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Abstract 

Experimental modeling of traumatic brain injury (TBI) in animals has identified several potential means 
and interventions that might have beneficial applications for treating traumatic brain injury clinically. 
Several of these interventions have been applied and tried with humans that are at different phases of 
testing (completed, prematurely terminated and others in progress). The promising results achieved in 
the laboratory with animal models have not been replicated with human trails as expected. This review 
will highlight some insights and significance attained via laboratory animal modeling of TBI as well as 
factors that require incorporation into the experimental studies that could help in translating results 
from laboratory to the bedside. Major progress has been made due to laboratory studies; in explaining 
the mechanisms as well as pathophysiological features of brain damage after TBI. Attempts to intervene 
in the cascade of events occurring after TBI all rely heavily on the knowledge from basic laboratory 
investigations. In looking to discover treatment, this review will endeavor to sight and state some 
central discrepancies between laboratory models and clinical scenarios. 
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Introduction 
Scientist and medical practitioners conduct 

research on TBI for two main reasons; Firstly, TBI is 
the number one cause of disability and death in 
people at the prime of their lives (under 45 years of 
age) especially in industrialized countries. TBI is often 
caused by road traffic accidents. Each fatality comes 
with different levels of brain damage to the survivors 
ranging from mild, moderate to severe brain damage1. 
Even though TBI is a major socioeconomic and 
medical problem, its pathogenesis and mechanism is 
not fully understood because it is extremely 
challenging to re-enact the proceedings that led to the 
primary and secondary brain insults2,3. 
Comparatively, TBI is quantifiable and performed 
under controlled environments in the laboratory.  

Secondly, research conduction is still ongoing 
and will continue because although a whole lot of 

neuro-protective agents have been studied and 
researched, the very ones that have made or shown 
promises in laboratory models have failed to provide 
consistency and strikes in human trials4-7. Evaluating 
and testing the effectiveness of therapeutic agents in 
laboratory models will hence continue to be an 
important precursor to their functions in humans. 
This review highlights the contributions of different 
types of animal models especially their strengths in 
unraveling the neuropathological features of TBI and 
their weakness that has slowed the translation of 
experimental results at the bedside. Considerably 
there has been a lot of investigation into TBI with 
animal models but no novel therapy has been 
successfully translated from the bench to the clinic. 
Despite the fact clinical trials have well described 
limitations that might be contributing factors to these 
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failures, several modeling limitations account for the 
lack of therapeutic progress from bench side to the 
bedside. TBI models usually omit one or more critical 
and clinically essential pathophysiological feature. In 
this review, several important clinical 
pathophysiologic factors in TBI, namely secondary 
insults (i.e., hypotension and/or hypoxemia), coma, 
and aspects of standard neuro-intensive care 
monitoring and management strategies (i.e., 
intracranial pressure [ICP] monitoring and 
ICP-directed therapies, sedation, mechanical 
ventilation, and cardiovascular support) requiring 
incorporation into animal models are discussed. 

Classification of brain injury 
Traumatic brain injuries are classified on 

different levels. In this article we will categorized 
them from the clinical point of view as either focal or 
diffuse injuries8. A description concerning brain 
injures pertains to all kinds of brain injuries in 
different environments both civilian and military. 
Both diffused and focal brain injuries have their 
distinct features at the clinical level, which are usually 
visible with the help of radiology. Focal brain injuries 
for example can be easily identified by using standard 
imaging modalities such as CT and MRI. From table 1, 
focal brain injury is usually categorized based on the 
location of the bleeding with respect to the brain: 
within the brain (intracerebral hematomas; tissue 
tears), on the surface of the brain (acute subdural 
hematoma; subarachnoid hemorrhage; extradural 
hematoma), or in the cortical gray matter (cerebral 
contusion). All these kinds of focal brain injuries can 
be observed in severely or moderately injured 
population. Nevertheless, in mild head injuries the 
only focal brain injury that appears is subarachnoid 
hemorrhage. However, because mild brain injuries 
with subarachnoid hemorrhage are rare, it is 
appropriate to state that mild brain injuries are 
predominantly classified as diffuse injuries. Diffuse 
brain injuries are defined as injuries not located to just 
one area of the brain but spread or distributed all over 
the brain. A common component or a typical feature 
of diffuse brain injuries is brain swelling that appears 
over time following injury9, 10.  

Consequences of primary traumatic brain 
injury 
Loss of consciousness 

Acceleration of human head produces different 
levels of injury to the brain. An important factor in 
determining the level of neurological abnormality is 
the duration of the acceleration; longer periods of 
acceleration will result in traumatic coma whilst 

shorter periods will usually produce subdural 
hematoma. Loss of consciousness is a feature of all 
categories of traumatic brain injury (mild moderate or 
severe injury). In mild injury loss of consciousness 
persist for few minutes however in severe injury 
consciousness is lost from days to weeks. The 
duration of loss of consciousness is also directly 
related to reactive axons. 

Table 1. Brain injury classification  
Brain Injuries 
Primary traumatic 
brain damage  
(neural or vascular 
[or both]) 
 

Diffuse Diffuse axonal injury 
(DAI) 

 

Diffuse vascular 
injury (DVI) 

 

Focal Vascular injury 
resulting in 

Intracerebral 
hemorrhage 

Subdural 
hemorrhage 

Extradural 
(epidural) 
hemorrhage 

Axonal injury  

Contusion  

Laceration  

Secondary traumatic 
brain damage 
 

Diffuse Diffuse  
hypoxic-ischemic 
damage 

 

Diffuse brain swelling  

Focal Focal 
hypoxic-ischemic 
injury 

 

Focal brain swelling  

 

Contusions  
Most TBI occur with contusions and a brain with 

contusions confirms the presence of brain injury as 
result of trauma. Contusions are also kinds of vascular 
injury particularly to small blood vessels. Different 
degrees of contusions exist following brain injury. 
Amongst them are those at right angles to the cortical 
surface. Contusions have several effects on the 
affected brain, typically it affects gyral crest and 
usually move towards a necrotic area including the 
sub adjacent white matter. Brain injury contusions 
have characteristics of continual expansion due to 
progressive hemorrhage, necrosis and edema. They 
are also referred to as coup contusions because they 
often occur beneath the impact site11-13. Other 
abnormalities that usually occur with brain 
contusions are skull fractures and lacerations where 
there is typical disruption of brain parenchyma. Any 
contusions that occur opposite to the impact site are 
termed contrecoup contusions. 

Hemorrhage 
Hemorrhage occurs in traumatic brain injury 

because of the tearing of blood vessels at the point of 
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impact. However, there are also delayed 
post-traumatic hematomas that occur several hours 
after initial impact, which cause herniation and 
intracranial pressure elevation. Following brain 
injury, different kinds of bleeding may occur in 
different parts of the brain. The most common of 
vascular injury is subarachnoid hemorrhage, which is 
bleeding into the subarachnoid space. Subarachnoid 
hemorrhage is usually minor and may easily be 
absorbed into the cerebrospinal fluids. However, they 
can easily evolve into a space-occupying lesion. 

Again, rupturing of bridging veins after an 
inertial acceleration of the brain leads to subdural 
hemorrhages that may extend over an entire 
hemisphere. Another frequent form of bleeding 
following head impact is intra-ventricular 
hemorrhage coupled with hematomas in the brain 
substance (intracerebral hematomas). All over the 
basal ganglia and central white matter can also be 
found hemorrhages called the intraparenchymal 
hematomas. 

Lastly are the petechial hemorrhages that occur 
in diffuse vascular injury that leads to death within 
minutes after impact. Hematomas together with brain 
swelling contribute mainly to increase intracranial 
pressure, distortions, shifts and eventually herniation 
of brain parenchyma. Generally, edema occurs 
around brain contusions and intracerebral 
hematomas. 

Axonal injury 
Traumatic axonal injury can be categorized as 

primary axotomy or secondary axotomy. Primary 
axotomy occurs when there is complete resection of 
neural tissues along with glial cells and blood vessels 
whereas secondary axotomy occurs in less severe 
mechanical insults. In terms of duration, primary 
axotomy is an instantaneous process unlike secondary 
axotomy which takes many hours to days to occur14. 
Research has shown that between the period of 
primary axotomy and secondary axotomy lies a 
window of opportunity for therapeutic intervention15, 

16. The help of immunocytochemistry can do detection 
of axonal injury in TBI where antibodies are deployed 
to transport proteins such as neurofilament protein, 
amyloid precursor protein (APP), and synaptophysin. 
APP staining is the most sensitive technique for 
axonal injury17 and it’s able to detect axotomy within 
minutes after impact with an added advantage of 
minimum background interference since uninjured 
axons do not stain with APP18-22. Traumatic axonal 
injury displays several molecular changes to the brain. 
Early changes after axonal injury include influx of 
calcium either through receptor-mediated, 

voltage-mediated or transient defects in the 
plasmalemma. Calcium over load causes enzymes 
such as protease and gene activation manifested as 
axonal swelling. Complete axotomy occur and 
become apparent when wallerian degeneration 
occurs16, 23. Microglia reaction also occurs following 
axonal injury. Mechanical and ischemic injury 
contributes or combines to make up the total amount 
of axonal injury in a brain at any particular time. 
Staining techniques are however unable to distinguish 
between these two factors making up total axonal 
injury24. 

Animal models and their types 
To understand the basic elements of how the 

central nervous system responds to injury and 
mechanical inputs animal models have been the most 
reliable and significant techniques employed by 
researchers. The ultimate aims of most or all animal 
models is to reproduce and replicate as much as 
possible a clinical TBI in a laboratory setting depicting 
the morphological, biochemical, molecular and 
behavioral changes seen after TBI. There is a 
considerable amount of literature depicting several 
years of research that has been used to define the 
scenarios causing TBI in the laboratory using animal 
models. Research using animal models span on all 
scales from population-based surveys to the 
molecular level, all in an attempt to determine the 
significant signatures of injuries. To be able to 
maximize the efficacy and achieve useful outcomes 
and results from animal models for proper translation 
to the bedside certain clinical and salient points need 
to be considered and put into consideration. First of 
all the work must start from the clinical situation and 
environment to be able to define the incidence and 
prevalence of injury. 

Finally and most importantly, all efforts and 
desire should be made to translate the laboratory 
outcomes to find effective countermeasures against 
insults caused by traumatic brain injury. Enormous 
amount of animal models of TBI have been developed 
since the early 1980s using different kinds of species 
including cats, dogs and nonhuman primates. Recent 
animal models of TBI have been developed using 
rodents and remain the most widely adopted species 
in preclinical studies. Rodents are dominating the TBI 
field of studies because of several reasons such as 
ethical issues elimination and easy postsurgical needs. 
Carry out research with rodents are also cost effective 
and simple compared to larger animals and human 
models. At present, several types of animal models of 
TBI exist, and the strengths and weakness of each 
model are discussed in table 2. 
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Table 2. Animal models of TBI 

ANIMAL MODEL STRENGTH WEAKNESS 

Repetitive Brain Injury Model Effective in characterizing the molecular and 
cellular bases of repetitive injury. 

Do not replicate the head movements, both the 
rotational and angular acceleration that are 
common in sports related injury116 

Blast Injury Model Mimics the real morphological damage seen in the 
personnel who sustained TBI from the military 
conflicts results in the unique pathological features 
seen in blast-induced mild TBI 

Do not replicate the posttraumatic seizures, a 
common consequence of blast - induced mild TBI 
seen in humans 

Penetrating Ballistic-Like Brain Injury Model helpful in characterizing the immediate and 
subacute (up to 7 days) changes in intracranial 
pressure seen after brain trauma 117.Captures 
several unique temporal aspects of a ballistic brain 
injury and may be a highly relevant model of 
moderate-to severe brain trauma for mechanistic 
studies. PBBI causes extensive intracerebral 
hemorrhage on the primary lesion site owing to the 
penetrating nature of the injury and the temporary 
cavity that it forms to truly model gunshot wound 
injuries to the brain. 

Primary disadvantage concerns the expertise 
required of the investigator performing the 
procedure 

Weight-Drop TBI Model mimics closed head injury with accompanying 
concussion and contusion, a common type of TBI in 
humans. Inexpensive, easy to perform, and capable 
of producing graded diffuse axonal injury. 

relatively high variability in injury severity that is 
produced 
 

Controlled Cortical Impact Injury Model time, velocity, and depth of impact can be 
controlled, making it more useful in studying the 
biomechanical changes that occur following TBI12.  
lack of rebound injury because the impact delivered 
by the device is gravity driven118. 

only unilateral damage is produced, with rare 
involvement of the contralateral cortex 

Fluid Percussion Injury Model replicate the common pathophysiological features 
seen in human TBI119. 
Highly reproducible, and the investigator can 
regulate the severity of TBI. 

does not produce skull fracture and results mainly 
in focal injury, it cannot replicate moderate-to 
severe TBI in humans where skull fractures and 
contusions across multiple brain regions are 
present120 . 

 
 

Physiological changes observed with 
animal model TBI  

Animal models of TBI causes several 
physiological changes that are typical of clinical 
changes observed in human TBI. Categorically 
changes observed with animal models of TBI can be 
considered as either acute systemic, cerebrovascular, 
neurological or anatomical after injury. Acute 
systemic changes observed in some animals 
immediately after low levels of injury include an 
increased mean arterial blood pressure that remains at 
higher levels for the first 10-15minutes25 compared to 
the mean arterial blood pressure before injury. 
However, for a higher level of injury in some TBI 
models the laboratory species usually become 
hypotensive within an hour post injury. Nevertheless, 
in certain species tachycardia or bradycardia may be 
observed in the first minutes after injury.  

Another prognostic factor that changes and is 
affected acutely in animal models is intracranial 
pressure. Intracranial pressure rises transiently within 
the first 20minutesto about 50mmHg25. Traumatic 
brain injury leads to an increase in central nervous 
system activity that will eventually compel plasma 
glucose levels to be elevated exponentially. Increased 

glucose levels tend to proportionally increase its 
utilization in the ventral tegmental nucleus of Gudden 
and the areas of the anterior thalamic nucleus26. These 
areas with increased metabolism are considered to be 
exhibiting functional changes of neural activity after 
injury. 

A vital parameter that also increases transiently 
after traumatic brain injury is cerebral blood flow 
(CBF). The brain’s inability to auto regulate CBF is 
related to endothelial lesions that appear after injury. 
Activation of processes that leads to Synthesis of 
prostaglandins and release of free radicals after 
mechanical injury to the brain pays a major role in 
these microvascular abnormalities. Studies have 
revealed also a transient break down in the blood 
brain barrier in vital anatomical parts of the brain 
especially in the brain stem regions after brain 
injury27, 28. Break in blood brain barrier allows for 
hemorrhages to occur as deep as pontomesencephalic 
junction25. At the clinical level measurements such as 
electroencephalography (EEG) are observed to vary 
after traumatic brain injury compared to the 
uninjured brain. EEG amplitude depresses acutely 
coupled with pupillary dilatations and apnea after 
brain injuries. The above physiological changes give 
insights into the respiratory, pulmonary, 
cardiovascular and cerebrovascular consequences of 
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traumatic brain injury. Cerebrospinal fluid analysis 
following brain injury shows increased levels of 
acetylcholine which is a cholinergic 
neurotransmitter29. The clinical state of a patient 
depends on the levels of acetylcholine. 

Significance of TBI animal models 
By all standards our knowledge of the 

pathophysiology of TBI has been widened and 
broadened because of the development of clinically 
relevant experimental models of TBI30. Below we will 
elicit some of the pathophysiological findings that 
experimental TBI models have been able to reveal to 
scientist and researchers. 
• Following TBI there be will be long term 

impairments of cognitive and neuromotor 
function31. 

• There is a relationship between the extent of 
cognitive dysfunction and severity of TBI as well 
as neuronal loss32, 33. 

• Neurological motor deficits shows signs of 
recovery within 1 year while cognitive deficits 
persists up to 1 year after severe TBI34. 

• Axonal degeneration continues in the corpus 
callosum, striatum and injured cortex for as long 
as half a year and a year in the thalamus34. 

• Ventriculomegaly, thalamic degeneration, 
shrinkage of the hippocampal pyramidal cell 
layer, progressive bilateral neuronal death in the 
dentate hilus, reactive astrocytosis, and 
progressive atrophy of the cortex, thalamus, 
hippocampus, and septum endures up to 1 year 
following brain injury35, 36.  

• Substantial tissue loss occurs in the impact 
region after TBI. 

• Neuronal cell loss happens in the hippocampus 
following TBI. 

• A relationship tends to exist between neuronal 
cell loss and behavioral deficits12, 37-39. 

• Cell death following TBI is primarily caused by 
necrosis40. 

• Cell death occurs both in the acute and chronic 
phases after brain injury in neocortex, thalamus 
and hippocampus regions of the brain41. 

• Primary and secondary axotomy both occur after 
traumatic brain injury however it is secondary 
axotomy that is widely regarded as the main 
pathological finding15, 42. 

Limiting factors in TBI animal models 
In the following sections, we will discuss some of 

the shortcomings or variables that investigators fail to 
incorporate into TBI animal models. These factors are 

extremely important in finding positive results from 
TBI animal models.  

Secondary Insults 
Secondary insults such as hypotension and 

hypoxemia occur following traumatic brain injury. 
Close to about 30% of severe TBI patients will exhibit 
hypotension and/or hypoxemia43. Even though the 
frequencies of secondary insults with TBI patients are 
comparatively high, animal models of TBI barely 
incorporate them. From the period of 1996 -2000 of the 
168 cases of animal models of TBI reviewed in the 
journal of neurotrauma, only about 7 percent had 
incorporated a secondary insult7. Between secondary 
hypotension and secondary hypoxemia the later has 
been incorporated quiet often in animal models of 
TBI, technical ease being the most likely reason for 
this. A few rodent models of TBI have had 
posttraumatic hypotension been incorporated even so 
they do happen in conjunction with hypoxemia. 
Despite the fact that intracranial hypertension is a 
common factor associated with TBI in the clinic 
impact-acceleration models without secondary insults 
demonstrated no intracranial hypertension or 
neuronal death. Models that have tried to explain the 
effects of posttraumatic hypotension have done so 
more commonly in larger animals such as pigs and 
cats relatively to rodents. It is worth nothing that 
many and several studies have been conducted on the 
effects of fluid resuscitation strategies after traumatic 
brain injury44-50 while posttraumatic hypotensive 
effects have been poorly dealt with in the laboratory 
environment. Majority of these animal models of TBI 
have been able to include parameters such as 
intracranial pressure monitoring, cerebral blood flow, 
oxygen delivery and so on but very few have been 
able to be compared with secondary insults, hence it is 
easy to speculate that these models have been limited 
in their capacity to specifically explain the 
mechanisms of neuronal damage intensified by 
secondary insults leading to some of the failures 
pertaining to translating laboratory results to the 
bedside. This is not to say that fluid resuscitation 
models are not needed because optimal approach to 
fluid resuscitation for hypotensive patient following 
traumatic brain injury needs to be investigated. 
Studies have compared restoration of mean arterial 
pressure by either fluid restoration or treatment with 
the vasopressor; phenylephrine using a pig cerebral 
injury model and revealed that fluid resuscitation 
causes earlier cerebral blood flow51. In the other 
words restoration of mean arterial pressure alone will 
not counteract the many biochemical events of injury 
produced by hypotension. 
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Post traumatic Coma 
Virtually all patients suffering from severe 

traumatic brain injury will go into coma. 
Posttraumatic coma is an important prognostic factor 
in quantifying mortality and morbidity52 after brain 
trauma. At the clinical level coma after the Glasgow 
Coma Scale (GCS) that ranges from a score of GCS3 - 
GCS15. This measures trauma important 
prognosticator is caused by several insults after brain 
injury. Compression of brain stem, diffuse axonal 
injury, and mass effect from hemorrhage are some of 
the etiologies of coma52. Incorporating coma into 
animal models is very crucial because GCS is able to 
predict the functional outcome of a traumatic brain 
injured patient. With an established fact that coma is 
such an important parameter for translating 
experimental results to the bedside modeling coma in 
laboratory animal models of TBI has proven to be 
tedious. The first successful model of post-traumatic 
coma in primates happened in 198253. The very few 
models that have shown some signs of hope have had 
their own form of limitations for example all the 
animals that were used to model posttraumatic coma 
by acceleration in the sagittal plane could not 
demonstrate DAI or coma but only concussive injury 
which is comma lasting for just a period of 15mins or 
less53. In an attempt to achieve better results with the 
modeling of posttraumatic coma in a laboratory 
setting acceleration in the coronal plane have been 
deployed; the end result to that approach was a coma 
lasting for more than 6 hours in half the population of 
animals used. Literature review shows that several 
attempts have been made to model this insult via 
modifications of the planes of acceleration that 
produces traumatic brain injury in a laboratory 
environment54. Although some knowledge and 
findings into posttraumatic coma have been 
actualized the duration and relationship between DAI 
and coma has been unsatisfactory55. DAI modeling 
has seen much success compared to coma. Several 
types of animal models (impact acceleration model, 
CCI, angular acceleration models) in larger animals 
have failed to produce coma56-58. The task involved in 
producing DAI with coma in TBI animal models may 
be connected to the difference in brain structure. 
Asphyxia insults have been used to make some 
advances in modeling coma using FPI however this 
does not accurately epitomize DAI –induced coma59, 

60. In addition to the many means adopted to model 
traumatic coma in animal models mass effect has also 
been deployed61 and its proven futile in rodent 
models. Mechanical inputs alone is unable to produce 
coma in animal models of TBI, in the same vein 
unconsciousness has been produced without 
mechanical inputs62. The above varying result 

obtained from the experimental table has affected the 
advancement of therapeutic interventions in the 
clinic.  

Neurointensive Care Monitoring and 
Management Strategies 

Herniation of brain parenchyma as well as 
ischemia after TBI prompts clinicians to administer 
neurointensive care in an attempt to treat and 
improve patients’ neurological deficits. 
Neurointensive care and monitoring is a function of 
both intracranial pressure (ICP) and cerebral 
perfusion pressure (CPP). The use of neurointensive 
strategies to counter the devastating consequences of 
ischemia has shown promising results63. Deeper 
understanding of ICP and CPP and the concept of 
neurointensive management are paramount for 
severe brain injury patients. Neurological 
deterioration after traumatic brain injury has been 
shown and demonstrated to be strongly linked to 
intracranial hypertension and ICP. The clinical 
significance of ICP is overwhelming but it is barely 
investigated in TBI models. Majority of models apply 
unclosed craniotomies that limit the monitoring of 
ICP. Also, those models with intact cranium often 
have skull fractures that also limit ICP monitoring. 
Although skull fractures and open craniotomies limit 
the monitoring of ICP and CPP they have been 
investigated and assessed at the acute phase in some 
laboratory TBI models64, 65,66. A couple of other means 
to monitor ICP/CPP indirectly has been conducted by 
investigating posttraumatic brain swelling/edema 
instead of ICP67, 68,69, 70 directly. Continual studies into 
the dynamics of ICP and CPP therapeutic 
interventions are required for the sub-acute period of 
traumatic brain injury. Compared to functional 
outcome investigations after traumatic brain injury 
very little has been done to discover the mechanisms 
underlying neurointensive care strategies after brain 
injury. Unfortunately, there are just few studies that 
target posttraumatic edema and intracranial 
hypertension. The overall severity of some animal 
models of TBI especially rodents is not entirely high 
so doesn’t require mechanical ventilation and strict 
neurointensive care thus limiting the usefulness of 
these models in the clinical environment. The 
behavior of experimental models are therefore 
different in relation to the clinical settings as 
paradigms such as herniation and de-compressive 
craniotomies have not been effectively modeled61. 
Several other important aspects of neurointensive care 
that have poorly been addressed in TBI models 
include oxygen therapy, surgical decompression, 
catecholamine therapy and so on. Provision of oxygen 
after traumatic brain injury attenuates secondary 
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ischemia and other secondary insults71 in the 
resuscitation phase. The absence of oxygen therapy in 
many experimental models of TBI has limited 
progress of novel therapeutic modalities in the clinical 
setting. Exogenous catecholamines that are 
administered to severe TBI patients to control mean 
arterial pressure (MAP) and CPP are also poorly 
investigated and understood. Models that have done 
some work in this regard have shown promising 
signs72, 73. Surgical de-compressive approaches that 
are common in the clinical setting have not been 
applied vigorously in TBI models. The size of infarct 
reduces significantly following de-compressive 
surgery74. Clinical trials have not been beneficial with 
several models lacking incorporation of surgical 
approach. It is possible that the lack of all these 
paradigms in experimental models has delineated 
clinically relevant strategies. 

Table 3. Classification of secondary brain insults. 

Systemic 
Insults 

Ischaemia hypotension 

anaemia or changes in haemodynamics 

Hypoxemia/ 
Hypercarbia 

respiratory obstruction 

Pulmonary complications 

suppression of respiratory 

Hyperthermia post-traumatic cerebral inflammation 

thrombophlebitis 

drug reaction 

direct hypothalamic damage 

Electrolyte 
abnormalities 

hypernatremia 

hypernatremia 

hypomagnesaemia 

hypocalcaemia 

Hyperglycaemia anaerobic metabolism 

increase inflammation response 

aggravate brain ischaemia 

Polytrauma bone fracture 

liver laceration 

other organs injury 

Infection/Sepsis increase brain inflammation 

brain metabolic alterations 

Thrombocytopenia/ 
Coagulopathy 

new or progressive haemorrhagic 
changes 

Ethanol 
consumption 

abnormal haemodynamic response 

Excessive release of BNP 

suppression of ADH 

Intracranial 
Insults 

Increased ICP/ 
Cerebral 
hypoperfusion 

 

Brain 
shift/Herniation 

 

Brain 
oedema/swelling 

 

Cerebral angiospasm  

Hydrocephalus  

Epilepsy  

 

Recommended Clinical Secondary Insults 
Requiring Incorporation into TBI Animal 
Models 

To achieve better results from laboratory TBI 
animal models we will recommend insertion of some 
of the variables depicted in table 3 in future research. 

Hyperglycemia 
Hyperglycemia is one of the most reliable 

prognosticator after traumatic brain injury75, 76. 
Hyperglycemia causes lactic acidosis and neuronal 
injury in the brain by influencing anaerobic 
metabolism and production of excitatory amino acids. 
Even though there isn’t a specific standard glucose 
level; clinicians adopt strict glucose control measures 
after traumatic brain injury to reduce devastating 
effects of hyperglycemia77. For such an important 
clinical factor without a specific or standardized 
guideline it is paramount that clinicians and 
researchers delve deeper to acquire more knowledge. 
In creating TBI models that will cater for 
hyperglycemia and its mechanistic effect one should 
consider TBI severity as well as the amount of glucose 
infusion. Currently TBI models complicated by 
hyperglycemia have had inconsistent results with 
some studies stating that hyperglycemia has a 
negative outcome on TBI patients whilst others have 
stated otherwise78-81. We suggest that the timing of 
glucose infusion after or before TBI should be further 
investigated. Secondly different combinations of time 
of glucose infusion and TBI severity needs to be 
assessed to gain much understanding about 
hyperglycemia and TBI correlations. Hyperglycemia 
does not cause adverse effects after traumatic brain 
injury without other secondary insults such as 
ischemia82 hence TBI models complicated by 
hyperglycemia will be appropriate to be further 
complicated with ischemia for effectiveness and 
clinical importance. 

Hyponatremia 
TBI is often associated with electrolyte 

abnormalities including hypernatremia and 
hyponatremia. Hyponatremia tends to have a much 
higher prognostic effect on TBI outcomes compared to 
hypernatremia83. Hyponatremia can be classified as 
either mild or severe with different clinical outcomes. 
It’s been proposed that hypopituitarism, volume 
overload, syndrome of inappropriate secretion of 
anti-diuretic hormone (SIADH) and cerebral salt 
wasting syndrome (CSWS) cause posttraumatic 
hyponatremia84. TBI models complicated with 
hyponatremia require further research so as to be able 
to answer such critical questions: 



Int. J. Med. Sci. 2017, Vol. 14 

 
http://www.medsci.org 

501 

1) What is the real mechanism underlying the 
causes of hyponatremia after TBI?  

2) Is hyponatremia just a symptom or it’s an 
insult leading to poor outcomes after TBI? 

Even though thyponatremia is a common insult 
observed in TBI patients they have not been really 
imposed on laboratory TBI models. Previous work on 
hyponatremia and TBI could not clarify the 
pathogenesis of how hyponatremia aggravates brain 
injury85. Another study has linked the adverse effects 
of hyponatremia to hypoxic or ischemic factors 
instead of distorted blood brain barrier86. Another 
avenue that could be deployed to model 
hyponatremia in TBI model is relying on the idea that 
hyponatremia results from hypopituitarism87.  

Last but not the least infusion of ethanol to TBI 
models can also be sorted to reproduce 
hyponatremia88. Should some of these avenues be 
investigated further and deeper there is greater 
chance that some of the laboratory results could be 
translated to the bed side for effective therapies 
against TBI. 

Hyperthermia 
Post-traumatic hyperthermia is a state of body 

temperatures without background infections that is 
higher than normothermic patients. Basically, 
temperature elevations after trauma are cause by 
inflammations, or direct hypothalamic provocations. 
Posttraumatic hyperthermia is a neurogenic fever that 
is comparatively resistant to antipyretic drugs89, 90. 
Irrespective of the causes of hyperthermia, it 
periodically causes high metabolism as well as high 
levels of leukocyte activation. The cumulative effects 
of posttraumatic hyperthermia worsen the outcome of 
patients90, 91. Traumatic brain injury patients require to 
be maintained at a normal core temperature92. This 
review aims to discuss post-traumatic hyperthermia 
since its pathophysiology is poorly understood both 
at the experimental and clinical levels. Moreover 
current strategies for controlling post-traumatic 
hyperthermia remain ineffective and unreliable92. 
Some research conducted in the past about TBI linked 
the damaging of hypothalamus to hyperthermia90, 93. 
Efforts to incorporate hyperthermia into TBI models 
so as to help understand the mechanisms underlying 
why hyperthermia aggravates neuronal damage and 
loss has also been conducted94 and found promising 
results. Post-traumatic hyperthermia was however 
incorporated at different periods after CCI or FPI 
(delayed94 and immediately95, 96). Special attention 
should be paid to investigating both core and brain 
temperature after traumatic brain injury since both 
plays critical role in neutrophils elevation. Whole 
body hyperthermia leads to the elevation of 

neurotoxic zinc affecting the hippocampal neurons97, 

98 whiles cortical hyperthermia increases extracellular 
glutamate levels99. These and many other results 
buttress the suggestion that posttraumatic 
hyperthermia increases and induces inflammation 
after TBI.  

To further the advancement of clinical therapies 
involving TBI patients, researchers will have to focus 
their attention on incorporating posttraumatic 
hyperthermia in their animal models for all kinds of 
TBI grading / severities (mild, moderate and severe). 

Hypoxemia/hypotension/ischemia 
The brain by default is an organ with high rate of 

metabolism which increases further after traumatic 
brain injury100. An increase metabolism requires high 
oxygen supply to meet the demands however the 
brain lacks oxygen reservoir hence it is extremely 
sensitive to hypoxemia. In addition to high rates of 
metabolism other insults that causes hypoxemia 
following traumatic brain injury includes pulmonary 
disorders such as pneumothorax or atelectasis101.  

 Finally, respiratory failure as a result of 
disrupted brain pathways also contributes to brain 
hypoxemia after TBI. Mortality and morbidity rates 
are significantly affected by hypoxemia or 
hypotension after traumatic brain injury91, 102. The 
significance of hypoxemia as far as finding 
therapeutic interventions of clinical TBI cannot be 
overemphasized for the very reason that severe 
hypoxemia increases the neurological deficits 
observed after traumatic brain injury as well as the 
aggravation of the injured brain103. Correlations of 
hypoxemia with high energy phosphate104, cerebral 
blood flow105 and blood brain barrier dysfunction105 
proves that TBI models require the incorporation of 
hypoxemia to increase their efficacy and clinical 
significance. Other factors that require attention when 
incorporating hypoxemia into TBI models include the 
connection between hypoxia and the severity of TBI. 
In building and developing TBI models it is 
recommended that arterial oxygen pressure be 
maintained at a steady rate and efforts made to set the 
FiO2 at 21%. Should these factors and issues be dealt 
with appropriately when developing animal TBI 
models several adverse effects as a result of 
hypoxemia can be displayed and understood101, 106-111. 
Experimental studies show that hypoxemia has more 
adverse effects than hypotension after TBI106, 112-114 
whilst clinical studies have suggested hypotension to 
be the sole prognosticator after TBI91. These 
conflicting results warrant further research and 
investigation into the synergistic effect of hypoxemia 
and hypotension43, 114, 115. 
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Figure 1. Physiology of traumatic brain injury 

 

Conclusion 
Several TBI models has assisted in explaining the 

molecular and biochemical basis of traumatic brain 
injuries to a greater extend this has helped in finding 
treatments to intervene the cascades of events that 
occur after primary injury to the brain. Despite all the 
carefully conducted TBI researches; damaging insults 
to the brain as a result of trauma still continues to be a 
greater burden to clinician-scientist. This review has 
sighted that the discrepancies in translating bench 
results to the bedside could be due to the lack of 
secondary insults in laboratory TBI models. Future 
models of TBI should make necessary effort to 
incorporate secondary insults to achieve as close as 
possible clinical scenarios in the laboratory. 
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