International Journal of Medical Sciences

Impact factor
2.399

18 December 2017

ISSN 1449-1907 News feeds of published articles

My Manuscript | My Account

Journal of Biomedicinenew

Theranostics

Journal of Cancer

Oncomedicine

International Journal of Biological Sciences

Journal of Genomics

Journal of Bone and Joint Infection (JBJI)

Nanotheranostics

PubMed Central Indexed in Journal Impact Factor

Int J Med Sci 2013; 10(12):1746-1754. doi:10.7150/ijms.6887

Research Paper

Circulating Progenitor and Mature Endothelial Cells in Deep Vein Thrombosis

Aline M Alessio1, Miriam P Beltrame3, Mariane C Flores Nascimento1✉, Cristina P Vicente2, Juliana AP de Godoy2, Junia CR Santos Silva2, Luis Fernando Bittar1, Irene Lorand-Metze1, Erich V de Paula1, Joyce M Annichino-Bizzacchi1

1. Hematology and Hemotherapy Center, University of Campinas, Campinas-SP, Brazil.
2. Department of Anatomy, Cell Biology, Physiology and Biophysics, Institute of Biology, University of Campinas, Campinas - SP, Brazil.
3. Department of Hematology, Federal University of Paraná, Curitiba-PR, Brazil.

Abstract

Introduction: Mature circulating endothelial cells (CEC) and circulating endothelial progenitor cells (EPC) have been described in several conditions associated with endothelial injury. Their role in deep vein thrombosis (DVT) has not been previously evaluated. Patients and Methods: In this pilot study we evaluated the time course of CEC and EPC release after vena cava experimental DVT in mice, using the FeCl3 model. We also evaluated their presence in patients with DVT at different phases of the disease (acute and chronic phase). CEC and EPC were evaluated by Flow Cytometry. Results: In mice, both CEC and EPC were increased 24 hours after DVT induction, peaking 48 hours thereafter. After 72 hours, CEC counts decreased sharply, whereas EPC counts decreased less substantially. In DVT patients we observed a significant increase in CEC counts immediately after DVT compared to healthy individuals. Patients with chronic disease also presented a significant elevation of these cell count. In a subgroup of patients for whom serial samples were available, CEC counts decreased significantly after 9-15 months of the acute event. Conclusions: Our results suggest the participation of these cells in the reparative processes that follows DVT, both at immediate and late time-points. The different kinetics of CEC and EPC release in experimental DVT suggests a heterogeneous role for these cells in the reparative events after DVT.

Keywords: progenitor endothelial cells, mature endothelial cells, flow cytometry, deep vein thrombosis, DVT animal model.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
How to cite this article:
Alessio AM, Beltrame MP, Nascimento MCF, Vicente CP, de Godoy JA, Silva JCS, Bittar LF, Lorand-Metze I, de Paula EV, Annichino-Bizzacchi JM. Circulating Progenitor and Mature Endothelial Cells in Deep Vein Thrombosis. Int J Med Sci 2013; 10(12):1746-1754. doi:10.7150/ijms.6887. Available from http://www.medsci.org/v10p1746.htm