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Abstract 

The development of better orthopedic implants is incessant. While current implants can function 
reliably in the human body for a long period of time, there are still a significant number of cases for 
which the implants can fail prematurely due to poor osseointegration of the implant with native 
bone. Increasingly, it is recognized that it is extremely important to facilitate the attachment of 
osteoblasts on the implant so that a proper foundation of extracellular matrix (ECM) can be laid 
down for the growth of new bone tissue. In order to facilitate the osseointegration of the implant, 
both the physical nanotopography and chemical functionalization of the implant surface have to be 
optimized. In this short review, however, we explore how simple chemistry procedures can be 
used to functionalize the surfaces of three major classes of orthopedic implants, i.e. ceramics, 
metals, and polymers, so that the attachment of osteoblasts on implants can be facilitated in order 
to promote implant osseointegration. 
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1. Introduction 
The utility of stem cells to regenerate whole tis-

sues is a cherished goal in tissue engineering. As em-
bryonic stem cells (ESCs) are capable of differentiat-
ing into osteoblasts (bone forming cells) and are rela-
tively immune-privileged. (1) ESCs represent the ideal 
source of new osteoblasts for bone tissue engineering. 
However, the clinical utility of ESCs is currently still 
limited because of 1) the ethical and safety issues as-
sociated with their use and 2) mounting evidences 
indicate that ESCs can generate teratomas upon 
transplantation into the patient.(2) Therefore, re-
searchers are focused on utilizing other types of stem 
cells, especially bone marrow stromal cells 
(BMSCs).(3) BMSC is a type of non-hematopoietic 
stem cell that was found in bone marrow by Frieden-
stein et al. in the 1960s.(4) Since then, BMSCs has 
shown potential in the treatment of many diseases, 
e.g. myocardial infarction,(5) graft-versus-host dis-
eases,(6) diabetes,(7) gliomas,(8) and liver cirrhosis.(9) 

Bone-related diseases, such as osteoarthritis and spi-
nal cord injury, have also been treated with 
BMSCs.(10, 11) BMSCs can be isolated from the bone 
marrow via aspiration and purified by flow cytometry 
according to the definition of the International Society 
of Cell Therapy: BMSCs should test positive for the 
expression of CD73, CD90 and CD105, but negative 
for the expression of CD11b, CD14, CD19, CD34, 
CD45, CD79a and HLA-DR.(12) The expression of cell 
surface antigens such as STRO-1 can also be used as 
additional biomarkers of BMSCs.(13)  

A very large number of BMSCs (nine million 
cells/kg body weight) is required for clinical applica-
tions,(14) but the yield of BMSCs from traditional 
bone marrow aspiration (~1 ppm) is very low.(15) 
Therefore, the expeditious ex vivo production of 
BMSCs is urgently needed. Current cell expansion 
approaches include the utility of cell factory,(16) 
spinner flasks,(17) rotary wall vessels,(18) hollow fi-
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ber bioreactors (19) and packed bed perfusion biore-
actors.(20) In order to harvest clinical grade BMSCs, 
the culture media used for the ex vivo expansion of 
BMSCs are gradually being switched from the usual 
fetal bovine serum (FBS) or fetal calf serum (FCS) 
containing media to human platelet-derived media or 
totally ‘xeno-free’ media.(16, 17, 21, 22) This is neces-
sary because FBS or FCS contains animal proteins that 
may trigger an immune response from the patient 
upon BMSC infusion. However, the long-term cul-
turing of BMSCs to increase production has an in-
herent drawback: the BMSCs may undergo senes-
cence, i.e. the shortening of their telomeres. (21, 23) 
This can lead to the loss of their self-renewal potential, 
thus limiting their usefulness in tissue engineering. To 
circumvent this problem, several strategies have been 
employed, including 1) the addition of growth factors 
to the culture media, 2) culturing the BMSCs under 
low oxygen tension or in a three-dimensional (3D) 
scaffold, and 3) overexpression of the human te-
lomerase reverse transcriptase gene in BMSCs.(21, 23) 

In order to induce osteogenesis of BMSCs, a strict 
protocol has to be followed.(23, 24) The necessary 
osteogenic differentiation medium is a complex solu-
tion containing dexamethasone, ascorbic acid, and 
β-glycerophosphate.(24) Numerous growth factors 
and hormones, such as calcitriol (also known as 
1,25-dihydroxyvitamin D3), bone morphogenetic 
proteins (BMPs),(25) or transforming growth factor-β 
family members, are also required to enhance the ef-
ficiency of differentiation.(23) But besides the medium 
components, the biomaterial on which the BMSCs are 
cultured matters as well. It is important to provide an 
environment that resembles native bone scaffold as 
closely as possible so that the BMSCs can be more 
strongly induced to differentiate into osteoblasts.(26) 
Thus, 3D cell cultures are preferred over 
two-dimensional (2D) cell cultures as the former can 
mimic the spatial distribution of native bone 
tissue.(27) Consequently, many biomaterials have 
been explored as 3D scaffolds for culturing stem 
cells,(28) some of which (natural and synthetic pep-
tide-based biomaterials) have also been reviewed by 
us.(29) However, the differentiation of stem cells is 
highly sensitive to the microenvironment and may 
not be easily maintained for an extended duration.(30) 
For instance, even the stiffness of the biomaterials, 
which can change during the course of culturing the 
stem cells, exerts a large impact on determining the 
differentiation outcome of the seeded stem cells.(31) 
Therefore, since the bulk mass condition for the spa-
tiotemporal support of stem cell differentiation and 
growth into bone is challenging, it might be more 
instructive to provide a physically and chemically 
well-defined surface that is conducive to osteoinduc-

tion of BMSCs, subsequent osteoconduction of osteo-
blasts, and consequent osseointegration of the im-
plant.(32)  

2. Importance of Surface Properties in 
Stem Cell Attachment 

The nanotopography of stem cell culture sub-
strates has recently been recognized to play a major 
role in determining the differentiation outcome of 
stem cells,(33) a complex process in which nanoto-
pography exerts its influence on stem cells by affect-
ing the focal adhesion forces the stem cells sense on 
the substrate surface.(34) Perhaps unsurprisingly, the 
nanotopography of hydroxyapatite ceramics(35) and 
titanium(36) have been found to greatly influence 
osteoinduction of BMSCs and mesenchymal stem cells 
(MSCs). However, in addition to the nanopatterns on 
the substrates, the molecules attached to the surface of 
the nanopatterned surface also affect stem cell differ-
entiation. This is clearly borne out by the weak influ-
ence that even a well-defined nanopatterned surface 
of poly(methylmethacrylate) (PMMA) has on the os-
teoinduction of MSCs.(37) On the other hand, syner-
gistic effect on osteoinduction have been observed 
when BMP, which can accelerate osteogenic differen-
tiation,(38, 39) were immobilized on poly(glycidyl 
methacrylate) (PGMA).(40) Hence, it is clear that 
chemical functionalization of implant surface should 
be combined with well-defined nanopatterned im-
plant surface to achieve maximal promotion of oste-
oinduction (Figure 1). 

As Benoit et al. have shown, functional groups 
ranging from amine, phosphate, fluorobutyl to car-
boxylic acid on poly(ethylene glycol) (PEG) hydrogels 
direct human mesenchymal stem cells (hMSCs) into 
divergent differentiation fates.(41) Not surprisingly, 
and as observed before,(42) the phos-
phate-functionalized PEG influences hMSCs down 
the osteogenic pathway. Such an influence of chemical 
functional groups on stem cell differentiation is also 
observed with the surface of glass; in this case, amine- 
or thiol-functionalized glass surface is able to promote 
osteogenesis of bone marrow-derived MSCs. (43) In 
these two examples, due to the presence of primary 
chemical groups (methacrylate and hydroxyl on PEG 
and glass surface respectively), they are relatively 
easy to functionalize with secondary chemical groups. 
However, there are many materials used to assist 
bone repair that are not readily functionalized, e.g. 
ceramics, metals and polymers. The following sec-
tions illustrate how these three types of materials can 
be functionalized via simple chemistry procedures in 
order to facilitate attachment of stem cells to promote 
bone growth. 
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Figure 1. Illustration of how physical and chemical modifications can together create an osteoinductive implant surface for osseointegration. 

 

2.1 Surface Functionalization of Ceramics 
Bone is a complex composite material made up 

of, among many others, an organic component of 
collagen and an inorganic component of carbonated 
apatite. (44) Thus, it is natural that one would seek to 
replace bone with, beside bone autografts or allo-
grafts, a replacement implant crafted out of car-
bonated apatite. This could increase the chances that 
the implant would be osseointegrated within the body 
with minimal or negligible autoimmune response to 
it. In this regard, calcium phosphate (CaP) ceramics 
(e.g. hydroxyapatite, tricalcium phosphate ceramics) 
are ideal and have been widely developed as bone 
replacement materials.(45) However, not all CaP ce-
ramics are equally effective as bone replacement ma-
terials. Upon exposure to physiological fluid, the im-
plant surface is subject to a remodeling process in-
volving 1) dissolution of the implant surface, 2) pre-
cipitation of new CaP crystals, and 3) ion exchange of 
the surface with the physiological fluid.(46) This is an 
important process that determines whether the sur-
face characteristics of the implant would become 
suitable for osteoinduction,(47, 48) and the resultant 
surface bioactivity varies for different CaP ceramics. 
That the BMSCs are able to attach and grow on the 

implant is an important first step in the osseointegra-
tion process.(49) The first osteoblasts would secrete 
the extracellular matrix on the implant, which forms 
the foundation upon which the new bone tissue can 
grow. Thus, it is pertinent that the surface of the im-
plant is processed to encourage osteoinduction and 
osteoconduction.(50)  

Two approaches have been adopted to facilitate 
the attachment of osteoconductive molecules. The 
first approach, a physical adsorption method, makes 
use of the electrostatic attraction between charged 
molecules with either the positively charged calcium 
or the negatively charged phosphate on the ceramic 
surface. For instance, treatment of a hydroxyapatite 
surface with arginine led to a positively charged sur-
face that can attract negatively charged proteins such 
as bovine serum albumin; conversely, treatment with 
aspartic acid led to a negatively charged surface that 
can attract positively charged proteins such as lyso-
zyme.(51, 52) This approach, however, is functionally 
limited as the osteoconductive molecules may interact 
preferentially with the surface rather than with the 
stem cells. The second approach, a chemical bonding 
method, in which the hydroxyapatite surface is 
treated with (3-aminopropyl)triethoxysilane (APTES), 
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leads to a hydroxyapatite layer functionalized with an 
amine group. This amine group can subsequently be 
used to attach various molecules, such as the cell ad-
hesive motif Arg-Gly-Asp (RGD). (53) Even proteins, 
such as BMP,(54) can be attached via this chemical 
bonding method to improve osteoblast adhesion. 
Naturally, functionalizing hydroxyapatite with RGD 
improved the adhesion of osteoblasts onto the hy-
droxyapatite surface.(55) In addition, besides permit-
ting facile functionalization with various molecules, 
the chemical bonding of molecules on the substrate 
surface is more efficient and stable compared to the 
physical adsorption method.(56, 57) 

2.2 Surface Functionalization of Metals 
Despite the biocompatibility of ceramics with 

bone, the brittleness of ceramics is a major drawback. 
In this regard, metals hold a significant advantage. 
Titanium is one of several metals (iron, cobalt, chro-
mium etc.) that are used in alloys for the fabrication of 
orthopedic implants because it possesses many de-
sirable properties – high load-bearing capacity, com-
patible elastic modulus to native bone,(58) high cor-
rosion resistance,(59) and good biocompatibility.(60) 
However, in a small number of recipients of titanium 
implants, allergic reactions in response to the im-
plants were observed.(61, 62) In order to minimize 
such allergic reactions, it is necessary to osseointe-
grate the implant with the native bone, viz. the new 
bone tissue should be able to grow naturally on an 
osteoconductive titanium implant surface. The surface 
of titanium is normally coated with a tight layer of 
inert titanium dioxide that protects the underlying 
titanium from further oxidation. Such an interface 
does not interact chemically or biologically with cells. 
Thus, there is a need for an efficient method to acti-
vate the titanium surface toward stem cell attachment. 

One way the titanium surface can be activated is 
to treat it with an organophosphonic acid, thus coat-
ing the surface with a layer of organophosphonate. As 
such a layer of organophosphonate is not tightly at-
tached to the surface, it would not be stable in vivo. 
However, heating at 180oC can activate the titanium 
surface toward chemical reaction with the organo-
phosphonic acid, forming a tightly bound layer of 
organophosphonate that is resistant to solvent wash 
and physical peeling by scotch tape.(63) The attach-
ment of the organophosphonic acid to the titanium 
surface can be further enhanced by prior treatment of 
titanium with phosphoric acid, which produces a ti-
tanium(III) phosphate interface.(64) This phosphoric 
acid-treatment step primes the titanium surface to-
ward stronger attachment of the organophosphonic 
acid. Via the “tethering by aggregation and growth” 
method procedure, the titanium surface is first im-

mersed in a solution of the organophosphonic acid, 
after which the solvent is slowly evaporated to de-
posit a film of tightly attached organophosphonate on 
the titanium surface. (65) 

With the establishment of a facile method to at-
tach an organophosphonic acid onto the titanium 
surface, it becomes relatively easy to functionalize the 
titanium surface with RGD. On treatment of the tita-
nium surface with RGD-tethered phosphonic acid, a 
layer of RGD could be introduced onto the titanium 
surface, which is stable for at least three days. (66-68) 
This layer of RGD increased more than 10 times the 
attachment of human osteoblasts to titanium com-
pared to untreated titanium surface. The osteoblasts 
appeared normal with well-developed actin cytoskel-
eton, indicating it is possible for cells to attach on the 
RGD-layered titanium surface and proliferate nor-
mally. While this approach could be utilized to attach 
any biomolecule of interest on the titanium surface, it 
is limited by the accessibility to suitably functional-
ized phosphonic acids. This limitation can be over-
come utilizing zirconium as a linking intermediary for 
carboxylic acids, which are much more accessible than 
phosphonic acids. In addition, surface patterning of 
titanium with cells also becomes possible.(69) Such a 
zirconium intermediary layer is stable under physio-
logical conditions for up to five days and is verified to 
be capable of promoting bone growth in vivo.(70) 

2.3 Surface Functionalization of Polymers 
Polymers have also been extensively explored as 

replacement materials for bone. Some of the reasons 
include the low cost of polymers, the ease of tunability 
of polymer stress modulus, as well as the biocompat-
ibility of polymers.(71) The use of polymers in ortho-
pedic applications has a long history, with many ex-
amples of success. Prominent examples include the 
fabrication of fracture fixation devices for immobili-
zation of fractured or broken bones, as well as Bran-
tigan spine fusion cage for the stabilization of spine 
afflicted with degenerative disc disease.(72) Thus, it is 
natural that polymers are also being considered as 
replacement materials for total hip and knee re-
placement. However, there has only been limited 
success on this front, and the finger of blame can be 
pointed at the inability of the tissue surrounding the 
implant to interface properly with the polymeric im-
plant.(72) 

As with metals, the key to adapting hard poly-
mers for orthopedic applications is to activate the 
surface so that a layer of cell-adhesive RGD can be 
attached, and zirconium tetra(tert-butoxide) has 
proven useful in this regard. Zirconium tet-
ra(tert-butoxide) can react with relatively unreactive 
functional groups such as amide, carbamate, imide, 
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and even ketone/ether linkages of nylon 6/6,(73) 
polyurethanes,(74) polyterephthlates,(75) and 
poly(aryl-ether-ether-ketone) (PEEK)(76) respectively, 
permitting the facile surface activation of these hard 
polymers. Via this method, about 40% of the nylon 
6/6 surface can be functionalized with RGD,(73) a 
drastic improvement from previously reported val-
ues. Such an RGD-functionalized nylon 6/6 is stable 
to aqueous hydrolysis at pH 7.5 (up to 7 days) and 
facilitates the surface adhesion and spreading of 
NIH3T3 cells. The polyurethane surface of tecoflex®, 
an important material in the fabrication of synthetic 
vascular grafts to bypass atherosclerotic blood vessels, 
can be similarly functionalized to achieve up to 25% 
surface coverage by RGD and consequent cell at-
tachment.(74) Such surface functionalization can thus 
reduce the incidence of biofouling on tecoflex® and 
render the vascular graft much less thrombogenic. 
And as with nylon 6/6 and polyurethanes, the surface 
of polyterephthlates can be activated and coated with 
a zirconium intermediary layer, which can be treated 
with copper sulfate and chemically reduced to metal-
lic copper.(75) So tightly bound the metallic copper is 
on the polyterephthlate that the plastic material can be 
vigorously flexed without breaking off the copper 
layer. Such metal-coated plastics will be very useful 
for the fabrication of organic electronic devices. 

The ease with which the surface of hard poly-
mers can be activated by zirconium tet-
ra(tert-butoxide) makes it possible to adapt 
poly(aryl-ether-ether-ketone) (PEEK) as a support for 
the growth of new bone tissue. Despite ether and ke-
tone being weak ligands, the zirconium intermediary 
layer on the PEEK surface is still stable to hydrolysis 
and capable of more than doubling the interfacial 
shear strength of PEEK.(76) As expected, attachment 
of RGD onto the zirconium intermediary layer en-
hanced the osteoconductivity of the PEEK surface. In 
order to facilitate bone tissue growth, it is desirable 
that the osteoblasts are guided to grow unilaterally to 
reproduce the anisotropic nature of bone. With the 
utility of photolithographic methods, striped patterns 
of self-assembled monolayer of phosphonates can be 
laid on polymers to direct growth of cells only along 
the long axis of the stripes.(77) The patterned surface 
permits the ECM secreted by the cells to be aligned 
along the long axis, permitting even decellularized 
surfaces to continue to be capable of aligning cell 
growth.(78) A very important feature of this tech-
nique is that it is readily scalable, meaning that the 
technique can indeed be used to coat large (polymer-
ic) replacement bones. 

3. Conclusion 
The utility of stem cells in bone tissue engineer-

ing has made great strides, although there are cer-
tainly still hurdles to be overcome. As BMSCs are es-
sentially a heterogeneous mixture of cell lineages, 
more efficient methods for the isolation, purification, 
and ex vivo expansion of clinical grade BMSCs are 
needed so that the potency and efficacy of these cells 
can be improved. As we have also seen, both the 
physical nanotopography and chemical functionali-
zation of material surface play important roles in de-
termining the success of BMSC osteoinduction and 
osteoblast attachment, especially for metals and 
polymers. Thus, it has become possible to make su-
perior composites out of ceramics, metals, and poly-
mers, utilizing the qualities of each type of materials 
without having to be overly concerned with the osse-
ointegration potential of the resultant composite. 
Thus, the next challenge is to produce chemically en-
hanced nanotopographically well-defined surfaces on 
the orthopedic implant. The synergistic effect of both 
physical and chemical features can be expected to 
accelerate the osseointegration of the implant. 
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