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Abstract 

Renal tubule cell apoptosis plays a pivotal role in the progression of chronic renal diseases. The previous 
study indicates that Sirolimus is effective on unilateral ureteral obstruction (UUO)-induced renal fibrosis. 
However, the role of Sirolimus in renal tubular apoptosis induced by UUO has not yet been addressed. 
The aim of this study was to determine the role of Sirolimus in renal tubular apoptosis induced by UUO. 
Male Sprague-Dawley rats were divided into three groups, sham-operated rats, and after which unilateral 
ureteral obstruction (UUO) was performed: non-treated and sirolimus-treated (1mg/kg). After 4, 7 and 
14 d, animals were sacrificed and blood, kidney tissue samples were collected for analyses. Histologic 
changes and interstitial collagen were determined microscopically following HE and Masson's trichrome 
staining. The expression of PCNA was investigated using immunohistochemistry and the expression of 
Bcl-2, Bax, caspase-9, and caspase-3 were investigated using Western blot in each group. Tubular 
apoptotic cell deaths were assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end 
labeling (TUNEL) assay. Sirolimus administration resulted in a significant reduction in tubulointerstitial 
fibrosis scores. After UUO, there was an increase in tubular and interstitial apoptosis in untreated 
controls as compared to Sirolimus treatment rats (P<0.05). In addition, the expression of PCNA, Bcl-2, 
Bax, caspase-9, and caspase-3 in obstructed kidney was characterized by immunohistochemistry and 
Western blot analyses demonstrating that sirolimus treatment significantly reduced PCNA, Bax, 
caspase-9 and cleaved caspase-3 expression compared to those observed in controls (P<0.05), whereas, 
Bcl-2 in the obstructed kidney were decreased in untreated controls compared to Sirolimus treatment 
rats subjected to the same time course of obstruction (P<0.05). We demonstrated a marked 
renoprotective effect of sirolimus by inhibition of UUO-induced renal tubular apoptosis in vivo. 
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Introduction 
Progressive renal fibrosis is the final common 

manifestation of various chronic kidney diseases 
(CKD) resulting in renal atrophy and end-stage renal 
failure. Development of fibrotic kidney disease is 
refractory and effective therapy is not yet available. 
The characteristics of renal fibrosis comprise 
decreases in renal function, increased interstitial 
fibrosis, tubular apoptosis, and cellular infiltration 
[1-3]. Unilateral ureteral obstruction (UUO) is a 

representative model of tubulointerstitial renal 
fibrosis that has many readily quantifiable cellular 
and molecular events, such as inflammation and 
apoptosis [4]. Ample evidence suggests that 
destruction of renal tubular cells by apoptosis 
resulting from urinary tract obstruction leads to 
tubular atrophy, one of the hall-marks of obstructive 
nephropathy [5, 6]. The regulation of apoptosis in the 
obstructed kidney is of considerable interest [7]. 
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In recent years, great efforts have been made to 
gain further insight into the mechanisms of apoptosis 
in obstructed kidney and several molecules with 
pro-apoptosis properties, such as bcl-2 and p53, have 
been proposed [7, 8]. Thus, suppression of apoptosis 
signaling has been included in several therapeutic 
approaches for preventing renal fibrosis [9, 10].  

Sirolimus (also known as Rapamycin) is an 
antifungal agent originally purified from Streptomyces 
hygroscopicus [11]. It was later found to have potent 
immunosuppressive effects and has been used for 
many years as a component of antirejection therapy 
for recipients of organ transplants [12, 13]. The 
antifibrotic effects of mTOR inhibition have recently 
been reported in several rat models of chronic kidney 
disease, including diabetic nephropathy, chronic 
glomerulosclerosis, and tubulointerstitial fibrosis 
[14-18]. Likewise, rapamycin prevented extracellular 
matrix deposition in CCL4-induced liver fibrosis [19], 
attenuated liver cirrhosis progression [20], prevented 
bleomycin-induced pulmonary fibrosis [21]. Thus, 
sirolimus could have a pivotal role in disease states 
characterized by fibrogenesis and may emerge as a 
promising pharmacotherapeutic target for 
anti-fibrotic treatment.  

However, the potential involvement of sirolimus 
in renal tubular apoptosis has so far not been 
investigated. In the present study, we hypothesized 
that sirolimus also attenuates renal tubular apoptosis 
and the development of tubulointerstitial fibrosis in 
the kidney. Here, we examined whether sirolimus 
plays an important role in renal tubular apoptosis in 
the UUO model. 

Materials and Methods 
Male Sprague-Dawley rats weighing between 

250-300g were purchased from Beijing Vital River 
Laboratory. Rats had access to standard rat chow and 
water ad libitum and were maintained following 
conditions established by the Guide for the Care and 
Use of Laboratory Animals. During the entire 
experiment rats were kept in individual metabolic 
cages, with a 12-h artificial light-dark cycle, a 
temperature of 21± 2°C, and a humidity of 55±2%. 
Rats were allowed to acclimatize to the cages for 3 
days before surgery. 

Before surgery, the rats were anesthetized with 
an intra-peritoneal (ip) injection of 60 mg/kg sodium 
pentobarbital (Merial, Hallbergmoos, Germany), and 
during surgery, they were placed on a heated table to 
maintain rectal temperature at 37–38°C. UUO were 
established as previously described [22]. In brief, the 
left ureter was exposed and a 5-0 silk ligature 
occluded the midportion of the ureter. After surgery, 
the rats regained consciousness and were placed in 

metabolic cages. Rats were allocated to the protocols 
indicated below. Age- and time-matched 
sham-operated controls were prepared and observed 
in parallel with UUO group in the following 
protocols. 

Protocol 1 (n=18): Sprague-Dawley rats 
underwent UUO. 

Protocol 2 (n=18): Sprague-Dawley rats 
underwent UUO treated with sirolimus (2mg/kg 
body weight, Wyeth Pharmaceuticals Company, 
Guayama, Puerto Rico, USA). 

Protocol 3 (n=18): sham-operated rats (Sham). 
Rats (n= 6 per group) were sacrificed 4, 7and 14 

days after surgery. After anesthesia with sodium 
pentobarbital (60 mg/kg), a laparotomy was 
performed and the abdominal aorta was cannulated 
with a 23-gauge needle, and then the organs were 
perfused with ice-cold lactated Ringer solution. 
Kidney were removed, cut in thirds, and then fixed 
for 20 h in 3.75% paraformaldehyde in Soerensen’s 
phosphate buffer and embedded in paraffin for 
histological examination, snap frozen in isopentane 
(-40°C) for cryostat sectioning, or frozen in liquid 
nitrogen and stored at -80°C for protein chemistry 
analysis. 

Histological analysis 
Renal tissue sections were stained with 

hematoxylin and eosin and Masson’s trichrome for 
histological assessment. Kidneys were routinely fixed 
in 4% phosphate-buffered paraformaldehyde and 
paraffin embedded. Tissue sections at 5µm were 
obtained. Paraffin wax was removed with xylene, and 
sections were rehydrated with ethanol. After 
washing, the sections were stained with hematoxylin 
and eosin. Renal injury index including inflammatory, 
cell infiltration, interstitial fibrosis, interstitial edema, 
cell vacuolar degeneration, tubular atrophy, and 
tubular expansion were measured to assess the renal 
interstitial lesions. Ten different fields were selected 
to estimate the level of renal injury index with HE 
staining using bio-image analysis system (Bio-Profile). 
Each parameter was evaluated and given a score from 
0 to 4+, (0, no changes; 1+, changes affecting 5-25% of 
the sample; 2+, changes affecting 25-50%; 3+, changes 
affecting 50-75%; 4+, changes affecting 75-100%). For 
analyzing the degree of tubulointerstitial collagen 
deposition, sections were stained with Masson 
trichrome. Twenty cortical tubulointerstitial fields 
that were randomly selected at ×400 magnification 
were assessed in each rat, and the density of 
trichrome-positive signals was analyzed by bio-image 
analysis system (Bio-Profile). All the samples were 
semi-quantitatively or quantitatively assessed by two 
independent investigators in a blinded manner. 
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Immunohistochemistry (IHC) 
The expression of PCNA (diluted 1:300; Abcam, 

USA) were assessed in paraffin-embedded tissue 
sections. Immunohistochemical staining was 
performed as described previously [23]. Briefly, 
paraffin-embedded sections were dewaxed (or frozen 
sections were hydrated) and microwave oven heated 
in 0.1 M sodium citrate buffer for 12 min. After the 
serum block, sections were incubated with primary 
antibodies in PBS with 3% BSA overnight at 4°C. 
Sections were washed, and the primary antibodies 
were detected using the ABC method and developed 
with 3,3-diaminobenzidine (DAB) to produce a 
specific antigen brown color.  

Western blot Analysis 
Kidney tissues were lysed in RIPA buffer, run on 

a 10% SDS-polyacrylamide electrophoresis gel and 
transferred onto a nitrocellulose membrane (Hybond 
C Extra, Amershan Biosciences, Little Chalfon, USA). 
The membrane was incubated in a blocking buffer A 
(PBS, 5% nonfat milk and 0.1% Tween-20) and 
incubated overnight at 4 °C with primary rabbit 
anti-rat Bax (diluted 1:300; Abcam, USA), Bcl-2 
(diluted 1:300; Abcam, USA), Caspase-3 (diluted 
1:200; Abcam, USA), Caspase-8 (diluted 1:300; Abcam, 
USA) and Caspase-9 (diluted 1:200; Abcam, USA) 
antibody. Then the membrane was washed once for 
15 min and twice for five min in PBS, followed by a 
peroxidase-conjugated sheep anti-rabbit IgG (Santa 
Cruz Biotechnology) at a 1:10000 dilution. At last, the 
membrane was developed with a chemiluminescent 
agent (ECL). Each membrane was stripped and 
probed with mouse primary anti-β-actin antibody 
(Sigma, USA) to confirm and estimate the loading and 
the transfer. We used a bio-image analysis system 
(Bio-Rad, USA) to analyze the bands.  

TUNEL assay 
TUNEL assays were performed to detect DNA 

strand breaks using a commercial kit following the 
instructions provided by the manufacturer’s (Roche’s 
In Situ Cell Death Detection Kit, Fluorescein 
(Indianapolis, IN)) recommendations. Briefly, 
15-μm-thick sections of renal (n=6 per group) were 
mounted onto Silane-coated glass slides. Slides were 
deparaffinized, rehydrated, put into 10mM citrate pH 
6 in a 95° water bath for 30 minutes for 
permeabilization and further digested with 1μg/ml 
proteinase K for 10 minutes at 37°. TUNEL reagents 
were applied to the slides according to the 
manufacturer's instructions. Then they were mounted 
with DAPI Vectashield (Vector Laboratories). 
Controls for this procedure included a slide where the 
TdT enzyme was omitted and another where the slide 

was pretreated with DNAse I before the normal 
TUNEL procedure. Photographs of sections were 
captured using CCD camera (Leica DC300F). The 
number of apoptotic nuclei was counted in four 
different fields and mean was found by using the 
image analysis software ‘Leica Qwin'. Percentage of 
TUNEL positive cells was calculated on the number of 
TUNEL positive cells out of 100 total cells that were 
counted. Student’s t-test was used to determine 
statistical significance levels (P≤0.05). 

Statistical Analysis 
Results were assessed using a one-way ANOVA 

for comparisons between groups. Differences were 
assessed using the Bonferroni pos-test, with P<0.05 
considered indicative of significant differences. Data 
are expressed as the mean ± standard error of the 
mean (SEM). 

Results 
Sirolimus treatment protects against renal 
fibrosis, tubular dilation and atrophy induced 
by UUO in a murine UUO model.  

To assess the effects of sirolimus on renal fibrosis 
and tubular atrophy, the kidneys of male 
Sprague-Dawley rats subjected to UUO or sham 
operation and treat daily with sirolimus (2mg/kg/d) 
were examined for histopathology (Fig. 1). HE 
stainings shows that UUO renal histology displays a 
spectrum of changes including tubular dilation and 
interstitial edema in the early stage, and tubular 
atrophy and interstitial fibrosis in the later phase. 
Histological analysis showed a higher percentage of 
fibrosis in the animals subjected only to UUO when 
compared to sirolimus-treated animals (Fig. 5). 
Indeed, sirolimus-treated animals showed an 
impressive two-fold decrease in the percentage of 
fibrosis (Fig. 5) (P<0.05). Masson’s trichrome stain of 
representative kidney sections also demonstrates 
increased collagen deposition within the 
tubulointerstitium 4, 7 and 14 days in rats after 
undergoing UUO (Fig. 2, D, E and F, respectively). 
However, treat daily with sirolimus suppressed the 
tubulointerstitial collagen deposition at the same time 
course post-operation (Fig. 2, G, H and I, respectively) 
(P<0.05). No gross alterations were observed in those 
sham-operated rats (Fig. 2, A, B and C, respectively). 

Tubular atrophy progressed in a time-dependent 
manner after undergoing UUO. In parallel with the 
interstitial expansion, tubular atrophy became the 
dominant pathologic change of end-stage of UUO 
kidneys. Treatment with sirolimus obviously retarded 
this progression as shown in Figure 1. 
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Figure 1. Sirolimus attenuated the histological changes in the obstructed kidney induced by UUO. Representative hematoxylin–eosin staining micrographs of (A, B, C) Sham 
group, (D, E, F) UUO group and (G, H, I) Sirolimus group. Original magnification×200.  

 
Figure 2. Sirolimus attenuated the interstitial collagen deposition in the obstructed kidney induced by UUO. Representative Masson’s trichrome staining micrographs of (A, B, 
C) Sham group, (D, E, F) UUO group and (G, H, I) Sirolimus group. Original magnification×200. 
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Sirolimus treatment decrease tubular 
proliferation and apoptosis induced by UUO.  

To investigate whether the Sirolimus treatment 
could moderate tubular cell proliferation and 
apoptosis in post-obstructed kidneys, we examined 
the changes of proliferating tubular cells, identified as 
PCNA-positive nuclei and apoptotic bodies, marked 
as an in situ end-labeled DNA fragment with the 
TUNEL method. Compared with sham rats, 
proliferating tubular cells were increased significantly 
throughout the whole experimental period (Fig. 3). In 
Sirolimus treatment group, the prolifer-ative activity 
was significantly decreased in each time course (Fig. 
5) (P<0.05). To determine whether Sirolimus can 
protect renal tubular epithelial cells from apoptosis, 
the number of tubular apoptotic bodies were counted 
and the results are summarized in Figure 4. In parallel 
with the fibrosis-related index described earlier, 
tubular apoptosis was activated after UUO operation 
and progressively increased during the entire 
two-week course (Figure 4). Sirolimus treatment 
suppressed the tubular apoptosis at the same time 
point after UUO (Fig. 5) (P<0.05). 

Sirolimus moderate expression of Bcl-2, Bax, 
caspase-3, caspase-8 and caspase-9 induced by 
UUO.  

We examined kidney tissue lysates obtained 
from sham-operated control rat and from rat after 
undergoing UUO and treat with Sirolimus. Levels of 
Bcl-2, Bax, caspase-3, caspase-8 and caspase-9 were 
assessed by Western blot analysis and representative 
blots are shown in Fig. 6, A, B, C, D and E. 
Quantitative analysis by densitometry shows 
significant increases in the expression of Bax, 
caspase-3, caspase-8 and caspase-9 in the kidneys of 
rat at day 4 following UUO (Fig. 6), and further 
increased at day 7 and 14 after undergoing UUO (Fig. 
6) compared with control sham-operated rat. In 
contrast, in rats treat with Sirolimus significant 
reductions in the Bax, caspase-3, caspase-8 and 
caspase-9 expression were observed at both 4, 7 and 
14 days after UUO compared with UUO rats at the 
same time point (P<0.05). The expression of Bcl-2 in 
the obstructed kidney was significantly decreased in a 
time-dependent manner (Fig. 6). The administration 
of Sirolimus significantly increase of Bcl-2 expression 
compared to UUO rats at the same time point (Fig. 6) 
(P<0.05). 

 

 
Figure 3. Sirolimus suppressed the expression of PCNA in the obstructed kidney induced by UUO. Representative micrographs of (A, B, C) Sham group, (D, E, F) UUO group 
and (G, H, I) Sirolimus group. Original magnification×400.  
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Figure 4. Sirolimus decreased the TUNEL+ cells in the obstructed kidney induced by UUO. Representative micrographs of (A, B, C) Sham group, (D, E, F) UUO group and (G, 
H, I) Sirolimus group. Original magnification×400.  

 
Figure 5. Comparison of the expression for Renal tubular injury index, Collagen deposition area, PCNA-(+) cells in renal tubular, and number of apoptotic nuclei in each group. 
A. Renal tubular injury index (%) in each group. B. Collagen deposition area (%) in each group. C. PCNA-(+) cells in renal tubular/HPF in each group. D. Number of apoptotic 
nuclei/HPF in each group. *P<0.05 in comparison with Sham group. #P<0.05 in comparison with UUO group 
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Figure 6. Comparison of the expression for Bcl-2, Bax, caspase-3, caspase-8, and caspase-9 in each group. The same blot was stripped and reprobed with actin to confirm equal 
loading. A. Sirolimus suppressed the expresion of Bax in the obstructed kidney assessed by Western blot assay. B. Sirolimus increased the expresion of Bcl-2 in the obstructed 
kidney assessed by Western blot assay. C. Sirolimus suppressed the expresion of Caspase3 in the obstructed kidney assessed by Western blot assay. D. Sirolimus suppressed the 
expresion of Caspase8 in the obstructed kidney assessed by Western blot assay. E. Sirolimus suppressed the expresion of Caspase9 in the obstructed kidney assessed by Western 
blot assay. *P<0.05 in comparison with Sham group. #P<0.05 in comparison with UUO group. 

 

Discussion 
Chronic kidney disease (CKD) is the result of 

various lesions to the kidney, affecting approximately 
10% of the normal population. Unchecked 
progression of CKD without fail leads to ESRD and 
the requirement for renal replacement therapy (renal 
transplantation or dialysis). Given the high 

prevalence of CKD and cost of replacement therapies 
for ESRD, any treatment that halts or slows the 
progression of renal fibrosis has the possibilities to 
provide a gigantic medical, social and economical 
benefit. Renal fibrosis, characterized by 
glomerulosclerosis and tubulointerstitial fibrosis, is 
the final manifestation of CKD [24]. 
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Although various diseases such as 
glomerulonephritis; metabolic diseases, including 
diabetes mellitus and atherosclerosis; obstructive 
nephropathy; interstitial nephritis; and cystic 
nephropathies, including polycystic kidney disease, 
can be the major causes of CKD, renal fibrosis is 
always the common terminal result of CKD [25, 26]. 
The mechanisms underlying the progression of renal 
disease to end-stage renal failure are not well 
understood. 

With end-stage renal disease, renal cells are 
replaced by fibrous tissue given to the sclerotic 
changes observed in the glomeruli and the 
interstitium. The transition from renal growth and 
hypercellularity to cell deletion and atrophy raises the 
question as to which process is responsible for cell 
loss [27]. 

Apoptosis, or programmed cell death, is a likely 
mechanism involved in the progression loss of renal 
cells during the course of renal fibrosis. Apoptosis is a 
particular type of cell death, which has several 
distinguishing features from necrosis, and is often 
referred to as physiological or programmed cell death. 
It is also play an important role in the regulation of 
renal cell number in both healthy and diseased 
kidneys [28, 29]. 

Unilateral ureteral obstruction (UUO), a well 
characterized experimental model of renal 
tubulointerstitial fibrosis, results in renal functional 
loss and morphological changes including 
hydronephrosis, infiltration of leukocytes, tubular 
atrophy, and dilation, as well as increased interstitial 
fibrosis [1]. An accumulating body of evidence 
suggests that tubular cell apoptosis result to fibrotic 
kidney changes that occur in conjunction with 
ureteral obstruction [29, 30]. Stretch, ischemia, and 
oxidative stress followed by ureteral obstruction are 
primary causes of tubular cell apoptosis [4]. Increased 
apoptosis activate cellular infiltration, interstitial cell 
proliferation, and interstitial fibrosis [29, 30]. 

The extent of tubular apoptosis in animal models 
of ureteric obstruction correlates with the severity of 
tubular injury and tubulointerstitial fibrosis [30-32]. 
Also, inhibition of initial tubular cell apoptosis by 
either neutralizing the activity of apoptosis-inducing 
molecules or supplementing with prosurvival factors 
effectively prevents inflammation and attenuates 
progression to fibrosis in the UUO model [33, 34]. 
These researches provide evidence for an apparent 
interplay between early apoptosis and subsequent 
fibrosis, and the apoptosis could be an early event that 
occurs before the onset of frank fibrosis.  

Apoptosis can be triggered either by the extrinsic 
pathway, which involves the activation of death 
receptors on the cell surface, or the intrinsic 

mitochondrial pathway, which involves the release of 
several proapoptotic factors from the mitochondria to 
the cytosol, thereby inducing caspase activations [35, 
36]. There is evidence that this intrinsic mitochondrial 
pathway is involved in stretch-induced tubular cell 
apoptosis. Tubular BAX protein expression increased 
over time after UUO, while there was a decrease in 
Bcl-2 expression [37]. 

Bcl-2 was the first gene shown to be specifically 
involved in the process of physiological cell death. It 
can inhibit apoptosis of many cells triggered by 
diverse aetiology. Bax, having a structural similarity 
to Bcl-2, is able to antagonise the protection offered by 
Bcl-2 [38]. 

Under various circumstances, the activity of the 
Bcl-2 protein may be regulated through caspase 
cleavage [39]. Caspases have been considered to be 
attractive potential targets for treatment of diseases 
because of their crucial role in apoptosis and the 
appealing prospect of small molecule inhibitor 
therapy [40]. Caspases play a key role in the 
modulation of apoptosis and apoptotic pathways, on 
the one hand, caspase-8, an initiator caspase [41] 
which mediates Fas induced death pathway, and 
caspase-9, which is vital for the mitochondrial 
mediated death [42]. On the other hand, caspase-8 
cleaves BID to tBID which translocate to mitochondria 
and release cytochrome c [43]. Caspase-3, the effector 
caspase, is important for both extrinsic and intrinsic 
pathway with well documented role in the regulation 
of neutrophil apoptosis [44].  

In this study, Bcl-2 and Bax proteins showed an 
inverse correlation. Bax protein increased with time as 
Bcl-2 levels fell during UUO. These were consistent 
with and may account for the changes of transient 
proliferation and progressive apoptosis after UUO. As 
the previous studies shows that apoptosis was more 
common in tubules highly expressing Bax protein. 
The results of this study suggest that as regulators of 
apoptosis Bcl-2 and Bax may play key roles in the 
process of tubular atrophy and interstitial fibrosis 
during UUO. 

Cell proliferation and apoptosis are obligatory 
physiological companions in the kidney. Proliferating 
cell nuclear antigen (PCNA), a 36-kDa DNA 
polymerase protein, has an essential role in cellular 
synthesis and cell cycle progression [45]. It may 
express a compensatory proliferative response to the 
loss of cells through programmed cell death in an 
attempt to maintain renal structural integrity. 
Proliferation of the obstructed kidney has previously 
been studied [46]. An increase in proliferation of both 
tubular and interstitial cells, with different time 
courses, was demonstrated. Our data reveal that the 
number of PCNA-positive nuclei in the UUO group 
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was significantly higher than that in the control 
group, The administration of sirolimus significantly 
decreased the number of PCNA-positive nuclei 
compared to UUO rats at the same time point 
(P<0.05). 

Sirolimus (also known as Rapamycin) was 
isolated from a soil bacterium in 1975 [13]. The 
discovery of rapamycin led to the identification and 
cloning of mammalian target of rapamycin (mTOR), a 
serine/threonine kinase, in 1994 [47]. Rapamycin is a 
potent, specific inhibitor of mTOR and does not 
inhibit any kinase other than mTOR [13]. Because of 
its high specificity for mTOR, rapamycin has been 
very useful in establishing the role of mTOR in cell 
biology and in the pathogenesis of disease [47, 48]. 
Although initially isolated as an antifungal agent, 
rapamycin was later found to have potent 
immunosuppressive effects and has been used for 
many years as a component of anti rejection therapy 
for recipients of organ transplants [49]. 

Structural analysis of rapamycin reveals that it is 
an analogue of the macrolide antibiotic FK506. Similar 
to FK506, rapamycin also has immunosuppressive 
effects [11]. Rapamycin analogs with improved 
pharmaceutical properties have been used clinically 
to inhibit both host rejection following organ 
transplantation and the restenosis of coronary arteries 
after angioplasty [50]. 

Additionally, sirolimus proved to have potent 
anti-proliferative actions in the experimental models 
of bleomycin-induced pulmonary fibrosis [21], 
CCL4-induced liver fibrosis [19], cirrhosis progression 
[20], and carbon tetrachloride-induced hepatic fibrosis 
in rats [51]. In the meantime sirolimus exhibit 
anti-fibrotic properties in several rat models of 
chronic kidney disease, including diabetic 
nephropathy, chronic glomerulosclerosis, and 
tubulointerstitial fibrosis [14-18]. In UUO models, 
sirolimus was demonstrated to inhibit interstitial 
macrophages and myofibroblasts [17], reduce renal 
hypoxia, interstitial inflammation [18], delay the 
progression of tubulointerstitial renal fibrosis [15], but 
whether sirolimus affects renal tubular apoptosis after 
urinary tract obstruction is rarely reported. 

The results of this study suggest that Sirolimus 
protects against renal fibrosis, tubular dilation and 
atrophy induced by UUO. Sirolimus treatment 
significantly decrease in the percentage of fibrosis, 
suppressed the tubulointerstitial collagen deposition 
compared with UUO group at the same time point. 
Sirolimus treatment effectively suppressed expression 
of PCNA and tubular apoptosis induced by UUO. 
Furthermore, Sirolimus treatment significantly 
decrease the expression of Bax, caspase-3, caspase-8 
and caspase-9 in response to ureteral obstruction. 

However, Sirolimus treatment significantly increase 
the expression of Bcl-2 compared with UUO group at 
the same time point. 

In conclusion, our study demonstrates that the 
balance between proliferation and apoptosis is of 
critical importance in the process of tubulointerstitial 
fibrosis in response to ureteral obstruction, which is 
partly regulated by Bcl-2 and Bax proteins. Sirolimus 
treatment moderate tubular proliferation and 
apoptosis induced by UUO. In addition, Sirolimus 
moderate expression of Bcl-2, Bax, caspase-3, 
caspase-8 and caspase-9 in response to ureteral 
obstruction. Taken together, our study confirms that 
sirolimus protects the obstructed kidney by inhibiting 
renal tubular apoptosis. 
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