International Journal of Medical Sciences

Impact factor
2.399

22 November 2017

ISSN 1449-1907 News feeds of published articles

My Manuscript | My Account

Journal of Biomedicinenew

Theranostics

Journal of Cancer

Oncomedicine

International Journal of Biological Sciences

Journal of Genomics

Journal of Bone and Joint Infection (JBJI)

Nanotheranostics

PubMed Central Indexed in Journal Impact Factor

Int J Med Sci 2017; 14(13):1368-1374. doi:10.7150/ijms.18896

Research Paper

Isolation and determination of four potential antimicrobial components from Pseudomonas aeruginosa extracts

Ling-Qing Xu1, Jian-Wen Zeng2, Chong-He Jiang2, Huan Wang1, Yu-Zhen Li1, Wei-Hong Wen1, Jie-Hua Li1, Feng Wang3, Wei-Jen Ting1, 4, Zi-Yong Sun3✉, Chih-Yang Huang4, 5, 6✉

1. Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangdong, China;
2. Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangdong, China;
3. Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China;
4. Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan;
5. Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan;
6. Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.
* These authors have contributed equally to this paper

Abstract

Background: Pseudomonas aeruginosa can cause disease and also can be isolated from the skin of healthy people. Additionally, it exhibits certain antimicrobial effects against other microorganisms.

Methods: We collected 60 strains of P. aeruginosa and screened their antimicrobial effects against Staphylococcus aureus (ATCC 25923) using the filter paper-disk method, the cross-streaking method and the co-culture method and then evaluated the antimicrobial activity of the chloroform-isolated S. aureus extracts against methicillin-resistant S. aureus (MRSA, Gram-positive cocci), vancomycin intermediate-resistant S. aureus (VISA, Gram-positive cocci), Corynebacterium spp. (CS, Gram-positive bacilli), Acinetobacter baumannii (AB, Gram-negative bacilli), Moraxella catarrhalis (MC, Gram-negative diplococcus), Candida albicans (CA, fungi), Candida tropicalis (CT, fungi), Candida glabrata (CG, fungi) and Candida parapsilosis (CP, fungi).

Results: The PA06 and PA46 strains have strong antimicrobial effects. High-performance liquid chromatography (HPLC) analysis revealed that the major components of PA06 and PA46 that exhibit antimicrobial activity are functionally similar to phenazine-1-carboxylic acid (PCA) and pyocyanin. Preparative HPLC was performed to separate and isolate the 4 major potential antimicrobial components: PA06ER10, PA06ER16, PA06ER23 and PA06ER31. Further, the molecular masses of PA06ER10 (260.1), PA06ER16 (274.1), PA06ER23 (286.1) and PA06ER31 (318.2) were determined by electrospray ionization (ESI) mass spectrometry.

Conclusion: P. aeruginosa can produce small molecules with potential antimicrobial activities against MRSA, VISA, CS, MC, CA, CT, CG and CP but not against AB.

Keywords: Pseudomonas aeruginosa, Staphylococcus aureus, antimicrobial effects, PCA, pyocyanin.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.
How to cite this article:
Xu LQ, Zeng JW, Jiang CH, Wang H, Li YZ, Wen WH, Li JH, Wang F, Ting WJ, Sun ZY, Huang CY. Isolation and determination of four potential antimicrobial components from Pseudomonas aeruginosa extracts. Int J Med Sci 2017; 14(13):1368-1374. doi:10.7150/ijms.18896. Available from http://www.medsci.org/v14p1368.htm