International Journal of Medical Sciences

Impact factor
2.284

21 November 2018

ISSN 1449-1907 News feeds of published articles

Manuscript login | Account

open access Global reach, higher impact

Journal of Genomics in PubMed Central. Submit manuscript now...

Theranostics

Journal of Cancer

International Journal of Biological Sciences

Journal of Genomics

Journal of Bone and Joint Infection (JBJI)

Oncomedicine

Journal of Biomedicine

Nanotheranostics

PubMed Central Indexed in Journal Impact Factor

Int J Med Sci 2018; 15(10):999-1004. doi:10.7150/ijms.25369

Research Paper

AKAP11 gene polymorphism is associated with bone mass measured by quantitative ultrasound in young adults

María Correa-Rodríguez1, Jacqueline Schmidt Rio-Valle2, Blanca Rueda-Medina2✉

1. Assistance Professor, PhD. Faculty of Health Sciences. University of Granada (Spain).
2. Professor, PhD. Faculty of Health Sciences. University of Granada (Spain).

Abstract

Background: Due to the increased prevalence of osteoporosis and direct health care cost of osteoporosis-related fractures, there is a growing interest in identifying genetic markers associated with osteoporosis phenotypes in order to develop genetic screening strategies. We aimed to analyze the possible associations between calcaneal Quantitative ultrasound (QUS), a valuable screening tool for assessing bone status in clinical practice, and ZBTB40 (rs7524102, rs6426749), SP7 (rs2016266) and AKAP11 (rs9533090) genes.

Methods: A cross-sectional study was conducted on 550 healthy individuals of Caucasian ancestry (381 females and 169 males, median age 20.46±2,69). Bone mass was assessed through QUS to determine broadband ultrasound attenuation (BUA, dB/MHz). Single-nucleotide polymorphisms (SNPs) in ZBTB40 (rs7524102, rs6426749), SP7 (rs2016266) and AKAP11 (rs9533090) were selected as genetic markers and genotyped using TaqMan OpenArray® technology.

Results: Linear regression analysis revealed that rs7524102 and rs6426749 in ZBTB40, and rs9533090 in AKAP11 were significantly associated with the calcaneal QUS parameter after adjustments for age, sex, weight, height, physical activity, and calcium intake (p=0.038, p=0.012 and p=0.008, respectively). After applying the Bonferroni correction for multiple testing (p=0.012), only the association of rs9533090 in AKAP11 remained significant.

Conclusion: AKAP11 gene (rs9533090) influences QUS trait in a population of Caucasian young adults. The rs9533090 SNP may be considered a factor affecting peak bone mass acquisition.

Keywords: polymorphism, AKAP11 gene, bone mass, young adults, quantitative ultrasound.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.
How to cite this article:
Correa-Rodríguez M, Schmidt Rio-Valle J, Rueda-Medina B. AKAP11 gene polymorphism is associated with bone mass measured by quantitative ultrasound in young adults. Int J Med Sci 2018; 15(10):999-1004. doi:10.7150/ijms.25369. Available from http://www.medsci.org/v15p0999.htm