelial tissue is replaced 
with adipose tissue, and result in decreasing export of 
T cell from the thymus[9]. John Murray et al. clearly 
stated the thymus continued to provide a source of 
new T lymphocytes through all ages in their 
research[10]. More importantly, Lynch et al also 
provided a relatively detailed description of 
age-related thymus atrophy, in which the authors also 
recalled that based on their and other previous 
investigators' results, the thymus would completely 
cease to produce new T cells at 105 years of age[11]. 
The thymus as a key organ in T lymphocyte 
ontogenesis plays an important role in optimizing 

immune system function throughout the life[12, 13]. 
Studies have revealed that thymus is constantly 
atrophic or hypofunction with age[14]. The thymus is 
most active early in life but undergoes a steady 
decline in function over time[15-18]. Those 
age-associated immune dysfunctions are the 
consequence of declines in both the generation of new 
naïve T and B lymphocytes and the functional 
competence of memory populations[15]. Thymus 
transplantation can alter or partially reverse some 
immune related diseases, such as Alzheimer's disease, 
systemic lupus erythematosus, arthritis, etc[19-22]. It 
is well known that atherosclerosis is also an immune 
related disease[23-25]. So atherosclerosis should have 
a close relationship with thymus. 

Our previous study showed that there was a 
decline in thymus function in atherosclerotic 
patients[26]. Therefore, the thymus may be involved 
in the process of atherosclerosis. However, the 
mechanism of thymus function involved in the 
process of atherosclerosis is still unclear. The purpose 
of this review is to summarize and discuss the recent 
advances in our knowledge of atherosclerosis 
vascular disease by the impact of thymus function on 
atherosclerosis, especially for the mechanism.

 

 
Figure 1. Immune cells including macrophages, T cells and monocyte are involved in the process of blood vessels from normal to atherosclerosis. 
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Thymus can directly or indirectly 
modulate inflammatory procedure  

Thymus is an important part for T cell 
development and maturation. Indeed, the thymus is 
both where the T cell repertoire is generated and 
where the T cells are composed of positive and 
negative selection, leading to a wide range of 
functional MHC-restricted naïve TCR αβ 
repertoire[27, 28]. As the development of T cells, they 
migrate within distinct thymus microenvironments, 
where they interact with stromal cells that provide 
signals critical for thymocyte survival, proliferation, 
differentiation, and selection[29-31].  

T cells contain many subgroups. A brief 
introduction of T cell subgroups and their functions 
shows as follow. Naive T cells can differentiate into 
helper T cells(Th), regulatory T cells(Tregs) and 
cytotoxic T cells (Tc). The generation and maturation 
of this specific T cell lineage involve particular and 
complex processes within the thymus, and many 
signaling pathways participate in these processes. If a 
thymocyte is auto-reactive against antigens, it 
undergoes negative selection, via apoptosis, or 
differentiation into the regulatory T cell lineage. It is 
now well established that there are two main 
pathways for the generation of Treg cells in vivo. The 
majority of functionally mature Treg cells are 
produced in the thymus, where recognition of 
self-antigen by certain clones leads to their deviation 
into the thymus-derived Foxp3+ Treg (tTreg) cell 
lineage[32, 33]. Th can secrete IL-4, IL-17, and IFN-ϒ. 
In addition, Tregs can secrete IL-10. IL-4, a cytokine 
that stimulates the proliferation of activated B-cells 
and mast cells and enhances macrophages antigen 
presenting ability. In the absence of vascular tissue, 
the presence of IL 4 promotes the substitution of 
activated macrophages into M2 cells and inhibits the 
activation of classical activated macrophage M1 cells. 
Increased macrophage repair (M2) combined with the 
secretion of IL-10 and TGF-β resulted in a reduction of 
pathological inflammation[34-36]. The most 
compelling role of IL-17 is its involvement in the 
induction and regulation of pro-inflammatory 
responses. IL-17 induced production of other 
cytokines (e.g., IL-6, G-CSF, TGF-β, TNF-α, GM-CSF 
and IL-1β), chemokines (including IL-8, GRO-α, 
MCP-1) and prostaglandin (e.g., PGE2) from many 
types of cells, such as fibroblasts, endothelial cells, 
epithelial cells, keratinocytes and macrophages 
[37-41]. 

All of these cytokines, chemokines, and 
inflammatory cells are involved in the inflammatory 
procedure and atherosclerosis[42, 43]. Previous 
studies have shown that some cytokines(such as 

TNF-α, IL-1,8,12 and IFN-γ etc.) promote the 
occurrence of atherosclerosis[44-65], while 
others(such as TNF-β, IL-4 and IL-10 etc.) inhibit the 
process of atherosclerosis [1, 61, 66-75] (see Table 1). 
Studies show that IL-6 can support a promotion and 
inhibition role in the development of 
atherosclerosis[76-78]. Besides, cytokine therapy with 
IL-2/anti-IL-2 monoclonal antibody complexes can 
attenuate the development and progression of 
atherosclerosis[79-81]. In summary, we learn that the 
thymus can directly or indirectly affect the above 
factors or cells, which may affect the atherosclerotic 
process. Thus, alterations in thymus function may be 
involved in atherogenesis by modulating 
inflammatory responses. 

 

Table 1. Cytokines can promote or inhibit atherosclerosis 

Cytokines Whether it promotes or 
inhibits atherosclerosis? 

         References 

TNF-α Promotion          Refs: 40-46 
TNF-β Inhibition          Refs: 1,62-65 
IL-1 Promotion          Refs: 47-49 
IL-4 Inhibition          Refs: 57,66,67 
IL-6 Promotion/ Inhibition          Refs: 72-74 
IL-8 Promotion          Refs: 50-54 
IL-10 Inhibition          Refs: 62,68-71 
IL-12 Promotion          Refs: 55-58 
IFN-γ Promotion          Refs: 59-61 
Refs stand for References. 

 

Thymus may regulate the immune system 
by affecting immune cells 

The thymus is a privileged and indispensable 
site for the generation and maturation of T cells in 
vivo, as this microenvironment induces and supports 
lineage commitment, differentiation, and survival of 
thymus-seeding cells. Tregs selection in the thymus is 
essential to prevent autoimmune diseases[82]. Tregs 
of the CD4+CD25+FOXP3+ phenotype are generated 
in the thymus and critical for the maintenance of 
immune homeostasis and the suppression of naturally 
occurring self-reactive T cells[83-85].  

According to the previous researches, we should 
learn that the change of thymus function can affect the 
function of macrophages and B cells. The 
monocyte-macrophage system has a crucial role in 
innate immunity and also in the initiation of the 
adaptive immune response[86-88]. Plasma cells 
derived from B cells participate in humoral immune 
response. Moreover, dendritic cells(DCs) play a 
significant role in establishing self-tolerance and 
inducing antigen-specific immunity through their 
ability to present self-antigens to developing T cells in 
the thymus[89-91]. These cells are involved in the 
immune response. Hence, changes of the thymus 
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function can affect the immune system. 
Atherosclerosis is a complex disease 

characterized by smooth muscle cell proliferation, 
cholesterol deposition, and the infiltration of 
mononuclear cells. The formation and progression of 
atherosclerotic plaques result in the disruption of 
organ perfusion, causing cardiovascular and 
cerebrovascular diseases. It has been proved that 
immune responses participate in every phase of 
atherosclerosis. The presence of leukocytes within 
atherosclerotic arteries was discovered in the late 
1970s[2, 92]. There is increasing evidence show that 
both adaptive and innate immunity tightly regulate 
the development and progression of atherosclerosis. 

Recent studies have suggested that Tregs, a 
special T cell subtype, exhibit a weak immune 
response, have immune-suppressive characteristics of 
immune-related vascular disease, and play an 
important role in immune tolerance and immune 
regulation[1, 2, 93-98]. What was discovered in recent 
years is that several subsets of Tregs, which are 
responsible for maintenance of immunological 
tolerance and suppressing immune over activity of 
effector T cells, diminish atherosclerosis development 
by down-regulation of activated T cell 
responses[99-103]. There are more and more 
evidences show that CD4+ effector T cells may 
accelerate the development of atherosclerosis. In 
contrast, CD4+ Treg cells play a protective role in 
atherosclerosis[42, 97, 102, 104-108]. During the 
occurrence and development of atherosclerosis, 
diverse types of interactions between immune cells, 
cytokines, and antibodies form a very complex 
network of cellular and humoral immune 
mechanisms[108-110]. Indeed, once Tregs are 
activated, they can secrete IL-10 and TGF-β1 to 
suppress several cell types, including antigen-specific 
T cells[66-69, 96]. Besides the balance between effector 
T cells and Tregs, which is sufficient to control 
atherosclerosis development and 
progression[111-118]. Tregs inhibit the activation of 
other lymphocytes via the direct secretion of 
cytokines or inducing other cells to secrete cytokines, 
hereby limiting the occurrence and development of 
atherosclerosis[74, 75]. In addition to Tregs, 
tolerogenic DCs have a critical role in the regulation of 
T cell response in atherosclerosis according to 
previous research[119-123].  

In a word, changes in thymus function may take 
part in atherogenesis by regulating the immune 
system. 

Aging and atherosclerosis 
Aging, which many aspects of that involve 

inflammatory processes, is associated with chronic, 

low-grade inflammatory activity leading to long-term 
tissue damage, and systemic chronic inflammation 
has been found to be related to all-cause mortality risk 
in elderly persons[124-129]. Age-related diseases such 
as Alzheimer’s disease, Parkinson’s disease, 
atherosclerosis, and type 2 diabetes are initiated or 
worsened by systemic inflammation, because the 
genetic constitution of the organism interacting with 
systemic inflammation may cause defined 
organ-specific illnesses, thus suggesting the critical 
importance of unregulated systemic inflammation in 
the shortening of survival in humans.  

Thymus is an aging associated organ. But 
evidences have shown that the processes of positive 
and negative selection qualitatively appear to remain 
intact, despite the quantitative reductions in cortical 
and medullary thymocytes in the aged thymus[16-18, 
130-134]. Moreover, the naive T cells generated in 
aged mice appear functionally normal but the 
decrease in thymic productivity[135, 136]. Increasing 
the input of functional thymus progenitors can trigger 
an expansion of thymus epithelial cells (TEC), which 
in turn create new niches for T-cell lineage 
commitment and supports increased the proliferation 
of thymocyte. Alternatively, in aging, the decline in 
these factors may reinforce a down-ward spiral 
resulting in thymic involution. 

The thymus is the main immune organ and 
capable of generating T cells throughout life and is 
crucial for development, selection, and maintenance 
of peripheral T-cells. It is well documented that aging 
negatively affects immune responses, leading to an 
increase in infection and mortality. Aging reduces 
immune function, part of the reason is thymus 
involution leads to striking loss of progenitors, 
epithelial cells, and differentiating thymocytes, 
causing a decline in the production of naive T cells by 
the thymus[18, 137-142].  

Thymus transcription factors forkhead box 
N1(Foxn1) is the most important factor for thymus 
complete physiological function[141, 143-145]. With 
the atrophy of thymus, the expression of thymus 
aging-associated gene Foxn1 decreases, that means 
down-regulation of Foxn1 with age. Increased 
expression of Foxn1 can improve thymus function, 
and even promote regeneration of the thymus [146]. 
Žuklys S et al.[147] determine that Foxn1 regulates the 
expression of genes involved in antigen processing 
and thymocyte selection, in addition to the 
transcriptional control of genes involved in the 
attraction and lineage commitment of T cell 
precursors. Therefore, there are reasons to believe that 
the thymus Foxn1 may be involved in the process of 
atherosclerosis. In previous studies, the atrophy of 
thymus organs in patients with coronary heart disease 
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has been confirmed[26], yet the specific altering of 
thymus function has not been clearly revealed. 

Lipid metabolism is the pathological basis of 
atherosclerosis. Low density lipoprotein(LDL) in the 
arterial wall is generally oxidized to oxidized LDL 
(oxLDL), which is atherogenic, and induces vascular 
endothelial cells to express adhesion molecules, 
cytokines and chemokines that attract immune cells[5, 
148-152]. Amy H. Newton et al.[148] found that naïve 
cells become activated and differentiate to mature 
effector T cells that are Th1, Th2 or Treg cells. OxLDL 
and high density lipoprotein (HDL) regulate 
activation of macrophages and endothelial cells, and T 
cells, which perpetuate atherogenesis by promoting 
cell-mediated responses and inflammation. OxLDL 
leads to inflammation and nucleation of 
atherosclerotic plaque in the arterial wall and its 
incorporation into foam cells, which is opposed by 
HDL.  

LDL receptor-related protein-1 (LRP-1), a 
member of the scavenger receptor family, is a large 
endocytic receptor and is a multifunctional cell 
surface receptor expressed in a wide range of cells, 
including vascular smooth muscle cells(vSMCs) and 

macrophages[153-156]. The early studies have 
revealed that mice with a selective knockout of LRP in 
macrophages crossed into an apoE/LDL receptor 
double knockout mouse[157-160] or vSMCs 
(LRPsmc−∕−) on an LDL receptor (LDLR)−∕− background 
lead to an exacerbation of atherosclerosis[161-163]. 
LRP-1 plays a role in arterial wall physiology and 
pathology[159, 160, 164-166]. From the study of Kamel 
Boukais et al., we know that LRP-1 is also a scavenger 
receptor responsible for the uptake of LDL, especially 
the aggregation of LDL, leading to intracellular 
accumulation of lipids and transformation of vSMCs 
and monocyte-derived macrophages into foam cells in 
human atheroma[154, 161, 167-169]. Although LDL 
remains to be the most important risk factor for 
atherosclerosis, immune and inflammatory 
mechanisms play a significant and non-redundant 
role in atherogenesis. 

Based on the above statement, we propose the 
hypothesis of the mechanism of thymic function to 
participate in the process of atherosclerosis (Fig. 2). 
Hence, the change of thymus function provides a new 
target for the treatment of atherosclerosis. 

 

 
Figure 2. The pivotal role of thymus in AS mediated by immune and inflammatory response. Thymus dysfunction leads to the imbalance of T cell subsets and change 
in secretion of cytokines, thereby aggravating or inhibiting the progression of atherosclerosis, and as well as other cardiovascular events. LRP: Low density lipoprotein 
receptor-related proteins, LDLR: Low density lipoprotein receptors, APC: Antigen presenting cell, DC: Dendritic cell, Foxn1: Forkhead box N1, Treg: Regulatory 
T-cell, Th: Helper T cell, Tc: Cytotoxic T cell. 
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Conclusion and perspective 
Atherosclerosis is considered as an immune 

inflammatory disease, and the T cell-mediated 
immune inflammatory response plays an important 
role in the pathogenesis of atherosclerosis[170]. T cells 
mature in the thymus site and are involved in the 
process of atherosclerosis induced by inflammation 
and immune response. Inflammatory mechanisms 
and immune system mechanisms are crucially 
involved in the pathophysiology of atherosclerosis 
and cardiovascular disease. T lymphocytes are 
involved and play an important role in both the 
inflammatory response and the immune response. An 
imbalance of the degree of activation of the protective 
Treg lymphocytes, the pro-inflammatory and 
cytotoxic macrophages and T-effector lymphocytes 
could thus be at the origin of the triggering or not of 
progression of vascular injury. However, all of these 
processes are closely associated with thymus function. 
In other words, changes in the function of thymus will 
be deeply affecting the process.  

Based on previous research, we can speculate 
that the changes of thymus function may have an 
impact on the process of atherosclerosis. The 
mechanism of thymus involvement in the process of 
atherosclerosis is assumed as follows: Low density 
lipoprotein or cholesterol reduces the expression of 
the thymus transcription factor Foxn1 via low density 
lipoprotein receptors (LDLR) on the membrane 
surface and low density lipoprotein receptor-related 
proteins on the cell surface, which cause the thymus 
function decline or degradation. The imbalance of T 
cell subgroups and the decrease of naive T cells due to 
thymus dysfunction cause the increase or decrease in 
the secretion of various inflammatory factors, which 
in turn aggravates or inhibits atherosclerosis 
progression and cardiovascular events. NK T cell, 
DCs and macrophages can affect the process of 
atherosclerosis by affecting the production of naive T 
cells through the thymus. Furthermore, these cells can 
also participate in the progression of atherosclerosis 
via the direct secretion of cytokines or inducing other 
cells to secrete cytokines (Fig. 2). 

According to our hypothesis, lentiviral 
transfection, siRNA, gene knockout and thymic 
transplantation technologies can be selected to 
improve aging thymus function in animal 
experiments. In the clinical treatment of 
atherosclerosis, and even other immune-related 
diseases, we may consider using a vaccine, or a 
similar alternative to foxn1 to improve the expression 
of foxn1 in the human body, thereby improving or 
restoring aging thymus function and resisting the 
related-diseases caused by the decline of immunity. 

In summary, novel data increasingly suggests 
the potential for new targets of the thymus function 
for therapeutic intervention to modify the course and 
reduce events in atherosclerosis and cardiovascular 
disease, as studies increasingly implicate 
thymus-related mechanisms. Further investigation on 
changes of thymus function will help to develop new 
therapeutic targets that may improve outcomes in 
atherosclerosis and cardiovascular disease and 
discover novel approaches in the treatment of 
atherosclerosis and vascular disease.  

Of course, the underlying mechanism of the 
hypothesis still has some shortcomings in this review. 
We also need to investigate that how low density 
lipoprotein affects the expression of the thymus 
transcription factor Foxn1 via low density lipoprotein 
receptors on the membrane surface and low density 
lipoprotein receptor-related proteins on the cell 
surface. 
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