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Abstract 

DAI is a leading cause of the patient’s death or lasting vegetable state following severe TBI, and up 
to now the detailed mechanism of axonal injury after head trauma is still unclear. Inflammatory 
responses have been proved to be an important mechanism of neural injury after TBI. However, 
most of these studies are concerned with focal cerebral injury following head trauma. In contrast 
to focal injury, studies on the inflammatory reaction following DAI are only beginning. And in this 
article, we aimed to review such studies. From the studies reviewed, immune response cells would 
become reactive around the sites of axonal injury after DAI. Besides, the concentrations of several 
important inflammatory factors, such as IL-1 family, IL-6 and TNF-ɑ, increased after DAI as well, 
which implies the participation of inflammatory responses. It can be concluded that inflammatory 
responses probably participate in the neural injury in DAI, but at present the study of inflammatory 
responses following DAI is still limited and the clear effects of inflammatory response on axonal 
injury remain to be more explored. 
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Introduction 
Inflammatory responses following neural injury 

have been suggested as an important mechanism in 
several types of neural system disease including TBI 

[1,2], cerebral hemorrhage [3], cerebral infarction [4,5], and 
multiple sclerosis [6]. Clinical and experimental studies 
of TBI have demonstrated that such injury induces a 
robust inflammatory response that involves the ac-
cumulation of various types of inflammatory reactive 
cells as well as the expression of a number of inflam-
matory factors. The recruitment of inflammatory re-
active cells has been identified in or around cerebral 
contusion lesions in conjunction with microglia, 
polymorphonuclear granulocytes, macrophages, and 
T-lymphocytes [2,7-9]. Moreover, many inflammatory 
factors, such as histamine, PGs, SP, and several cyto-
kines, are increasingly expressed in CSF and/or blood 
around contusion lesions [10-15]. However, most of 

these studies are concerned with focal cerebral injury 
following head trauma. DAI, which is a leading cause 
of patient death and is implicated in lasting vegetable 
states following severe TBI, also occurs subsequent to 
neural injury and, as of yet, there is no specific ther-
apy effectively treating this pathology [16]. Important-
ly, more and more emerging evidences indicate that 
axonal injury develops more frequently in TBI than 
previously estimated [17,18].  

Focal injury following TBI is relatively straight-
forward and typically involves cerebral contusions 
and lacerations sometimes combined with lesion 
formation. Cerebral contusions are typical pathologic 
changes resulting from hemorrhagic lesions within 
the gray matter or at the gray–white matter interface. 
In contusional and pericontusional domains, second-
ary necrotic and apoptotic neuronal death have been 
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consistently identified [19-22]. As mentioned above, the 
inflammatory response following head trauma is be-
lieved to be an important mechanism of such second-
ary neuronal death. In contrast to focal injury follow-
ing TBI, axonal injuries are scattered throughout 
subcortical white matter in areas such as the corpus 
callosum, thalamus, and brain stem [23-26]. Studies from 
the last 20 years have revealed that direct mechanical 
forces do not completely tear axons and result in ax-
onal retraction balls but rather stimulate and induce 
progressive changes that impede axonal transport, 
which subsequently results in the local swelling of the 
axon prior to detachment from its downstream seg-
ment [27-29]. Furthermore, focal swelling of the axon 
ensues via the continued delivery of substances dur-
ing normal transport kinetics, which leads to the col-
lapse and detachment of the axon at this point of focal 
swelling [27, 29-31]. Thus, similar to focal injury, axonal 
injury also has a deleterious secondary impact fol-
lowing head trauma. In contrast to focal injuries, 
studies on the inflammatory reaction following DAI 
are only beginning. Nonetheless, these studies have 
resulted in a massive amount of helpful information 
concerning inflammatory reactions in DAI that is not 
the same as focal injury. These studies on 
DAI-induced inflammatory responses may help us 
understand this disorder better and can possibly pro-
vide methods by which to develop efficient therapies 
for it. The current paper reviews studies concerning 
the inflammatory response following DAI. 

Compared to focal injury models, an experi-
mental animal model of DAI is relatively difficult to 
set up. There are some excellent reviews about ex-
perimental models of DAI [32,33]. These models mainly 
include the instant rotational injury model, the impact 
accelerative injury model, the lateral fluid percussion 
injury model, the controlled cortical impact model, 
the nerve stretch injury model [32], and central fluid 
percussion injury model. Most of these cause not only 
axonal injury but also result in focal injuries, and thus 
it is important to clarify the precise type of injury to 
which the inflammatory actions are responding. For 
example, at present, the model introduced by Mar-
marou and colleagues [32,34] is a typical and popular 
option among DAI studies, but it not only results in 
DAI in different white matter regions but also multi-
ple focal cerebral injuries. Hence, in most studies, the 
detection of inflammatory responses was conducted 
around sites of possible axonal injury to exclude the 
influences of focal injury. In addition, some studies 
have utilized double markers of axonal injury and 
inflammatory responses to more accurately observe 
the phenomenon [35,36]. 
 

Cellular Immune Response 
Most of the recent animal TBI models induce 

focal injury on the cortex or other parts of the brain 
through controlled impact. A robust inflammatory 
response involving the activation of glia, neurons, and 
cerebral accumulation of blood leukocytes follows [9], 
however, this inflammatory cell response is not the 
same as that following DAI. 

Microglial cells are the main immune response in 
the central nervous system and a frequent target of 
investigation in DAI experimental models. Venkate-
san et al. [37] used Galectin-3/Mac-2 as a marker of a 
subpopulation of activated microglia involved in my-
elin degradation. In that study, a closed skull impact 
mouse model was utilized along with immunofluo-
rescence staining for APP, a classic marker of axonal 
injury, and showed multiple axonal injuries at dorsal 
midline white matter tracts. The results also indicated 
that immunopositive microglia significantly increased 
within the corpus callosum; a change that was sus-
tained until 28 days post-TBI and was most obvious 
24 hours post-TBI. Oehmichen et al. [36] used an im-
munohistochemical double-labeling technique for the 
simultaneous demonstration of beta-APP for axonal 
injury and CD68 for microglia to observe microglia 
among 40 patients who survived TBI for more than 3 
hours and up to 15 days. Among approximately half 
of the included cases with survival intervals of 5 to 15 
days, there was a moderate microglial reaction in re-
gions of injured axons positive for beta-APP. Similar 
results were found in other clinical and experimental 
studies following axonal injury [38,39].  

Csuka et al. [40], using the DAI model introduced 
by Marmarou [34], reported an intensification of 
GFAP-stained reactive astrocytes 4 to 8 hours fol-
lowing TBI and, except for sites of focal cortical injury, 
this response was primarily found in the thalamus 
and hypothalamus where the maximal expression of 
signs of axonal injury were apparent at 48 hours for 
up to 2 weeks after the trauma. Activated microglia 
(stained by OX42) was found in cortex and hippo-
campus as early as 4 hours, and up-regulation of 
MHC class II (OX6 positive) was evident in white 
matter tracts at 24 hours following injury. Macro-
phage (ED1 positive) numbers increased in the me-
ninges and perivascularly from 24 to 48 hours for up 
to 2 weeks, but this infiltration was marginal. Besides, 
that no parenchymal infiltration of lymphocytes and 
granulocytes was observed throughout the brain at 
any time point after trauma showed the absence of the 
two populations of immune cells. In contrast to Csuka 
et al. [40], studies of focal injury following head trauma 
found that these two types of immune cells emerged 
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in and around the sites of contusions due to dysfunc-
tion of the BBB and are important for the subsequent 
inflammatory response [41-44].  

Kelley et al. [35] conducted a more detailed study 
on this topic with the induction of DAI via moderate 
midline/central fluid percussion injury and dou-
ble-labeling strategies to observe immune cells and 
axonal injury simultaneously. In the acute phase 
(within 48 hours post-injury), activated microglial 
cells and macrophages were observed at axonal injury 
sites, including the hippocampal parenchyma. Sub-
sequently, the number of activated microgila in-
creased by 48 hours post-injury, and these activated 
microglia cells scattered near the sites of axonal inju-
ry. Besides, the immunophenotypic macrophages 
persisted as well. Seven days following injury, en-
hanced microglial/macrophage immunoreactivity 
still could be able to be observed within diffuse in-
jured axonal sites. And within thalamus immuno-
phenotypic the number of macrophages even in-
creased. In addition, electron microscopy evaluation 
revealed that activated microglia and macrophages 
exhibit consistent immune cell interactions in relation 
to injured axons even beyond 7 days. Here, the au-
thors concluded that the activation of microglia shares 
a spatiotemporal relationship with axonal injury alt-
hough no clear interactions were observed. Other 
studies have found a similar cellular response fol-
lowing DAI [45, 46] including the one introduced by 
Helelwell and his colleagues [46], who demonstrated 
that hypoxia perpetuates axonal pathology and cel-
lular inflammation. 

From such studies, it appears that the prolifera-
tion and activation of resident glial cells and periph-
eral macrophages are the main immune cell responses 
following DAI which is similar to responses to focal 
injury following head trauma [47]. However, in axonal 
injury, lymphocytes and granulocytes are absent from 
this process, which implies different patterns of im-
mune injury comparing to focal injury. The activation 
of immune cells can be detected as early as 4 hours 
after head trauma and can last from 7 to 28 days in 
DAI. Although the number of studies on immune cell 
activation following DAI is limited, these discoveries 
strongly imply that inflammatory cells are involved in 
DAI. 

Cytokines 
Cytokines are proteins secreted from cells that 

function as a means of communication between cells 
in both a paracrine and endocrine fashion. They are 
important for the repair and the defense of tissue fol-
lowing trauma. The expression of various types of 
cytokines increases after head trauma. 

Well-investigated cytokines include the IL-1 family, 
IL-6, IL-10, and TNF-ɑ, which likely play an important 
role in inflammatory reactions following TBI [1,2,37,48-52].  

The IL-1 family, including IL-1α, IL-1β, and 
IL-18, is one of the best investigated pro-inflammatory 
cytokines and a number of studies investigating focal 
injury have identified its participation in secondary 
neural injury. Ciallella et al. [53] constructed a con-
trolled cortical impact injury model and used APP to 
mark axonal injury. In the early stages after trauma, 
an increase in APP was obvious in white matter ax-
onal tracts. In the hippocampus and cortical areas 
where the APP increase was significant, the expres-
sion of IL-1β also increased and reached its peak by 6 
hours after trauma. Lu et al. [54] used the model in-
troduced by Marmarou [34] and observed a rapid in-
crease in expression in both IL-1α and IL-1β. Howev-
er, they only detected cortical expression changes and 
did not confirm the existence of axonal injury. It is 
well-known that the IL-1 family has extensive in-
flammatory functions such as stimulating T-cells and 
macrophages as well as leading to the secretion of 
other cytokines and chemokines. In addition, Camp-
bell et al. [55] also reported that the overexpression of 
IL-1β has a strong relation with axonal injury.  

Hans et al. [56], also using the model introduced 
by Marmarou [34], found widespread axonal injury, 
which was confirmed in the white matter by im-
munohistochemical examination using an antibody 
against neurofilaments. In that study, IL-6 activity 
increased in the CSF just 1 hour following DAI and 
reached maximum levels between 2 to 4 hours, after 
which it returned to control values within 24 hours. 
Serum IL-6 activity reached peak levels 4 hours fol-
lowing DAI but its concentration was much lower 
than that in the CSF. Moreover, IL-6 mRNA and pro-
tein expression were also positive at sites where ax-
onal injury was observed. Similarly, Rhodes et al. [57] 
observed an intense area of IL-6 activation below the 
hippocampus following DAI using the model intro-
duced by Marmarou [34]. IL-6 is an important inflam-
matory cytokine and has a wide range of effects. It 
affects both pro-inflammatory and anti-inflammatory 
responses via regulation of the activity of immuno-
cytes such as neutrophils, lymphocytes, and NK-cells 
as well as the induction of the release of soluble TNFR 
and IL-1 receptor antagonists [58, 59]. These two studies 
found that, subsequent to DAI, the expression of IL-6 
increased quickly at the sites of axonal injury. This 
cytokine has been used as an indicator of the severity 
of the inflammatory response in many studies [60].  

Kita et al. [61] used a midline fluid percussion rat 
model to develop axonal injury in the central nervous 
system after which axonal injury was identified using 
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an electron endoscope to view the corpus callosum 
and brain stem. TNF-ɑ concentrations in the tissue of 
both the brain stem and corpus callosum gradually 
increased during the first hour following the induc-
tion of DAI and rose to maximal levels during the 
third hour, after which they gradually decreased. 
TNF-ɑ immunoreactivity was primarily detected in 
the lysosomes of glia such as microglia, perivascular 
astrocytes, and oligodendroglia. Khuman and col-
leagues [62] also observed an increase in TNF-ɑ ex-
pression in the hippocampus and related cortices 3 to 
6 hours following head trauma in an experimental 
animal model. They used a closed head injury model 
with a weight drop and free rotational head move-
ment. Axonal injury was identified in the cortex and 
the periventricular white matter of injured mice using 
APP immunohistochemistry and electron microscopy. 
The activation of astrocytes and microglia was also 
observed. In another study, Yan and colleagues [63] 
used the model introduced by Marmarou [34] and, after 
trauma, found that the expression of IL-1β, IL-6, and 
TNF-ɑ increased significantly. They also detected the 
expression of these pro-inflammatory cytokines in 
rats receiving DAI plus hypoxia and found that neu-
roinflammation was enhanced compared to simple 
DAI. TNF-ɑ is a classic pro-inflammatory factor and 
its action stimulates immunocytes such as NK-cells 
and macrophages/monocytes, and promotes the se-
cretion of several inflammatory factors such as NO, 
platelet activation factor, ICAM, thromboxan A2, and 
prostaglandin E2 [64]. It can also regulate cell apoptosis 
by binding to TNFR1 [65]. TNF-ɑ is also able to directly 
induce primary demyelination and oligodendrocyte 
apoptosis in central nervous system disease [66-68]. Such 
results suggest that TNF-ɑ may contribute to the 
pathogenic mechanism of DAI formation following 
fluid percussive brain injury.  

ICAM-1 is an important adhesion molecule in 
the mediation of leukocyte migration [69]. In addition, 
in the central nervous system, chemokines such as 
MIP-2 and MCP-1 play an important role in the regu-
lation of immunocytes [70, 71]. Rancan et al. [72], using an 
impact-acceleration model of DAI introduced by 
Hans et al. [56], demonstrated the expression of these 
cytokines after DAI. The expression of ICAM-1 in-
creased 16 hours following construction of the animal 
model and reached maximum levels during the fourth 
day. This increase was most obvious in the dorsal 
cortex, basal cortex, thalamus, and corpus callosum. 
Despite the marked upregulation of ICAM-1, there 
was no infiltration of neutrophils detected. The con-
centration of MCP-1 was significantly elevated after 
DAI but the concentration of MIP-2 did not show a 
significant difference compared to control brains. 

However, in focal injury, the expression of both 
MCP-1 and MIP-2 increased [71]. MCP-1 is important 
for the recruitment of blood-borne monocytes [73] and 
MIP-2 is a powerful chemotactic factor for neutrophils 

[74]. The changes in expression for these two chemo-
kines following DAI is quite consistent with the re-
sults of Csuka’s study [40] mentioned above.  

Prostaglandin is an important inflammatory 
factor for many types of neural injury [11, 75]. Its syn-
thesis is regulated by the enzyme COX, which has at 
least two isoforms: COX-1 and COX-2 [76]. In addition 
to the regulation of inflammatory reactions, COX-2 is 
able to produce many kinds of effects including ROS 
release, cerebrovascular spasm, and neuroendocrine 
influences [77-79]. The expression of COX-2 increases in 
focal injury following head trauma [80, 81] and Cernak 
et al. [82] found changes of COX-2 expression after DAI 
in rats. That study utilized the model introduced by 
Marmarou [34] and detected the expression of COX-2 in 
the hippocampus and parietal cortex using immuno-
histochemistry and Western blotting. The expression 
of COX-2 increased rapidly in the hippocampus as 
early as 3 hours following DAI, and these changes 
lasted at least 12 days. In the cortex, the upregulation 
of COX-2 expression was less significant and had a 
shorter duration. Moreover, nimesulide, a COX-2 in-
hibitor, was used for the detection of neural function 
outcomes following DAI. Animals administered 
nimesulide exhibited significant improvement in 
cognitive function compared to vehicle controls and 
motor deficits were attenuated as well but without a 
significant difference. However, the authors did not 
compare the changes of axonal injury after admin-
istration of nimesulide.  

Although studies on the expression of cytokines 
following DAI are still only beginning, their findings 
imply that particular types of cytokines participate in 
the process of axonal injury following head trauma, 
similar to focal injury. However, several studies have 
revealed that, without neutrophil infiltration, the 
changes in cytokines following DAI are probably dif-
ferent from those following focal injury.  

Complement 
The activation of a complement system is an 

important part of the innate immunologic response 
against infection and injury. There are many studies 
concerning focal injury that have investigated com-
plements and it has been well documented that com-
plements delay neural injuries following head trauma 

[83]. All three pathways, including classical, lectin, and 
alternative pathways, converge in the formation of 
C3-convertases [1]. The formation of C5-convertase 
occurs via binding of C3b which leads to a proteolytic 
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cleavage of complement C5 to the potent ana-
phylatoxins C5a and C5b. Then, the terminal pathway 
of complement activation is initiated by the aggrega-
tion of C5b to C6, C7, and C8 molecules and the sub-
sequent membrane pore formation via accumulation 
of multiple C9 molecules, which leads to cell lysis [1]. 

Regarding axonal injury, Stahel et al. [84] found 
C5a expression in the central nervous system after 
induction of DAI using the Marmarou experimental 
model [34]. Four hours after trauma, immunoreactive 
cells expressing C5aR mRNA were observed in the 
meninges and lateral ventricles, and the number 
gradually increased for up to 24 hours. In the cerebral 
parenchyma, C5aR mRNA positive cells were ob-
served 8 hours following injury and were widespread 
bilaterally throughout the cortex and cerebellum. In 
addition, the intensity of C5aR transcript signals on 
neurons increased after trauma. As a typical inflam-
matory factor, C5a, which can be expressed by neu-
rons throughout the cerebral cortex and cerebellum, 
has a multitude of effects on the inflammatory re-
sponse and is believed to be a primary factor of im-
mune responses in the central nervous system [85, 86].  

Other Studies 
Risling et al. [87] investigated gene expression 

following TBI. Three different models of head trauma 
were established in that study, including a model of 
DAI using controlled rotation injury, which was in-
troduced by Davidson et al. [88]. This model is closer to 
simple axonal injury without focal cerebral trauma 
relative to the brain impact [32]. Within this model, the 
rat’s hippocampus was dissected out for gene expres-
sion detection using Affymetrix standard procedures 
for targeting RNA. There were changes in the expres-
sion of a large number of gene families after DAI in-
cluding inflammatory genes in the hippocampus, and 
such changes were not the same as those of the model 
of focal injury.  

Myelin debris can recruit leukocytes and stimu-
late macrophages to express pro-inflammatory mol-
ecules [89], and after DAI, may be found around the site 
of axonal injury [35]. The hypothesis was raised that 
myelin debris from injured axons triggers undesirable 
inflammation and upregulates the expression of var-
ious types of pro-inflammatory cytokines, which 
would probably lead to further axonal injury [90].  

In addition, studies that delivered an-
ti-inflammatory or immunosuppressive agents such 
as cyclosporin A, PACAP, and SP antagonists to ex-
perimental animals after head trauma found that the 
axonal injury was significantly attenuated [91-94]. 
However, In Homsi and colleagues’s study [95], the 
microglia activation was depressed significantly with 

minocycline, while with simultaneous reduced focal 
injury lesion, but axonal injury was not able to atten-
uated. 

In conclusion, similar to focal injuries following 
TBI, inflammatory responses probably participate 
following DAI. Based on the studies reviewed here, 
following head trauma, various types of immune re-
sponse cells become reactive around the sites of ax-
onal injury and share a spatiotemporal relationship 
with axonal injury. In addition, the concentration of 
several inflammatory factors including cytokines and 
complements increase after DAI, which implies the 
involvement of inflammatory responses. Besides, 
based on present studies, the inflammatory responses 
following DAI are not as same as those following focal 
injury.  

However, the study of inflammatory responses 
following DAI is still limited and the clear relation-
ship and effects of inflammatory response on axonal 
injury remain to be more explored. Furthermore, be-
cause most recent experimental animal models not 
only lead to axonal injury but also other types of in-
jury, it is important and necessary to determine which 
injury types induce inflammatory responses.  
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